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9 Overview

10 The pseudoelasticity and the shape memory

11 effect are two fundamental aspects of the

12 thermomechanical behavior of shape memory

13 alloys (SMA) (see [1]). These remarkable

14 properties are due to a solid-solid phase

15 transformation from austenite to martensite and

16 back again. The phase transformation occurs

17 through the nucleation and propagation of

18 phase transformation fronts. These events lead

19 to distinctly nonuniform deformation and

20 temperature fields. Local to each transformation

21 front is the generation or absorption of latent

22 heat which can cause self-heating or self-cooling

23 of the material. One considers a Maxwellian

24 rate-type constitutive equation which

25 combines the thermodynamic properties of the

26 thermoelastic materials analyzed in

27 ▶Thermoelastic Bar Theory with the rate-type

28 effects described in ▶Maxwellian Rate-Type

29 Thermo-viscoelastic Bar Theory. It is shown

30that this thermomechanical continuum model

31has the capability to describe the strong

32thermomechanical coupling in the material

33behavior of SMA bars (pseudoelastic behavior

34in the isothermal case has been considered the

35first time in [2] while the non-isothermal case

36in [3]). The equilibrium set of the Maxwellian

37model can be derived from very low quasi-static

38uniaxial experiments of SMA bars. These labo-

39ratory experiments justify the need to consider

40non-monotone stress-strain curves at constant

41temperature. The temperature dependence of the

42stress-strain relation is determined from the

43experimental behavior of the hysteresis. The

44way the material behaves outside the equilibrium

45set is ruled by the rate-type effects of the

46Maxwellian constitutive relation which introduce

47a dissipative regularizing term allowing to

48describe stress relaxation phenomena toward

49equilibrium between phases. Its advantage is

50that no additional kinetic relation or nucleation

51criterion needs to be prescribed as in [4]. The

52nucleation of phases and their front propagation

53is automatically accounted for this model. The

54system of PDE which governs the motion leads to

55well-posed problem. The numerical simulations

56of the pseudoelastic response and of the shape

57memory effect show close qualitative agreement

58with previously reported experimental data.
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59 Shape Memory Alloys:
60 Thermomechanical Aspects

61 SMAs are a unique group of alloys which shows

62 two uncommon capabilities: the pseudoelasticity

63 and the shape memory effect. Pseudoelasticity

64 refers to the ability of the material in

65 a certain regime of temperature to attain large

66 mechanically induced strains (up to 8–10 %)

67 during loading and then recover upon unloading

68 via a hysteresis loop (Fig. 1a). The way the

69 hysteresis loop moves downward as the

70 temperature decreases is illustrated in Fig. 1 at

71 two representative temperatures y1 > y2.
72 The temperature range between y1 and y2 is

73 typically 50�C around room temperature.

74 The shape memory effect, illustrated in Fig. 1b,

75 is the material’s ability to recover, at a free-stress

76 state, large strains induced mechanically, at the

77 lower temperature y2, by a moderate increase in

78 temperature ( � 10� 20�C) of the specimen.

79 The underlying mechanism is a reversible

80 solid-solid phase transformation process from

81 a crystallographically more ordered parent

82 phase (austenite) to a crystallographically less

83 ordered product phase (martensite). At high

84 temperatures the alloy is in the highly symmetric

85 stable phase austenite A, while at low

86 temperatures, the less symmetric phase

87 martensite prevails. The martensite exists in

88 twins. Under uniaxial loading conditions, one

89 sees only two twins (or variants): one obtained

90 for sufficiently large compressive strain and

91 is denoted M� and the other obtained for

92 sufficiently large tensile strain and is

93 denoted Mþ. The austenite may be called the

94 low strain phase since it exists for small values

95 of strain. We use in the following the terminology

96 “three phases” rather than “one phase and two

97 variants.” For certain interval of temperature, the

98 three phases can coexist and can transform from

99 one to the other. The transformation can be

100 induced by changes in temperature or by changes

101 in stress due to the strong thermomechanical

102 coupling in the material behavior.

103The transformation from austenite tomartensite

104and back again during the pseudoelastic

105response occurs through the nucleation and

106propagation of phase transformation fronts along

107the plateaus of the hysteresis. These events

108lead to distinctly nonuniform deformation and

109temperature fields. Local to each transformation

110front is the generation or absorption of latent heat

111which can cause self-heating during A ! Mþ

112transformation or self-cooling during reverse

113Mþ ! A transformation of the material.

114All these properties make SMAs to be a class of

115materials with the ability to remember shape, by

116mechanical or thermal loading conditions, even

117after quite severe deformations. That explains

118why SMAs became an attractive choice for

119innovative structural applications (see [1, 5]).

