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7 “Simion Stoilow” Institute of Mathematics of the

8 Romanian Academy, Research Unit No 6,

9 Bucharest, Romania

10 Overview

11 Thermoelastic constitutive equations discussed

12 in ▶ thermoelastic bar theory are not able to

13 fully determine the discontinuous solutions arising

14 in nonlinear elastodynamic problems as well as the

15 process of phase transition in solid bodies with

16 non-monotone stress-strain relations. That is due

17 to the fact that some small-scale physical mecha-

18 nisms such as, for example, viscosity, capillarity,

19 or relaxation time are neglected. One introduces

20 here a class of materials called Maxwellian mate-

21 rials with the property that the stress, the strain, and

22 the temperature are related with the strain rate and

23 the stress rate. This approach allows to introduce

24 a linear instantaneous response, and rate-type

25 effects like, relaxation, and pseudo-creep, appro-

26 priate to describe viscoelastic and viscoplastic

27 behavior of a one-dimensional body (see [3]).

28 Moreover, it can describe the process of solid-

29 solid phase transition for non-monotone

30 thermoelasticity like in ▶ pseudoelasticity and

31 shape memory effect – a Maxwellian rate-type

32approach. The compatibility with the second law

33of thermodynamics of this heat conducting consti-

34tutive structure is analyzed. In the thermo-

35viscoelastic case, the thermodynamic potentials

36are explicitly determined starting from the consti-

37tutive information available from the thermoelastic

38equilibrium stress-strain-temperature relation, the

39instantaneous response of thematerial, and the heat

40capacity at a constant strain. The adiabatic Max-

41wellian thermo-viscoelastic system is a relaxation

42system with stiff source terms which allows an

43approach of the thermoelastodynamic system in

44the adiabatic case even for non-monotone stress-

45strain relations.

46Maxwellian Rate-Type Constitutive
47Equations

48The thermodynamic theory in one space dimen-

49sion has been described in ▶ thermoelastic bar

50theory. A class of dissipative materials for a one-

51dimensional body which has as prime variables

52the strain e, the absolute temperature y, and the

53stress s can be introduced through the Maxwel-

54lian rate-type constitutive equation

@s
@t

� E
@e
@t

¼ Gðe; s; yÞ (1)

55where E ¼ const. > 0 is called the dynamic

56Young modulus, G is called relaxation function,

57and t denotes time. The class of Maxwellian rate-

58type materials is a subclass of the simple
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59 materials with fading memory [1]. It is attractive

60 in its simplicity and includes some interesting

61 viscoelastic and viscoplastic models [3]. The

62 first constitutive relation of this type with

63 G ¼ �s has been proposed by Maxwell in

64 1867, and this explains why materials described

65 by such relations are often called Maxwellian

66 materials.

67 General Thermodynamic Considerations

68 In this case a state of a bar of length L is any

69 triplet S ¼ ðwðXÞ; sðXÞ; yðXÞÞ, X 2 ½0; L� where
70 wðXÞ is a deformation of the bar, sðXÞ and yðXÞ
71 are a stress and temperature field over the body in

72 its reference configuration. Unlike the

73 thermoelastic bar theory for the rate-type consti-

74 tutive equation (1), we have to introduce s as

75 independent variable together with e, y, and the

76 temperature gradient yX. The remaining depen-

77 dent thermomechanical variables are the free

78 energy cmx, the entropy �mx (or, equivalently,

79 the internal energy emx ¼ cmx þ ymx), and the

80 axial heat flux

cmx ¼ cmxðe; s; y; yXÞ; �mx ¼ �mxðe; s; y; yXÞ;
q ¼ Qðe; s; y; yXÞ:

(2)

81 In order to satisfy the principle of

82 equipresence, G would have to depend on yX,
83 too. Due to the examples considered below and

84 for simplicity reasons, one ignores this case.

85 It is useful to observe that if we denote by

86 ei ¼ e� s
E the inelastic strain and by ee ¼ s

E the

87 elastic strain at state S, then the constitutive rela-

88 tions (1) and (2) may be seen as a constitutive

89 structure for a body with one internal variable,

90 namely, the inelastic strain (for the theory of

91 materials with internal state variables, see [2]).

