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4 “Simion Stoilow” Institute of Mathematics of the

5 Romanian Academy, Research Unit No 6,

6 Bucharest, Romania

7 Overview

8 The simplest quasi-static and dynamic laboratory

9 experiments concerning material behavior of

10 solids are performed using uniaxial tension and

11 compression tests. This requires

12 a thermomechanical theory in one space dimen-

13 sion which corresponds to the motion of thin bars

14 described by a single material coordinate. One

15 considers here a general Lagrangian description

16 of the thermodynamic bar theory which allows to

17 take into account the heat exchanges across the

18 lateral surface of a bar with its environment.

19 Balance laws and entropy inequality in differen-

20 tial form and the corresponding jump conditions

21 are described. For thermoelastic heat-conducting

22 materials, thermodynamic restrictions, energy

23 and entropy identities, and dissipative aspects

24 are derived. One discusses additional restrictions

25 in the form of thermostatic stability conditions

26 versus dynamic stability conditions. The results

27 are appropriate in solving one-dimensional prob-

28 lems in nonlinear thermo-elastodynamics and are

29 related with central ideas in the analysis of

30 quasilinear hyperbolic systems of conservation

31 laws, for example, the need to consider

32discontinuous solutions, since even for smooth

33initial data, the thermoelastic system may

34develop discontinuous solutions within a finite

35time. The need to impose entropy conditions in

36order to select physical meaningful solutions and

37to ensure the uniqueness of weak solutions (as in

38▶Heat Conduction and Viscosity as Structuring

39Mechanisms for Shock Waves in Thermoelastic

40Materials). It is shown that the thermoelastic

41model has a constitutive deficiency to describe

42solid-solid phase transitions. One way to over-

43come this inconvenience is to augment the

44thermoelastic model to include physical effects

45as viscosity or time of relaxation considered in

46▶Maxwellian rate-type thermo-viscoelastic bar

47theory – an approach to non-monotone

48thermoelasticity.

49Thermodynamic Theory in One Space
50Dimension

51One considers a thin bar B of length L in its

52unstressed reference configuration having

53a constant cross-sectional area A along its axis

54OX. Suppose that the motion of the bar is only

55longitudinal and is described by a function

56x ¼ w X; tð Þ, X 2 ½0; L�, t � 0 with the property

57that wðX; tÞ is injective and bicontinuous with

58respect to X for any fixed t. X is the initial coor-

59dinate (or Lagrangian coordinate), x is the actual

60axial coordinate (or Eulerian coordinate), and t
61denotes time. wð�; tÞ is called the deformation

62(or configuration) of the bar B at time t.
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63 Whenever w is continuously differentiable, the

64 functions vðX; tÞ ¼ @w
@t ðX; tÞ and

65 eðX; tÞ ¼ @w
@X ðX; tÞ � 1 > �1 denote the particle

66 velocity and the strain at point X and time t,

67 respectively. Moreover, we assume that all the

68 thermomechanical field quantities are uniform

69 over a cross section, that is, they only depend on

70 X and t.
71 If R ¼ RðXÞ denotes the mass density in the

72 reference configuration, then in the Lagrangian

73 description, the role of the conservation of mass

74 is only to determine the current mass density

75 Ra ¼ Raðx; tÞ, once the motion w is known,

76 through relation RðXÞ ¼ Raðx; tÞ @w
@X ðX; tÞ.

77 The balance of linear momentum for a portion

78 of the bar occupying the interval ðX1;X2Þ requires

d

dt

ðX2

X1

RvðX; tÞAdX ¼ AsðX; tÞ X¼X2

X¼X1

��
þ
ðX2

X1

RbðX; tÞAdX;
(1)

79 where s ¼ sðX; tÞ denotes the axial stress (force
80 per unit area in the reference configuration) and

81 b ¼ bðX; tÞ denotes a distributed longitudinal

82 load per unit mass.

83 The balance of energy (the first law of

84 thermodynamics) for the same piece of bar

85 requires

d

dt

ðX2

X1

R
v2

2
þ e

� �
AdX ¼ Aðsv� qÞ X¼X2

X¼X1

��
þ
ðX2

X1

Rðbvþ rÞAdX þ
ð
Alat

~qds;

(2)

86 where e ¼ eðX; tÞ is the internal energy per unit

87 mass, q ¼ qðX; tÞ is the axial heat flux per unit

88 cross-sectional area of the bar, ~q ¼ ~qðX; tÞ is the
89 heat flux per unit area across the lateral surface of

90 the barAlat between X1 and X2, and r ¼ rðX; tÞ is
91 the heat supply per unit mass, in the reference

92 configuration.