120To bridge the gap between microscopic

121structure and a macroscopic constitutive model is

122a complex task and constitutes an area of intensive

123research. The last decades have seen a variety of

124constitutivemodeling efforts including purely phe-

125nomenological approaches, plasticity analogues,

126thermodynamically based continuum models, and

127detailed micromechanical models (see [1, 6], and

128their references).

129We present in what follows a simple

130one-dimensional model which combines the

131Maxwellian rate-type effects with the thermody-

132namic properties of classical thermoelasticity

133with non-monotone stress-strain relations (see

134▶Maxwellian Rate-Type Thermo-viscoelastic

135Bar Theory). One shows that this approach can

136capture the thermomechanical coupling of the

137localized phase transformations that occurs dur-

138ing the response of SMA bars.

139A Thermomechanical Continuum Model
140for SMAs Bars

141Three-Phase Materials: Thermoelastic

142Equilibrium

143Starting with the seminal paper by Ericksen [7],

144the reversible phase transformations in
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145 crystalline solids have been successfully

146 studied using the theory of thermoelasticity

147 with non-monotone stress-strain relations, or

148 non-convex free energy functions, for certain

149 interval of temperature (see, for instance, [6]

150 and the references). Let us consider such

151 a stress-strain-temperature relation

s ¼ seqðe; yÞ (1)

152 to describe the response of a SMA bar in tension

153 and compression tests.

154 Information about this phenomenological con-

155 stitutive relation can be derived from isothermal

156 stress-strain curves obtained experimentally at

157 low strain rates over an interval of temperature

158 and from the macroscopic manifestations of the

159 instability phenomena which accompany the

160 phase transformation process. A typical example

161 is given by the pseudoelastic response of a nearly

162 equiatomic polycrystalline NiTi alloy under uni-

163 axial traction strain-controlled tests reported in

164 [8, Fig. 3] for temperatures between 15�C and

165 55�C (see also [9]). These experiments show

166 a hysteretic behavior like in Fig. 1a with the

167 following characteristics. The bar, initially in

168 the low strain phase (austenite), starts to deform

169 elastically in a homogeneous manner. This

170 homogeneity is lost shortly after the maximum

171 stress sþM ¼ sþMðyÞ, which corresponds to the

172 strain level eþM ¼ eþMðyÞ, is reached. A significant

173 stress drop accompanies the first nucleation of

174 martensite, and the A ! Mþ phase transforma-

175 tion produces a well-defined upper stress plateau

176 with small serrations. These oscillations repre-

177 sent the manifestation of the thermomechanical

178 instability phenomena, which occur through the

179 nucleation and propagation of phase transforma-

180 tion fronts. At the end of the plateau, the trans-

181 formation is complete and the bar, in the

182 martensite phase, starts again to deform elasti-

183 cally and homogeneously while the slope of the

184 stress-strain relation is again positive.

185During unloading the specimen deforms

186homogeneously in the new martensite phase

187Mþ. This homogeneity is lost shortly after

188a minimum stress sþm ¼ sþmðyÞ has been reached

189(Fig. 1a), which corresponds to the strain

190eþm ¼ eþmðyÞ. After a sudden rise of the stress,

191unstable reverse Mþ ! A transformation pro-

192ceeds along a lower stress plateau by propagation

193of distinct phase fronts along the length of the

194unloaded specimen until the transformation is

195complete.

196Along the loading and unloading stress

197plateaus, the two phases coexist. Moreover, coex-

198istent phase distributions are possible for a

199single-axial stress state in the static case, that is,

200when we stop, for example, the loading

201conditions. This behavior requires to consider

202a non-monotone stress-strain relation, with

203a negative slope for the interval ðeþMðyÞ; eþmðyÞÞ.
204The assumption is in agreement with the usual

205association of the monotone increasing/decreas-

206ing stress-strain relation with the so-called

207stable/unstable states of the material.

208The monotone increasing parts of the

209stress-strain isotherms can be chosen in such

210a way to fit quasi-static experimental results of

211the type illustrated in [8, Fig. 3]. On the other

212side, the monotone decreasing part of these

213curves cannot be determined in a direct way

214from such experiments. Consequently, in general,

215they are chosen in a conventional way. For sim-

216plicity one may choose a straight line which

217connects ðeþMðyÞ; sþMðyÞÞ and ðeþmðyÞ; sþmðyÞÞ.
218It will be seen later that, for theories like those

219developed here, which include rate effects, the

220magnitude of the negative slope
@seqðe;yÞ

@e affects

221only the kinetics of phase transformation, that is,

222the rate at which the transformation takes place.