92 A smooth process of the bar is any triplet

93 SðtÞ ¼ ðwðX; tÞ; sðX; tÞ; yðX; tÞÞ, t 2 ½0; t0�, of

94 smooth time-dependent fields over the body,

95 which satisfies the balance equations

@e
@t

¼ @v

@X
; R

@v

@t
¼ @s

@X
þ Rb;

R
@emx
@t

¼ s
@e
@t

� @Q

@X
þ Rr � 2o

R
ðy� yextÞ

(3)

96and the constitutive relations (1) and (2). Here, R
97is the mass density in the reference configuration,

98v denotes the particle velocity, b is the body force

99per unit mass, r is the heat supply per unit mass,

100yext is the temperature of the surroundings, R is

101the radius of the bar, and o¼ const. > 0 is a heat

102transfer coefficient through the lateral surface of

103the bar.

104Thermomechanical processes for the rate-type

105theory can be realized by a proper choice of body

106force b and heat supply r so as to fulfill (1)–(3).

107By introducing the constitutive structures (1) and

108(2) into the Clausius-Duhem inequality

� R
@c
@t

þ s
@e
@t

� R�
@y
@t

� q

y
@y
@X

� 0; (4)

109one gets

� R
@cmx

@e
þ RE

@cmx

@s
� s

� �
_e� R �mx þ

cmx

@y

� �
_y

�R
@cmx

@yX
_yX � R

@cmx

@s
G� Q

y
yX � 0;

(5)

110where dot denotes time derivative. For fixed local

111values of e, s, y, yX, the variations of _e, _y, yX,
112which appear linearly in (5), can be assigned

113independently by a proper choice of the

114thermomechanical processes. Requiring that this

115inequality be satisfied for all thermomechanical

116processes, one obtains that the rate-type constitu-

117tive structure is compatible with the second law

118of thermodynamics if and only if

cmx

@yX
¼ 0;

@cmx

@e
þ E

@cmx

@s
¼ s

R
; �mxðe; yÞ ¼ � @cmx

@y
(6)

�R
@cmx

@s
Gðe; s; yÞ � 1

y
Qðe; s; y; yXÞyX � 0

(7)

M 2 Maxwellian Rate-Type Thermo-viscoelastic Bar Theory
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119 for any e, s, y, yX. Thus, the same as in the

120 thermoelastic case, the free energy cmx has to be

121 independent of yX, and it is a potential for the

122 entropy. The first term in the inequality (7) is

123 called the internal dissipation or intrinsic dissi-

124 pation, and the second one is called the thermal
125 dissipation.

126 Since G does not depend on yX, one gets from
127 the reduced dissipation inequality (7) that

Dmx ¼ �R
@cmxðe; s; yÞ

@s
Gðe; s; yÞ � 0 (8)

128 for any e, s, y.

129 Rate-Type Thermo-Viscoelasticity

130 The kernel of the function G defines the

131 thermoelastic set or the equilibrium set of the

132 rate-type constitutive equation. One says that

133 the constitutive equation (1) describes a rate-

134 type thermo-viscoelasticmaterial if the following

135 two conditions are satisfied: (a) the equilibrium

136 set is a single surface s ¼ seqðe; yÞ, that is,

Gðe; s; yÞ ¼ 0 if and only if s ¼ seqðe; yÞ; (9)

137 and (b) the function G is stable from above and

138 from below the equilibrium set, that is,

ðs� seqðe; yÞÞGðe; s; yÞ � 0;
for any e; s; y:

(10)

139 This latter constraint represents the necessary

140 and sufficient condition that the equilibrium set

141 be attractive with respect to any homogeneous

142 constant-strain process (or relaxation process).
143 Indeed, according to (1) and (10), each homoge-

144 neous process ðe ¼ e0 ¼ const:; sðtÞ; yðtÞÞ
145 starting at a given initial strain-stress-temperature

146 state ðe0; s0; y0Þ such that s0 > seqðe0; y0Þ
147 (respectively, s0 < seqðe0; y0Þ) moves in the

148 direction of decreasing (respectively, increasing)

149 stress. Thus, a relaxation process will always end

150 on s ¼ seqðe; yÞ. This requirement reflects some

151 experimental evidence.

152 If the kernel of the function G is an open set in

153 the space e� s� y, then the constitutive

154equation (1) may describe a thermo-viscoplastic
155material (for isothermal examples, see [3]).

156By exploiting the residual inequality (7) for

157a heat-conducting thermo-viscoelastic material,

158one gets

Dth ¼ � 1

y
Qðe; seqðe; yÞ; y; yXÞyX � 0 (11)

159for any e, y, yX. Thus, if Q is given by the Fourier

160law for heat conduction Q ¼ �kðe; s; yÞyX, then
161(11) requires that the heat conduction coefficient

162at equilibrium be positive, that is,

163k ¼ kðe; seqðe; yÞ; yÞ � 0 for any e, y.