93 The balance laws have to be supplemented

94 with the Clausius-Duhem inequality (second

95 law of thermodynamics) which for the interval

96 ðX1;X2Þ takes the form

d

dt

ðX2

X1

R�AdX � �A
q

y
ðX; tÞ X¼X2

X¼X1

��
þ
ðX2

X1

Rr
y
AdX þ

ð
Alat

~q

y
ds;

(3)

97where � ¼ �ðX; tÞ is the entropy per unit mass

98and y ¼ yðX; tÞ is the absolute temperature.

99Traditionally one distinguishes two situations.

100The first one corresponds to the case when the

101thermomechanical variables are smooth (smooth

102processes). The second one corresponds to the

103case when the motion w is continuous, but some

104of the quantities v, e, y, s, e, �, and q have jump

105discontinuities across a smooth curve X ¼ SðtÞ in
106the t� X plane, being smooth function of ðX; tÞ
107everywhere else (discontinuous processes). This

108curve is called a strong wave discontinuity (for

109instance, shock wave, phase boundary) propagat-

110ing with the speed _S. We name X > SðtÞ as the þ
111side of the discontinuity and X < SðtÞ as the �
112side of the discontinuity.

113Consider f ¼ f ðX; tÞ one of the above quanti-
114ties, and suppose there exists a single discontinu-

115ity X ¼ SðtÞ in the interval ðX1;X2Þ. Then, one
116shows that

f ðX2; tÞ � f ðX1; tÞ ¼
ðX2

X1

@f

@X
dX þ f½ �½ �ðtÞ;

d

dt

ðX2

X1

fdX ¼
ðX2

X1

@f

@t
dX � _S f½ �½ �ðtÞ;

(4)

117where f½ �½ �ðtÞ ¼ fþðtÞ � f�ðtÞ ¼ f ðSðtÞ þ 0; tÞ
118�f ðSðtÞ � 0; tÞ denotes the jump across the dis-

119continuity curve. Moreover, according to

120Hadamard’s lemma ([1, 2, Section 173]), we have

d f½ �½ �ðtÞ
dt

¼ @f

@t

� �� �
þ _SðtÞ @f

@X

� �� �
: (5)

121The definition of the particle velocity v and

122strain e, on one side, and the continuity condition
123of the motion w, on the other side, lead in the

124smooth case to the differential compatibility rela-

125tion between v and e and, in the discontinuous

126case, to the kinematic jump condition,

127respectively:

T 2 Thermoelastic Bar Theory
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@e
@t

¼ @v

@X
; v½ �½ � þ _S e½ �½ � ¼ 0: (6)

128 By using relations (4) in the integral forms

129 (1)–(3), one gets, for the smooth case, the balance

130 laws and Clausius-Duhem inequality in their

131 differential form and, for the discontinuous

132 case, the balance laws and entropy inequality

133 across a wave discontinuity:

R
@v

@t
¼ @s

@X
þ Rb; R _S v½ �½ � þ s½ �½ � ¼ 0 (7)

R
@

@t

v2

2
þ e

� �
¼ @

@X
ðsv� qÞ þ Rðbvþ rÞ þ 2

R
~q;

R _S
v2

2
þ e

� �� �
þ sv� q½ �½ � ¼ 0

(8)

R
@�

@t
� � @

@X

q

y

� �
þ 2

R

~q

y
þ Rr

y
;

� R _S �½ �½ � þ q

y

h ih i
� 0:

(9)

134 Here we have assumed that the bar B is circu-

135 lar with radius R.