223Indeed, it was shown in [10, Part II, Sect. 2]

224how the slope of the equilibrium curve influences

225the growth/decay of a perturbation of an

226equilibrium state.

Pseudoelasticity and Shape Memory Effect: A Maxwellian Rate-Type Approach 3 P
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227 In compression tests one observes the same

228 characteristics of the hysteretic deformation,

229 and we associate the minus sign to the compres-

230 sive states which we introduce. What can be

231 determined experimentally (see [9]) is the tem-

232 perature dependence of the pairs ðe�MðyÞ; s�MðyÞÞ
233 and ðe�mðyÞ; s�mðyÞÞ, where the equilibrium stress-

234 strain relation at constant temperature attains

235 its local maxima and minima. Moreover, one

236 observes that, for a three-phase material, there

237 are two critical temperatures ym and yM, such
238 as for y > yM, the material only exists in its

239 austenite form no matter what the stress level is,

240 whereas for y<ym, the material only exists in

241 its martensitic variants. For y 2 ðym; yMÞ all

242 three phases are available to the material.

243 By combining this information, one can plot

244 a phase diagram in the y� e plane of the type

245 in Fig. 2a which contains essential constitutive

246 information on phase transformation and allows

247 to characterize the thermoelastic response

248 function s ¼ seqðe; yÞ for a three-phase material.

249 The above physical observations on the

250 behavior of SMA bars in tension and compres-

251 sion tests result in considering a thermoelastic

252 response function s ¼ seqðe; yÞ with the

253 following properties:

254 (a) At each temperature y > yM, the

255 stress response function s ¼ seqðe; yÞ is a

256 monotonically increasing function of strain.

257 (b) At each temperature y 2 ðym; yMÞ, the stress
258 response function s ¼ seqðe; yÞ is

259 a monotonically increasing function of strain
260 for e<e�mðyÞ, for e 2 ðe�MðyÞ; eþMðyÞÞ, and for

261 e > eþmðyÞ, and it is a monotonically decreas-

262 ing function of strain over the intervals

263 ðe�mðyÞ; e�MðyÞÞ and ðeþMðyÞ; eþmðyÞÞ.
264 (c) At each temperature y<ym, the stress

265 response function s ¼ seqðe; yÞ is

266 a monotonically increasing function of strain

267 for e<e�mðyÞ and e > eþmðyÞ, while on the

268 remaining interval ðe�mðyÞ; eþmðyÞÞ, it is mono-

269 tonically decreasing.

270In general, the boundary curves e ¼ e�MðyÞ
271and e ¼ e�mðyÞ fix the limits of the regions in

272the y� e plane on which the austenite phase

273A and the martensite variants M� exist,

274while their images through the function

275s ¼ seqðe; yÞ onto the plane s� y bound the

276regions which describe the phases that are

277available to a particle at a given ðs; yÞ (see
278Fig. 2).

279The dependence of the stress response

280function s ¼ seqðe; yÞ on temperature should

281reflect the fact that in traction tests [8], the

282hysteresis loop moves upward, while in com-

283pression tests, it moves downward, as the

284temperature grows. That means:

285(d) There exists a monotone curve

286e ¼ etðyÞ 2 ðe�MðyÞ; eþMðyÞÞ such that

287
@seqðe;yÞ

@y > 0, for e > etðyÞ and @seqðe;yÞ
@y <0, for

288e<etðyÞ.
289It is this property which allows to the model to

290describe the exothermic character of A ! M�

291phase transformation and the endothermic

292character of M� ! A.

293An Explicit Piecewise Linear Thermoelastic Model

294Experiments on SMAs show that a material in

295a pure phase has in general a linear thermoelastic

296behavior. Therefore, we can assume that the elas-

297tic moduli of the austenite phase A and martens-

298ite variantsM� are constant and equal to E1 > 0

299and E3 > 0, respectively. Moreover, we suppose

300that the elastic moduli of the (unstable) regions,

301defined as I� ¼ ðe; yÞje 2 e�mðyÞ; e�MðyÞ
� �� �

and

302Iþ ¼ ðe; yÞje 2 eþMðyÞ; eþmðyÞ
� �� �

, are also con-

303stant and equal to � E2<0 (Fig. 2).