164Example: Processes Far from Equilibrium

165An example enough general of a rate-type

166viscoelastic constitutive equation is

@s
@t

� E
@e
@t

¼ �E

m
js� seqðe; yÞjl�1ðs� seqðe; yÞÞ:

(12)

167Here, l ¼ const. > 0 is a rate sensitivity
168parameter, and m ¼ const. > 0 is a viscosity

169coefficient. For l ¼ 1, m is a Newtonian viscosity

170coefficient, m
E is a relaxation time of the material,

171while k ¼ E
m is called Maxwellian viscosity coef-

172ficient. For l ¼ 1 this equation has been consid-

173ered in [4].

174When m ! 0 (or, k ! 1), this rate-type con-

175stitutive equation can be seen as a rate-type

176approach of the thermoelastic model

177s ¼ seqðe; yÞ. From physical point of view, it

178introduces a mechanism of energy dissipation.

179Unlike the thermoelastic model, the thermo-

180viscoelastic constitutive equation can describe

181the way the body may deviate from equilibrium.

182Indeed, this model has the pseudo-creep property,

183the relaxation property, and the capability to

184describe a linear instantaneous response.

185We exemplify these properties for the iso-

186thermal case y ¼ y0. For instance, let us con-

187sider an initial homogeneous state of strain,

188stress, and temperature ðe0; s0; y0Þ and a strain

189history e ¼ eðtÞ having a jump from eð0Þ ¼ e0 to
190eð0þÞ ¼ e1. According to (1), the instantaneous

Maxwellian Rate-Type Thermo-viscoelastic Bar Theory 3 M
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191 response in stress relative to the initial state is

192 the solution e ! sIðeÞ of the differential equa-

193 tion
dsIðeÞ
de ¼ E; sI eð Þ ¼ s0, that is,

194 s 0þð Þ ¼ sI e1ð Þ ¼ s0 þ E e1 � e0ð Þ.
195 An isothermal homogeneous constant-strain

196 process (or relaxation process)
197 eðtÞ ¼ e0; sðtÞ; yðtÞ ¼ y0ð Þ is solution of the

198 problem

_sðtÞ ¼ � E

m
js� seqðe0; y0Þjl�1ðs� seqðe0; y0ÞÞ;

sð0Þ ¼ s0:

(13)

199 One verifies that any isothermal relaxation

200 process starting at e0; s0; y0ð Þ ends on the equi-

201 librium set after a finite time interval if l 2 ð0; 1Þ
202 and an infinite time interval if l 2 ½1;1Þ. It fol-
203 lows that the equilibrium set of the rate-type

204 constitutive equation is attractive, or stable, for

205 any relaxation process irrespective of the mono-

206 tonicity of s ¼ seq e; yð Þ with respect to e (see

207 Fig. 1).

208 An isothermal homogeneous constant-stress

209 process (or pseudo-creep process)
210 eðtÞ; sðtÞ ¼ s0; yðtÞ ¼ y0ð Þ is solution of the

211 problem

_eðtÞ ¼ 1

m
js0 � seqðe; y0Þjl�1ðs0 � seqðe; y0ÞÞ;

eð0Þ ¼ e0:

(14)

212 Let us consider an equilibrium strain-stress-

213 temperature state e�; s0 ¼ seq e�; y0ð Þ; y0
� �

and

214 the initial strain e0 of the constant-stress process
215 (14) a perturbation of e�. One verifies easily that

216 the equilibrium set is attractive for any pseudo-

217 creep process if
@seqðe;y0Þ

@e � 0 and it is repulsive
218 for any pseudo-creep process if

@seqðe;y0Þ
@e < 0.

219 This is one reason why the equilibrium set

220 s ¼ seq e; yð Þ is called stable if
@seq
@e � 0 and it is

221 called unstable if
@seq
@e < 0. Therefore, any solu-

222 tion of the problem (14) ends always on the stable

223 parts of the equilibrium set (see Fig. 1).

224 It is useful to note that the thermo-viscoelastic

225 rate-type constitutive equation (12) includes as

226a limiting case for E ! 1 the generalized

227Kelvin-Voigt thermo-viscoelastic model

_e ¼ 1

m
js� seqðe; yÞjl�1ðs� seqðe; yÞÞ (15)

228or equivalently

s ¼ seqðe; yÞ þ m
1
lj_ej1l�1 _e: (16)

229For l ¼ 1 this equation has been considered in

230[5] in relation with phase transformations in

231solids. It is useful to note that Kelvin-Voigt’s

232viscoelastic constitutive equation can describe

233only pseudo-creep processes which are governed

234by the same equation (14), while any instanta-

235neous process has an infinite slope.