136 By using relations (6) and (7) in (8), one can

137 rewrite the PDEs system and the corresponding

138 jump relations under the form

@e
@t

¼ @v

@X
; R

@v

@t
¼ @s

@X
þ Rb;

R
@e

@t
¼ s

@e
@t

� @q

@X
þ Rr þ 2

R
~q

(10)

v½ �½ � þ _S e½ �½ � ¼ 0; R _S v½ �½ � þ s½ �½ � ¼ 0;

R _S e½ �½ �þ < s > v½ �½ � � q½ �½ � ¼ 0;
(11)

139 where fh i ¼ 1
2
fþ þ f�ð Þ, and we have used the

140 identity ab½ �½ � ¼ ah i b½ �½ � þ bh i a½ �½ �.
141 In thermodynamics it is useful to use the

142 Helmholtz free energy c ¼ e� y� as

143 a thermodynamic potential. Then the Clausius-

144 Duhem inequality (9)1 takes the form

�R
@c
@t

þ s
@e
@t

� R�
@y
@t

� q

y
@y
@X

� 0; (12)

145and the jump entropy inequality (9)2 becomes

_S

yh i R c½ � � sh i e½ � þ R y½ � �h ið Þ � ½y�
yh i

q

y

D E
� 0:

(13)

146It is useful to note here the role of the

147Clausius-Duhem inequality. For smooth

148thermomechanical fields, this expression of the

149second law of thermodynamics is used to restrict

150the form of the constitutive relations. On the other

151side, for the discontinuous thermomechanical

152fields, it becomes an additional constraint that

153weak solutions have to satisfy (see also ▶Heat

154Conduction and Viscosity as Structuring Mecha-

155nisms for Shock Waves in Thermoelastic

156Materials).

157Heat-Conducting Thermoelastic Bars

158Convective Heat Transfer with the

159Environment

160In the one-dimensional bar theory, the heat

161absorption or emission through the lateral surface

162of the bar is by no means unimportant. For

163instance, in quasi-static loading or unloading

164tests on shape memory alloy bars, the latent heat

165of the phase transformation results in heating (or

166cooling) of the specimen in the neighborhood of

167the transformation front (see [3]). A test

168conducted in an air environment or water envi-

169ronment leads to different thermomechanical

170results (see also ▶ Pseudoelasticity and Shape

171Memory Effect – A Maxwellian Approach).

172A good way to model such circumstances is to

173suppose that the heat flux ~q across the lateral

174surface of the bar satisfies Newton’s convective

175law of heat transfer

~q X; tð Þ ¼ �o y X; tð Þ � yext X; tð Þð Þ; (14)

176where yext is the ambient temperature and

177o ¼ const. > 0 is a heat transfer coefficient,

178which depends upon both the constitution of the

179bar and the conditions of the environment. This

180law expresses the fact that the rate of heat loss/

Thermoelastic Bar Theory 3 T
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181 gain of a body is proportional to the difference in

182 temperatures between the body and its surround-

183 ings. Let us note that ~q is zero in two situations:

184 first, when the temperature of the environment

185 coincides with the temperature of the bar at

186 each X and t, which is not easy to be accom-

187 plished in practice when y is not constant, and

188 second, when placing the bar in an adiabatic

189 environment, for example, a vacuum and o ¼ 0.

190 The Thermoelastic Model

191 The reference density R, the body force b, and the
192 heat supply r are viewed as externally prescribed

193 fields. The other thermomechanical variables are

194 connected through constitutive relations that

195 characterize the material response.

196 A constitutive theory is determined by selecting

197 a class of independent (prime) variables and

198 a class of dependent variables, derived from the

199 prime variables via constitutive relations.

200 One considers here thermomechanical theo-

201 ries in which w and y are prime variables. One

202 advantage of this choice is that these quantities

203 can be directly measured experimentally. The

204 others such as the internal energy e, entropy �,

205 axial force s, axial heat flux q, and lateral flux ~q

206 are considered as dependent variables since they

207 are derived from the prime variables by constitu-

208 tive relations.

209 In determining the general form of phenome-

210 nological constitutive theories, one imposes on

211 the constitutive relations some principles, like the

212 principle of equipresence, the principle of mate-

213 rial frame indifference, and the principle of com-

214 patibility with the Clausius-Duhem inequality

215 (see [4] and [5] for the general form of constitu-

216 tive theories in several space dimensions).

217 Thermodynamic Considerations

218 A state of the bar is any pair S ¼ wðXÞ; yðXÞð Þ,
219 X 2 ½0;L�where wðXÞ and yðXÞ are a deformation

220 and temperature field over B. One takes e, y, and
221 the temperature gradient yX as independent vari-

222 ables of the constitutive theory. By including the

223 temperature gradient, one incorporates the effect

224 of heat conduction. The remaining

225thermomechanical variables are determined by

226constitutive relations satisfying the principle of

227equipresence:

s ¼ seqðe; y; yXÞ; c ¼ ceqðe; y; yXÞ;
� ¼ �eqðe; y; yXÞ; q ¼ Qðe; y; yXÞ:

(15)

228By anticipating that the constitutive functions

229of thermoelastic materials characterize the equi-

230librium states of some thermo-viscous materials,

231we have used consistently the index eq (see

232▶Maxwellian Rate-Type Thermo-Viscoelastic

233Bar Theory).