304Therefore, one derives the following

305expression of the thermoelastic equilibrium for

306y 2 ðym; yMÞ:

P 4 Pseudoelasticity and Shape Memory Effect: A Maxwellian Rate-Type Approach
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seqðe;yÞ ¼
E3ðe� e�mðyÞÞþ s�mðyÞ if e� e�mðyÞ

�E2ðe� e�mðyÞÞþ s�mðyÞ if e�mðyÞ< e< e�MðyÞ
E1ðe� e�MðyÞÞþ s�MðyÞ if e�MðyÞ � e� eþMðyÞ

�E2ðe� eþMðyÞÞþ sþMðyÞ if eþMðyÞ<e<eþmðyÞ
E3ðe� eþmðyÞÞþ sþmðyÞ if eþmðyÞ � e

8>>>>>>>><
>>>>>>>>:

(2)

307 In order to describe a linear thermoelastic

308 behavior in a pure phase, one supposes that the

309 constitutive functions e�MðyÞ and e�mðyÞ are linear.
310 One derives in [3] using some ideas from [4] the

311 following explicit form:

e�M yð Þ¼ a y�yTð Þ�M y�ymð Þ
e�m yð Þ¼ a y�yTð Þ� M�mð Þ y�yMð Þ�M y�ymð Þ

(3)

312 while for s�MðyÞ ¼ seqðe�MðyÞ; yÞ and

313 s�mðyÞ ¼ seqðe�mðyÞ; yÞ, the local maxima

314 and minima with respect to e of the stress-strain

315 relation at constant temperature, we have

s�MðyÞ ¼ �E1M y� ymð Þ;
s�mðyÞ ¼ �E2 M � mð Þ y� yMð Þ � E1M y� ymð Þ

(4)

316 Since the stress response function in A phase

317 becomes seqðe; yÞ ¼ E1e� E1aðy� yTÞ, it is

318 obvious that a ¼ const: > 0 is the thermal

319 expansion coefficient of the material in this phase

320 and yT is a reference temperature such that the

321 undeformed material is stress free in the austenite

322 phase, that is, seqð0; yTÞ ¼ 0. According to [9],

323 the quantities
dsþMðyÞ

dy and
dsþmðyÞ
dy can be determined

324 experimentally. That allows to identify the two

325 positive material constantsM and m.
326 One considers a hypothetical model character-

327 ized by the following constants:

E1 ¼ 30:GPa; E2 ¼ 0:5GPa; E3 ¼ 20:5GPa;

a ¼ 1:6�6 �K; yT= ¼ 283:15 �K;
ym ¼ 280 �K; yM ¼ 10; 000 �K;

M ¼ 10:1371�5 �K; m= ¼ 9:7253�5 �K= :

(5)

328For these numerical entries, Fig. 3a shows the

329evolution of the piecewise linear isotherms given

330by (2) with respect to the temperature.

331The free energy function of the thermoelastic

332model (see▶Thermoelastic Bar Theory) is given

333by Rceqðe; yÞ ¼
R e
0
seqðs; yÞdsþ RfðyÞ, where R

334is the mass density and function f ¼ fðyÞ is

335solution of the equation � yd
2fðyÞ
dy2

¼ C. Here,

336C ¼ const: represents the specific heat at constant

337strain in the austenite phase. The free energy is

338illustrated in Fig. 3b for C ¼ 500 J=Kg=�C,
339R ¼ 8000 kg=m3, and input data (5). One sees

340that c ¼ ceqðe; yÞ is convex in e if @seqðe;yÞ
@e > 0,

341and it is concave in e if @seqðe;yÞ
@e <0, for fixed y.

342The adiabatic sound speed Uðe; yÞ or,

343equivalently, the characteristic directions of the

344adiabatic thermoelastic system are real solutions

345
of the equation RU2ðe; yÞ ¼ @seq

@e þ y
RCeq

@seq
@y

� �2

346(see ▶Thermoelastic Bar Theory). One

347can notice that for the stress response

348function (2) and the input data (5), the

349regions A ¼ ðe; yÞje 2 ðe�MðyÞ; eþMðyÞÞ� �
,

350Mþ ¼ ðe; yÞje > eþmðyÞ
� �

, and M� ¼ ðe; yÞf
351je <e�mðyÞg correspond to the domains where the

352adiabatic sound speed is real, that is, to the domains

353of hyperbolicity of the adiabatic thermoelastic

354system. Unlike these, the domains I� correspond

355to the domains of ellipticity. Thus, one identifies the

356stable phases of the material A and M� with the

357domains of hyperbolicity of the adiabatic

358thermoelastic system, while the unstable phases

359I� with the domains of ellipticity.