234A smooth process of the bar will be any pair

235SðtÞ ¼ wðX; tÞ; yðX; tÞð Þ, t 2 ½0; t0� of smooth

236time-dependent fields over B which satisfies

237the balance equations (10) and the constitutive

238relations (14) and (15).

239The Clausius-Duhem inequality must be sat-

240isfied for all smooth thermomechanical pro-

241cesses. Let us note that a process can be realized

242by a proper choice of the externally prescribed

243fields b and r. When the constitutive functions are

244brought into (12), one gets

seq � R
@ceq

@e

� �
_e� R �eq þ

ceq

@y

� �
_y

� R
@ceq

@yX
_yX �Q

y
yX � 0;

(16)

245where dot denotes time derivative. The values e,
246y, yX, _e, _y, and _yX can be assigned independently.

247Since the inequality is to be satisfied for all inde-

248pendent variations of _e, _y, and _yX , which occur

249linearly, the coefficients of these terms have to

250vanish separately, that is,

ceq

@yX
¼ 0; s ¼ seqðe; yÞ ¼ R

@ceq

@e
;

� ¼ �eqðe; yÞ ¼ � @ceq

@y
;

(17)

251and, in addition, a residual thermal dissipation

252inequality has to be satisfied

T 4 Thermoelastic Bar Theory
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Dth ¼ � 1

y
Qðe; y; yXÞyX � 0: (18)

253 Thus, the Clausius-Duhem inequality places

254 severe restrictions on the form of the constitutive

255 functions. The free energy of the thermoelastic

256 material has to be independent of yX, and it is

257 a potential for the stress and entropy functions.

258 Let us note that in a thermoelastic material for

259 any smooth fields e and y, the only dissipative
260 mechanism is the thermal dissipation (18). If

261 one considers the Fourier law for axial heat con-

262 duction, that is, Q ¼ �kðe; yÞyX, then (18)

263 requires that the heat conduction coefficient k
264 has to be positive.

265 On the other side, when the motion of a bar

266 involves a propagating discontinuity, then

267 according to the jump entropy inequality (9)2,

268 strain and temperature discontinuous fields con-

269 stitute a source of dissipation in thermoelastic

270 materials (see also ▶Heat Conduction and

271 Viscosity as Structuring Mechanisms for Shock

272 Waves in Thermoelastic Materials).

273 Even in the isothermal case, a strain disconti-

274 nuity constitutes a source of dissipation in an

275 elastic nonlinear material defined by relation

276 s ¼ seqðeÞ. Indeed, according to (13), the dissi-

277 pation inequality takes the form

_S

 
RceqðeþÞ � Rceqðe�Þ

� 1

2
ðseqðeþÞ þ seqðe�ÞÞðeþ � e�Þ

!
� 0:

(19)

278 By using, in this isothermal case, the expres-

279 sion (20)1 of the free energy determined below,

280 one gets a useful geometrical meaning of the

281 dissipation induced by a shock wave. That is,

282 the coefficient of _S in (19) is just the signed area

283 between the graph of s ¼ seqðeÞ and the chord

284 which joins ðe�; seqðe�ÞÞ and ðeþ; seqðeþÞÞ.
285 Let us note that if the stress response function

286 s ¼ seqðe; yÞ can be determined experimentally,

287 then the free energy function c ¼ ceqðe; yÞ, the
288 entropy � ¼ �eqðe; yÞ, the internal energy

289e ¼ eeqðe; yÞ ¼ ceq þ y�eq, as well as the specific
290heat at constant strain C ¼ Ceqðe; yÞ are uniquely
291determined, modulo an additive function of tem-

292perature f ¼ fðyÞ by relations

ceqðe; yÞ ¼
ðe
e0

1

R
seqðs; yÞdsþ fðyÞ;

�eqðe; yÞ ¼ �
ðe
e0

1

R
@seqðs; yÞ

@y
ds� dfðyÞ

dy

(20)

Ceqðe; yÞ � @eeq
@y

� y
@�eq
@y

� �y
@2ceqðe; yÞ

@y2

¼ �y
ðe
e0

1

R
@2seqðs; yÞ

@y2
ds� y

d2fðyÞ
dy2

;

(21)

293where e0 is an arbitrary reference strain.

294It is known that from calorimetric measure-

295ments, it is possible to determine the specific heat

296Ceqðe0; yÞ at a constant strain e0 over an interval

297of temperature. Consequently, this information is

298sufficient to determine the additive function

299f ¼ fðyÞ as solution of the differential equation

d2fðyÞ
dy2

¼ �Ceqðe0; yÞ
y

(22)

300up to an arbitrary linear function of y, which can

301be established once the free energy and the

302entropy at a given state, respectively cðe0; y0Þ
303and �ðe0; y0Þ, are given.

304Energy Identities

305By using relations (9)1, (14), and (17), one

306derives the following entropy identity for smooth

307fields of a thermoelastic bar:

R
@�eqðe; yÞ

@t
þ @

@X

q

y

� �
þ 2o

R

ðy� yextÞ
y

� Rr
y
¼ Dth

y
;

(23)

308where the right term in (23) represents the total

309entropy production corresponding to a smooth

310process of the thermoelastic bar.

Thermoelastic Bar Theory 5 T

http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/


Comp. by: JNagalakshmi Stage: Proof Chapter No.: 889 Title Name: ETS
Date:1/3/13 Time:09:15:56 Page Number: 6

311 From (17) one derives also the following

312 energy identity for smooth fields:

R
eeqðe; yÞ

@t
¼ � _W þ _Q; (24)

313 where _W ¼ �seqðe; yÞ_e is the rate of work and

314 _Q ¼ neqðe; yÞ_eþ RCeqðe; yÞ _y is the rate of heat.

315 The term neqðe; yÞ ¼ �y @seqðe;yÞ
@y ¼ �Ry @2ceqðe;yÞ

@y@e
316 denotes the latent heat with respect to strain and

317 characterizes the heat released or absorbed by

318 a body upon change of strain at constant temper-

319 ature. On the other side, one sees from relation

320 (24) that the specific heat Ceq characterizes the

321 amount of heat required to change a body’s tem-

322 perature by a given amount by keeping the defor-

323 mation fixed. While the sign of the latent heat

324 depends on the sign of
@seq
@y , the sign of the spe-

325 cific heat at constant strain is supposed always

326 positive. The Clausius-Duhem inequality says

327 nothing about the sign of Ceq. Its positiveness, as

328 we shall see below, is related to the stability of the

329 body. Moreover, experience shows that there is no

330 substance for which this condition is violated.

331 The heat propagation equation for

332 a thermoelastic bar endowed with the Fourier’s

333 heat conduction law is then obtained from the

334 balance of energy (10)3 and the constitutive

335 relations (14) and (20)–(21) as

RCeqðe; yÞ @y
@t

¼ Ry
@2ceqðe; yÞ

@e@y
@e
@t

þ @

@X
k
@y
@X

� �

� 2o
R

ðy� yextÞ þ Rr:

(25)

336 Isentrope and Thermal Expansion

337 For a thermoelastic body, there is another natural

338 choice of independent variables. Instead of using

339 e and y as independent variables in the constitu-

340 tive equations, one employs the strain e and the

341 entropy �. This is possible because Ceq is always

342 supposed strictly positive and, according to (21),

343 �eq must be a strictly increasing function of y for

344 each fixed e. Therefore, the equation

345 � ¼ �eqðe; yÞ can be solved for y in a unique

346manner as y ¼ ~yðe; �Þ. The internal energy is

347then defined by e ¼ ~eðe; �Þ ¼ eeqðe; ~yðe; �ÞÞ and

348the stress by s ¼ ~sðe; �Þ ¼ seqðe; ~yðe; �ÞÞ. By

349using the identities � ¼ �eqðe; ~yðe; �ÞÞ, for any

350pair ðe; �Þ and y ¼ ~yðe; �eqðe; yÞÞ, for any pair

351ðe; yÞ, and relations (17), one shows that, in this

352case, the internal energy is a thermodynamic

353potential for the stress and temperature, that is,

354s ¼ ~sðe; �Þ ¼ R ~eðe; �Þ
@e and y ¼ ~yðe; �Þ ¼ ~eðe;�Þ

@� .