360This change of type of the system leads to

361mathematical ill-posed problems. Therefore,

362by using only the thermoelastic model (2),

363one cannot describe the transition process

364between two stable phases. That is due to a lack

365of constitutive information.

Pseudoelasticity and Shape Memory Effect: A Maxwellian Rate-Type Approach 5 P
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366 A usual way to remedy this deficiency (see,

367 e.g., [6] and the references therein) is to add two

368 notions from material sciences in the continuum

369 setting: a nucleation criterion for the initiation of

370 phase transition and a kinetic relation between

371 interface velocity and the driving force of phase

372 transformation. A different way, which we con-

373 sider in the following, is to augment the

374 thermoelastic theory by incorporating rate

375 effects.

376 A Maxwellian Rate-Type Approach

377 One considers that the stress depends not only on

378 strain and temperature through the equilibrium

379 relation seqðe; yÞ but also on the strain rate and

380 the stress rate. A dissipative mechanism,

381 which is missing in a pure thermoelastic

382 approach, is introduced through the following

383 Maxwellian rate-type constitutive equation (see

384 ▶Maxwellian Rate-Type Thermo-viscoelastic

385 Bar Theory):

@s
@t

� E
@e
@t

¼ �E

m
ðs� seqðe; yÞ; (6)

386 where E ¼ const: > 0 is called the dynamic

387 Young modulus and m ¼ const: > 0 is

388 a Newtonian viscosity coefficient. m
E is a

389 relaxation time of the material, while k ¼ E
m is

390 called the Maxwellian viscosity coefficient. This

391 relaxation time should be related with a phase

392 transition time characterizing the time needed to

393 a particle to cross the unstable regions I�.
394 It was proved that the existence of a unique

395 free energy cmx ¼ cmxðe; s; yÞ, entropy

396 �mx ¼ �mxðe; s; yÞ ¼ �@cmx

@y , and a positive

397 specific heat Cmx ¼ �y@
2cmx

@y2
, compatible with

398 the second law of thermodynamics, is

399 ensured if and only if the constitutive

400 functions satisfy the subcharacteristic condition

401
U2 ¼ @seq

@e þ y
RCeq

@seq
@y

� �2

<E. Moreover, it has

402 been shown that the free energy function

403 cmx ¼ cmxðe; s; yÞ is uniquely determined

404 (modulo an additive function of temperature) by

405 the equilibrium states described by seqðe; yÞ and
406 by the dynamic Young modulus E. The additive

407function can be determined by knowing the spe-

408cific heat at a constant strain over an interval of

409temperature Ceqðe0; yÞ for the thermoelastic

410model.

411Field Equations

412We consider a thin bar of circular cross-sectional

413area of radius R and length L in a reference

414configuration. The field quantities are uniform

415over a cross section, that is, they only depend on

416ðX; tÞ where t > 0 is the time and X 2 ½0; L� is
417the initial coordinate. According to the

418thermomechanical bar theory in Lagrangian

419description (see ▶Thermoelastic Bar Theory)

420and to the thermodynamical properties of

421Maxwellian rate-type constitutive equation

422(see ▶Maxwellian Rate-Type Thermo-

423viscoelastic Bar Theory), the governing system

424of equations consists of the balance law of

425momentum, the compatibility condition between

426the particle velocity v and the strain e, the

427rate-type constitutive equation, and the balance

428of energy:

R
@v

@t
¼ @s

@X
; (7)

@e
@t

¼ @v

@X
(8)

@s
@t

� E
@e
@t

¼ Gðe; s; yÞ ¼def�E

m
ðs� seqðe; yÞ

(9)

RCmx
@y
@t

¼�R
@cmx

@s
Gðe;s;yÞþRy

@2cmx

@s@y
Gðe;s;yÞ

þk
@2y
@X2

�2o
R

ðy�yextðtÞÞ;
(10)

429where k > 0 is the Fourier heat conductivity

430coefficient, o > 0 is a material parameter char-

431acterizing the heat exchanges across the lateral

432surface of the bar with its environment, and

433yextðtÞ is the uniform temperature of the surround-

434ings at time t.
435The first term in the right part of (10) is always

436positive and represents the heating due to the

P 6 Pseudoelasticity and Shape Memory Effect: A Maxwellian Rate-Type Approach
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437 internal dissipation. The second term represents

438 the heating or the cooling due to the latent heat

439 absorbed or released by the body during

440 a phase transformation process. It strongly

441 depends on
@seq
@y , and its contribution is dominant

442 with respect to the internal dissipation. The last

443 term gives account on the gain or loss of heat

444 across the lateral surface of the bar.

445 In the absence of axial heat conduction, that is,

446 when k ¼ 0, the system is always hyperbolic

447 semilinear with sources (see ▶Maxwellian

448 Rate-Type Thermo-viscoelastic Bar Theory).

449 The first two sources are stiff since the time of

450 relaxation m
E is very small. If the axial conduction

451 is taken into account, then the system is of

452 hyperbolic-parabolic type. In both cases the

453 initial-boundary value problems are well posed

454 irrespective of the sign of
@seq
@e , hence, even in the

455 unstable regions I�. Consequently, the system is

456 appropriate to describe the process of phase

457 transition between the stable phases A and M�.
458 If one investigates the local behavior of the

459 solutions of the Maxwellian rate-type system

460 (7)–(10), that is, one performs a linear stability

461 analysis of a perturbation of an equilibrium state

462 satisfying s0 ¼ seqðe0; y0Þ, one gets (a) an

463 exponential growth in time of the perturbation

464 if
@seqðe0;y0Þ

@e <0 which causes material instability

465 and (b) an exponential damping of the perturba-

466 tion if
@seqðe0;y0Þ

@e > 0, which implies stability.

467 This behavior explains the apparition of local

468 dynamic effects and indicates that the inertial

469 terms in the balance of momentum cannot be

470 a priori neglected even for very low quasi-static

471 tests.

472 For the piecewise linear thermoelastic model

473 (2)–(4), the free energy cmx ¼ cmxðe;s; yÞ can be
474 explicitly calculated, according to the formulas

475 in▶Maxwellian Rate-Type Thermo-viscoelastic

476 Bar Theory (see also [3]), and used to solve

477 numerically some initial-boundary value

478 problems for the system (7)–(10). Besides

479 the above-mentioned input data, we use the

480 following numerical entries: E ¼ 31:5 GPa,

481 k ¼ 20W=m=�K, L ¼ 20mm, and R ¼ 2mm.

482 Let us note that the dynamic Young modulus

483 E satisfies the subcharacteristic condition.

484The numerical solution is obtained by using

485a first-order accuracy fractional-step method (see

486[11, Chap. 7]). One splits the system (7)–(10)

487with source terms into two subproblems.

488In a first step one considers the hyperbolic homo-

489geneous part of the system, and one uses a first-

490order characteristic method for the characteristic

491directions � ffiffiffiffiffiffiffiffi
E=R

p
. In a second step, one

492considers a simple ordinary differential equation

493system containing the source terms which

494depends on yXX, too. The time integration step

495must be of the order of the relaxation time m
E, that

496is, one should not step to fast in time in order

497to give to the viscous effects enough time to

498develop.

499To investigate the predictions of the Maxwel-

500lian model, it is useful to simulate the following

501two laboratory experiments.

502Quasi-Static Strain-Controlled Test:
503Pseudoelastic Behavior

504One considers a bar initially at rest, unstressed,

505at the uniform temperature y0 ¼ 36:7�C in the A
506phase. The environmental temperature is all the

507time constant and equal with the initial tempera-

508ture, that is, yextðtÞ ¼ y0 for any t > 0. The bar

509ends satisfy isothermal conditions, that is,

510yð0; tÞ ¼ y0 and yðL; tÞ ¼ y0 for any t > 0.

511The right end of the bar is fixed while the left

512end is pulled with a constant velocity until

513the transformation is complete, that is,

514vð0; tÞ ¼ V	 ¼ L _ee ¼ const:<0 and vðL; tÞ ¼ 0

515for t 2 ½0; t1�.
516The strain-controlled experiment illustrated in

517Figs. 4–6 corresponds to a quasi-static test where

518_ee ¼ 5
 10�3 s= . The bar is supposed to be in

519an air-like convective medium, that is,

520o ¼ 20W m2
	 �K= , and the relaxation time of

521the model is m
E ¼ 10�4 s.

522If one represents the stress sð0; tÞ versus the
523engineering strain eeðtÞ ¼ 1

L

R L
0
eðX; tÞdX, one

524gets a linear stress-strain relation with the slope

525E1 as long as the bar is homogeneous in the

526stable phase A. For this part of the deformation

527process, the material response is practically
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528 thermoelastic. Because m is very small, the vis-

529 cous effect is unnoticed. The role of the viscosity

530 (relaxation time) becomes extremely important

531 when particles of the bar enter in the unstable

532 region Iþ. One observes that each nucleation of

533 martensite and front-phase propagation is accom-

534 panied by a stress drop. This behavior results in

535 a sawtooth stress-strain curve which character-

536 izes the A ! Mþ phase transformation process

537 of the bar (Fig. 4a). The typical features of a tooth

538 are illustrated in Fig. 4b.