355The specific heat at constant strain is then given

356
by ~Cðe; �Þ ¼ Ceqðe; ~yðe; �ÞÞ ¼ ~yðe; �Þ @~yðe;�Þ

@�

� ��1

.

357Isentrope. Since we are using as independent

358variables the strain e and the temperature y, it is
359useful to remind here the equation of an

360isentrope. By differentiating the relation

361�eqðe; yÞ ¼ �� ¼ const. and by using the thermo-

362dynamic relations (17), one gets that an isentrope

363in the ðy; eÞ plane is a solution y ¼ yIðeÞ of the
364differential equation

dy
de

¼ y
RCeqðe; yÞ

@seqðe; yÞ
@y

: (26)

365If the initial condition is yIðe�Þ ¼ y�, then this
366isentrope will be labelled with the value

367�� ¼ �eqðe�; y�Þ.
368Let us note that if

@seqðe;yÞ
@y < 0, the temperature

369decreases along the isentrope, while if

370
@seqðe;yÞ

@y > 0, the temperature increases along the

371isentrope. Moreover, according to (24), an isen-

372tropic process occurs when the rate of heat _Q is

373zero.

374Some dimensionless combinations are often

375used. For instance, sometimes it is convenient to

376introduce the Gr€uneisen coefficient which is

377defined as

Gðe; yÞ ¼ � 1þ e
RCeqðe; yÞ

@seqðe; yÞ
@y

; (27)

378characterizing the temperature changes along an

379isentrope. Indeed, according to (26), we have

380
dy
y ¼ �Gðe; yÞ de

1þe , that is, it is the negative

381slope of the isentrope in the log y� logð1þ eÞ
382plane. The Gr€uneisen coefficient can have

T 6 Thermoelastic Bar Theory
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383 a profound effect on the existence and qualitative

384 behavior of steady, structured shock waves

385 (see ▶Heat Conduction and Viscosity as

386 Structuring Mechanisms for Shock Waves in

387 Thermoelastic Materials). Depending on its

388 sign, a compressive shock discontinuity can be

389 of heating type or of cooling type.

390 The coefficient of thermal expansion at

391 constant stress is introduced as

aðe; yÞ ¼ � @seqðe; yÞ
@y

@seqðe; yÞ
@e

� ��1

(28)

392 and characterizes the temperature changes along

393 an isobar (s ¼ seqðe; yÞ ¼ const.) in the y� e
394 plane. Thus, a is positive when the material

395 expands upon heating at constant pressure,

396 which is true in most situations.

397 The Gr€uneisen coefficient and the coefficient

398 of thermal expansion have the same sign if the

399 thermostatic stability conditions, given below,

400 are satisfied. Typically one expects to be positive.

401 However, materials in which G or a changes sign
402 are not uncommon, perhaps the most familiar

403 being water, which contracts upon heating near

404 its freezing point. Other materials which have

405 a negative coefficient of thermal expansion are

406 certain iron-nickel alloys or the near-equiatomic,

407 cold-worked Nitinol exhibiting shape memory

408 effect [6].

409 Thermostatic Stability Conditions

410 Let us note that the second law of thermodynam-

411 ics places no restrictions on the sign of
@seqðe;yÞ

@y
412 and

@seqðe;yÞ
@e . This high degree of generality may

413 introduce into the constitutive equations

414 improper effects for real materials. Therefore, in

415 general, based on physical or experimental facts,

416 additional restrictions, called a priori inequal-

417 ities, are imposed on the constitutive function

418 s ¼ seqðe; yÞ.
419 For instance, according to Gibbsian thermo-

420 statics (see [7]), a necessary condition for a point

421 ðe; �Þ to be thermostatically stable is that

~eðe�; ��Þ � ~eðe; �Þ � @~eðe; �Þ
@e

ðe� � eÞ

� @~eðe; �Þ
@�

ð�� � �Þ � 0;

(29)

422for any ðe�; ��Þ in the domain of ~eð�; �Þ. That
423means ðe; �Þ is a point of convexity for

424e ¼ ~eðe; �Þ, that is, the Hessian matrix

@2~e

@�2
@2~e

@�@e
@2~e

@e@�
@2~e

@e2

0
BBB@

1
CCCA (30)

425is positive semi-definite at ðe; �Þ. Therefore, the
426following restrictions have to be satisfied:

@2~e

@�2
� 0;

@2~e

@e2
� 0;

@2~e

@�2
@2~e

@e2
� @2~e

@�@e

� �2

� 0

(31)

427or equivalently

@~yðe; �Þ
@�

� 0;
@~sðe; �Þ

@e
� 0;

@~yðe; �Þ
@�

@~sðe; �Þ
@e

� @~sðe; �Þ
@�

� �2

� 0:

(32)

428One can show that the necessary and sufficient

429conditions which ensure the Gibbsian thermo-

430static stability (29) are the positiveness of the

431specific heat and the positiveness of the deriva-

432tive of the stress with respect to e along an

433isotherm:

Ceqðe; yÞ � 0 and
@seqðe; yÞ

@e
� 0: (33)

434Indeed, this assertion follows from relations
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@~yðe; �Þ
@�

¼
~yðe; �Þ
~Cðe; �Þ � 0

@~sðe; �Þ
@e

¼ @seqðe; ~yðe; �ÞÞ
@e

þ y

RCeqðe; ~yðe; �ÞÞ
@seqðe; ~yðe; �ÞÞ

@y

 !2

� 0;

@2~e

@�2
@2~e

@e2
� @2~e

@�@e

� �2

¼
~yðe; �Þ
R ~Cðe; yÞ

@seqðe; ~yðe; �ÞÞ
@e

� 0;

(34)

435 obtained by using the chain rule and differentiat-

436 ing the identity � ¼ �eqðe; ~yðe; �ÞÞ with respect to
437 e and �.

438 Another way to prove these assertions is the

439 following. By using the free energy function

440 c ¼ ceqðe; yÞ, one derives from (29) that

441 a necessary condition for a point ðe; yÞ to be

442 thermostatically stable is that the following

443 inequality

ceqðe�; y�Þ � ceqðe; yÞ �
@ceqðe; yÞ

@e
ðe� � eÞ

� @ceqðe�; y�Þ
@y

ðy� � yÞ � 0

(35)

444 be satisfied for all ðe�; y�Þ in the domain of

445 definition of ceq.

446 The consequences of this inequality are the

447 following. Let ðe; yÞ be fixed and

448 ðe�; y�Þ ¼ ðeþ l�e; yþ l�yÞ a point in the domain

449 of definition of ceq for sufficiently small l. Let us
450 introduce the function

dðlÞ ¼ ceq eþ l�e; yþ l�y
	 
� ceq e; yð Þ

� @ceq e; yð Þ
@e

l�e� @ceq eþ l�e; yþ l�y
	 


@y
l�y

(36)

451 which has the following properties: dð0Þ ¼ 0 and

452 d0ð0Þ ¼ 0. According to (35), one gets

d00ð0Þ ¼ @2ceqðe; yÞ
@e2

�e2 � @2ceqðe; yÞ
@y2

�y
2 � 0;

for any pairð�e; �yÞ:
(37)

453Immediate consequences of this inequality are

@2ceqðe; yÞ
@e2

¼ 1

R
@sðe; yÞ

@e
� 0;

� @2ceqðe; yÞ
@y2

¼ Ceqðe; yÞ
y

� 0:

(38)

454Therefore, the Gibbsian stability condition

455reads in the following terms: the free energy

456function ceqðe; yÞ has to be convex in e for each
457y and concave in y for each e.

458Dynamic Stability Conditions

459A natural physical condition to be imposed on the

460constitutive functions is to require the existence

461of real sound speeds (or, equivalently, accelera-

462tion waves) with finite propagation velocity in the

463adiabatic case. This is called dynamic stability

464condition since it ensures in this case the stability

465of the solutions of the equations of motion.

466The system composed by (10)1;2 and (25)

467describing the motion of an isolated (r ¼ 0,

468o ¼ 0) thermoelastic bar in the absence of axial

469heat conduction (k ¼ 0) is called the adiabatic

470thermoelastic system and can be written as

@

@t

v

e

y

0
BB@

1
CCA�

0
1

R
@seq
@e

1

R
@seq
@y

1 0 0
y

RCeq

@seq
@y

0 0

0
BBBB@

1
CCCCA

@

@X

v

e

y

0
BB@

1
CCA¼

0

0

0

0
BB@

1
CCA

(39)

471This system is suitable for the description of

472wave propagation since the heat conductivity, or

473other physical mechanisms like viscosity, can be

474ignored outside the narrow transition zones

475corresponding to wave discontinuity. The type

476of this system is given by the eigenvalues and

477the right eigenvectors of the above matrix.