539 There is a first stage marked with labels① and

540 ② which corresponds to the nucleation of the

541 new phase. One sees in Fig. 5 how the strain starts

542 to develop and the local temperature to increase.

543 The second stage, which is represented by ③, is

544 just the abrupt stress drop when the strain

545 localization occurs very rapidly. It is a local
546 dynamic event during which the particles which

547 undergo the phase transformation cross the

548 region Iþ. This behavior illustrates why the iner-
549 tial term in the balance of momentum (7) cannot

550 be neglected even in a quasi-static test. The phase

551 transformation process is accompanied by

552 a significant localized increase of the temperature

553 (around 3�C). The third stage, represented by

554 labels ④ and ⑤, corresponds to an ascending

555 branch of the stress-engineering strain curve

556 with a slope between E1 and E3. This part corre-

557 sponds to a quasi-static process along which the

558 strain distribution in the bar remains unchanged,

559 that is, the phase fronts are arrested. Only the

560 peaks of temperature decay due to the axial heat

561 diffusion (Fig. 5). The phase transformation pro-

562 cess is thus of the type “go-and-stop” strain band

563 propagation. The amplitude of the serrations

564 depends on the size of the time of relaxation,

565 that is, on m, and on the imposed strain rate _ee
566 (see [3]). These numerical results prove a good

567 agreement with the full-field measurements of

568 strain and temperature and their correlation with

569 the stress-engineering strain curve obtained in [9]

570 for strain-controlled experiments.

571 An overview of the A ! Mþ phase transfor-

572 mation process is illustrated in Fig. 6a. For the

573 strain rate considered here, the heat transfer to

574 the environment cannot keep up with the rate at

575 which latent heat is released by the material.

576Thus, one can observe that as the fronts

577propagate, the hot zones spread and the local

578temperatures increase.

579Once the transformation is complete, after

580a relaxation process in the martensite phase

581Mþ, the specimen recovers the ambient temper-

582ature and the stress decays with 4MPa. It is worth

583to note that this stress relaxation is not due to the

584viscosity of the model but to the decay of the

585temperature of the bar and to the fact that
@seq
@y is

586negative in this region. That means it is not

587a viscoelastic behavior.

588If one starts an unloading process at constant

589strain rate, one gets a linear stress-strain behavior

590with the elastic modulus E3 of the Mþ phase.

591The unstable transformation occurs through

592serrations characterized by a sudden increase of

593the stress as theA phase nucleates and propagates

594at the expense of Mþ phase. This behavior

595is accompanied by a local decrease of the temper-

596ature of the transformed zone. This local dynamic

597event is followed by a quasi-static process during

598which the stress decreases with a positive

599stress-strain slope. An overall view is illustrated

600in Fig. 6a. Let us note how the temperature of the

601specimen becomes progressively colder.

602Temperature-Controlled Test: Shape
603Memory Effect

604We consider the bar initially at rest, unstressed, in

605the A phase, at the temperature y0 > ym such that

606smðy0Þ<0. This choice allows the coexistence at

607this temperature of theA phase andMþ phase in

608a free-stress state (see Fig. 1a). Maintaining a

609constant ambient temperature equal to the initial

610temperature y0 ¼ 11:8�C, the bar firmly fixed at

611one end, is subjected to a traction test, with the

612constant strain rate _ee ¼ 5
 10�3=s until the

613transformation is complete. It is followed by an

614unloading stress-controlled test until the load is

615completely removed, and the bar remains largely

616deformed in the Mþ phase. The bar has been

617supposed to be in a water-like convective medium,

618that is, o ¼ 1000 W m2
	 �K= , and the relaxation

619time is m
E ¼ 10�3 s. One gets the stress-engineering
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620 strain curve illustrated in Fig. 7a and a self-heating

621 of the bar during the A ! Mþ transformation as

622 described previously.

623 After the specimen in Mþ phase recovers

624 the initial temperature, one simulates the shape

625 memory effect. One increases the ambient

626 temperature with a constant temperature rate,

627 that is, yextðtÞ ¼ _ye tþ y0, where _ye ¼ 1�C s= for

628 t > 0. One end of the bar is fixed and the other

629 verifies a free-stress end condition. In order to

630 have the same type of heat transfer condition at

631 the ends of the specimen and across its lateral

632 surface, one considers the following boundary

633 conditions: � k@y
@Xð0; tÞ ¼ �oðyð0; tÞ � yextðtÞÞ

634 and � k@y
@XðL; tÞ ¼ �oðyðL; tÞ � yextðtÞÞ for

635 t > 0.

636 The predictions of the Maxwellian rate-type

637 model for a temperature-induced phase

638 transformation are illustrated in Figs. 7b and 8.

639 By increasing the external temperature, one

640 increases in a homogeneous way the temperature

641 of the bar lying in the stable phase Mþ.
642 The deformation field remains almost

643 unchanged and homogeneous, satisfying

644 conditions eðX; tÞ � emðyðX; tÞÞ and

645 sðX; tÞ � seqðeðX; tÞ; yðX; tÞÞ � 0. Due to the

646 increase of temperature, the equilibrium stress

647 s ¼ seqðe; yÞ moves upward, and one arrives at

648 a time t when a particle X of the bar enters the

649 unstable region Iþ, that is, eðX; tÞ<emðyðX; tÞÞ,
650 and the stress sðX; tÞ equals the minimum stress

651 smðyðX; tÞÞ which becomes positive. In this

652 situation the only equilibrium free-stress

653 alternative belongs to the A phase, and the bar

654 snaps back to its original dimension. The small

655 circles on the graph in Fig. 7a correspond to the

656 small circles in Fig. 7b, giving an image on

657 the way the bar shrinks by smooth steps.

658 Figure 8a illustrates that the Maxwellian

659 rate-type model can describe the nucleation

660 events as well as the unstable and inhomogeneous

661 character of the strain field during the

662 temperature-induced Mþ ! A phase transfor-

663 mation which leads to the recovery of the initial

664 dimension of the bar. Moreover, this approach

665 can capture the competition between the external

666 heating of the bar and the endothermic character

667of the reverse Mþ ! A transformation.

668Thus, Fig. 8b clearly illustrates that although

669one continuously heats the specimen, the

670transformed zones are accompanied by local

671temperature drops.

672Cross-References

673▶Maxwellian Rate-Type Thermo-Viscoelastic

674Bar Theory: An Approach to Non-monotone

675Thermoelasticity

676▶Thermoelastic Bar Theory
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Fig. 1 Illustrative quasi-static stress-strain curves for

thin SMA bars at two representative temperatures

y1 > y2. (a) Hysteretic behavior at temperature y1.
(b) Hysteretic behavior at temperature y2: Loading,
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the free-stress state
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Pseudoelasticity and
Shape Memory Effect:
A Maxwellian Rate-Type
Approach, Fig. 3 (a)
Non-monotone equilibrium

stress-strain relations

described by (2) for

different temperatures and

(b) the corresponding
non-convex free energy

functions c ¼ ceq e; yð Þ

a b

Pseudoelasticity and Shape Memory Effect: A Maxwellian Rate-Type Approach, Fig. 4 (a) Unstable

pseudoelastic behavior in a strain-controlled experiment at _Ee ¼ �5
 10�3. (b) Zoom of the third stress drop (From [3])
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Pseudoelasticity and
Shape Memory Effect:
A Maxwellian Rate-Type
Approach, Fig. 5 Strain

and temperature

distribution in the bar

corresponding to the

labeled positions in

the zoom in Fig. 4a –

nucleation and localization

of strain during A ! Mþ

phase transformation

(From [3])

P 12 Pseudoelasticity and Shape Memory Effect: A Maxwellian Rate-Type Approach



Comp. by: PBhavani Stage: Proof Chapter No.: 891 Title Name: ETS
Date:9/3/13 Time:16:29:35 Page Number: 13

a

b

Pseudoelasticity and Shape Memory Effect:
A Maxwellian Rate-Type Approach, Fig. 6 Strain

and temperature evolution in the bar during pseudoelastic

hysteresis in Fig. 4. (a) During loading: self-heating of the

bar and unstable and inhomogeneous A ! Mþ phase

transformation; (b) during unloading: self-cooling of the

bar and unstable and inhomogeneous reverse Mþ ! A
phase transformation (From [3])
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a

b

Pseudoelasticity and
Shape Memory Effect:
A Maxwellian Rate-Type
Approach, Fig. 7 Shape

memory effect: (a) loading,
relaxation, unloading, and

external heating of the bar;

(b) evolution of the

engineering strain during

heating of the unstressed

bar ( _ye ¼ 1�C=s) (From
[12])

a b

Pseudoelasticity and Shape Memory Effect:
A Maxwellian Rate-Type Approach, Fig. 8 Shape

memory effect – strain and temperature field evolution in

the unstressed bar during heating of the external environ-

ment of the bar, yextðtÞ ¼ 11:8�Cþ _ye t (From [12])
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