478The eigenvalues are solution of the equation

479
l l2 � 1

R
@seq
@e þ y

R2Ceq

@seq
@y

� �2� �� �
¼ 0. This sys-

480tem is strictly hyperbolic if the three eigenvalues

481are real and distinct and the corresponding right

482eigenvectors are linearly independent. One shows

483that this happens if and only if

T 8 Thermoelastic Bar Theory
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U2ðe; yÞ � 1

R
@seq
@e

þ y
R2Ceq

@seq
@y

� �2

> 0: (40)

484 In this case, the eigenvalues, which corre-

485 spond to the characteristic directions of the

486 hyperbolic system, are l1ðe; yÞ ¼ �Uðe; yÞ,
487 l2ðe; yÞ ¼ 0, and l3ðe; yÞ ¼ Uðe; yÞ, and Uðe; yÞ
488 is called the adiabatic sound speed at the state

489 ðe; yÞ. It is obvious that the hyperbolicity condi-

490 tion, that is, the dynamic stability condition (40),

491 is satisfied when the thermostatic stability condi-

492 tions (33) are fulfilled. The reverse statement is

493 not true. The dynamic stability condition ensures

494 that initial and boundary value problems for the

495 adiabatic thermoelastic system (39) are well

496 posed, or correctly set, in the sense of Hadamard

497 (see [8]).

498 Phase Transitions in Thermoelastic Solids On

499 the other side, circumstances when
@seq
@e < 0 on

500 certain intervals of strain and temperature cannot

501 be excluded since they contain the essence of the

502 physics of phase transformations. Indeed,

503 a classical constitutive viewpoint in phenomeno-

504 logical modelling of phase-transforming mate-

505 rials is based on non-monotone thermoelasticity

506 theories and started at the end of nineteenth cen-

507 tury with the equation of van der Waals for

508 thermoelastic fluids. The van der Waals fluid is

509 characterized by non-monotone pressure-specific

510 volume relations and is a prototype of continuum-

511 mechanical models of two-phase materials. In

512 solid mechanics such an approach based on non-

513 monotone stress-strain relation for certain ranges

514 of temperature has been initiated by Ericksen [9]

515 in 1975 in an isothermal and one-dimensional

516 context and has been followed by numerous and

517 important studies (see, for instance, [10] and the

518 references therein).

519 When
@seq
@e is negative, and sufficiently large,

520 the adiabatic thermoelastic system (39) has com-

521 plex eigenvalues over some regions in the y� e
522 plane called elliptic regions of state space, and

523 the system is of mixed type. The system does not

524 have more the nature of wave propagation prob-

525 lem, and the initial and boundary value problems

526 are ill posed. In general, the solution fails to be

527unique or is continuously dependent on initial

528data. The multiplicity of solutions at the contin-

529uum level can be viewed as arising from

530a constitutive deficiency, reflecting the need to

531specify additional pieces of constitutive informa-

532tion. Indeed, phase transitions are strongly dissi-

533pative phenomena, but for thermoelastic

534materials, the only source of dissipation as we

535have seen is the thermal dissipation (18). There-

536fore, there is a need to find simple and appropriate

537dissipative mechanisms to be included in the

538constitutive description of thermoelastic mate-

539rials such that the model will be able to describe

540the process of phase transformation, that is, the

541nucleation and propagation of phases.

542One way to introduce a dissipative mechanism

543is the thermodynamical framework developed by

544Abeyaratne and Knowles presented extensively

545in [10]. A different approach to the problem of

546phase transformations is to augment the

547thermoelastic constitutive equation s ¼ sðe; yÞ
548by introducing rate-type effects as in [11]. This

549formulation is considered in ▶Maxwellian rate-

550type thermo-viscoelastic bar theory – an

551approach to non-monotone thermoelasticity.

552Cross-References

553▶Heat Conduction and Viscosity as Structuring

554Mechanisms for Shock Waves in

555Thermoelastic Materials

556▶Maxwellian Rate-Type Thermo-Viscoelastic

557Bar Theory – An Approach to Non-Monotone

558Thermoelasticity

559▶ Pseudoelasticity and Shape Memory Effect –

560A Maxwellian Rate-Type Approach
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