236Thermodynamic Potentials for the Rate-Type

237Thermo-viscoelastic Model

238We have seen that the second law of thermody-

239namics imposes restrictions (6) and (8) on the

240general Maxwellian rate-type constitutive struc-

241ture (1)–(2). The response of a thermo-

242viscoelastic model is characterized by two con-

243stitutive functions: one describing the

244thermoelastic equilibrium, that is, s ¼ seq e; yð Þ,
245and the other describing the instantaneous

246response of the material, that is, the dynamic

247Young modulus E. The question is to investigate

248the consequences of the assumptions (9) and (10)

249on the existence of a free energy function.

250One shows that the rate-type thermo-

251viscoelastic model admits a unique free energy

252function c ¼ cmxðe; s; yÞ (modulo an additive

253function of y) if and only if the slope of the

254straight line connecting two points of an equilib-

255rium isotherm is bounded from above by the

256instantaneous Young modulus E (see also [4]).

257We assume in the following more than that,

258namely, there exist two positive constants E* and

259E* such that

� E� � seqðe1; yÞ � seqðe2; yÞ
e1 � e2

� E� < E;

for any e1; e2 and any y:
(17)

M 4 Maxwellian Rate-Type Thermo-viscoelastic Bar Theory
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260 Indeed, starting from the internal dissipation

261 inequality (8) and condition (10), one gets that

@cmxðe; s; yÞ
@s

ðs� seqðe; yÞÞ � 0; (18)

262 wherefrom it follows that
@cmx

@s ¼ 0 must vanish

263 for s ¼ seq e; yð Þ. Consequently, the free energy

264 function has to satisfy the following Cauchy

265 problem for a first-order PDE

@cmx

@e
þ E

@cmx

@s
¼ s

R
;

@cmx

@s
ðe; seqðe; yÞ; yÞ ¼ 0:

(19)

266 The general form of the free energy equation is

Rcmxðe; s; yÞ ¼
s2

2E
þ ’ðs� Ee; yÞ; (20)

267 where ’ ¼ ’ðt; yÞ satisfies relation

@’

@t
ðseqðe; yÞ � Ee; yÞ ¼ � seqðe; yÞ

E
: (21)

268 In order to determine the function ’, it is

269 necessary that function hðe; yÞ ¼ seqðe; yÞ � Ee
270 be invertible with respect to e for any fixed y.
271 That requires hðe1; yÞ 6¼ hðe2; yÞ for any e1, e2,
272 e1 6¼ e2 and any y. In fact, this condition requires

273 that s ¼ seqðe; yÞ be a noncharacteristic for the

274 Cauchy problem (19). If one denotes by h�1ð�; yÞ
275 this inverse function, then ’ will be the unique

276 solution (modulo an additive function of y) of the
277 following equation

@’

@t
ðt; yÞ ¼ � seqðh�1ðt; yÞ; yÞ

E
(22)

278Therefore, for any triplet e; s; yð Þ, there is

279a unique ~e ¼ ~e e; s; yð Þ ¼ h�1 s� Ee; yð Þ such

280that

s� Ee ¼ hð~e; yÞ ¼ seqð~e; yÞ � E~e: (23)

281By using (23), one shows that

282s� seqðe; yÞ ¼ hð~e; yÞ � hðe; yÞ and from (20)

283one gets

RE
@cmx

@s
ðe; s; yÞ ¼ s� seqð~e; yÞ ¼ Eðe� ~eÞ:

(24)

284Consequently, the inequality (18) requires

285ðhðe; yÞ � hð~e; yÞÞðe� ~eÞ � 0 for any e and ~e,
286which combined with the injectivity condition

287of function hð�; yÞ leads to condition (17). More-

288over, these are the necessary and sufficient con-

289ditions for the existence of a free energy function,

290that is, a solution of the Cauchy problem (19).

291By integrating equation (22), one derives the

292explicit form of the free energy function for the

293Maxwellian thermo-viscoelastic model

Rcmxðe; s; yÞ ¼
s2

2E
� s2eqð~e; yÞ

2E

þ
ð~e
e0
seqðs; yÞ dsþ RfðyÞ;

(25)

294where fðyÞ is a smooth function. The entropy

295function is given by

R�mxðe; s; yÞ ¼ �R
@cmx

@y

¼ �
ð~e
e0

@seqðs; yÞ
@y

ds� R
dfðyÞ
dy

(26)

Maxwellian Rate-Type Thermo-viscoelastic Bar Theory 5 M
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296 and the specific heat by

Cmxðe; s; yÞ ¼ y
@�mx
@y

¼ � y
R

ð~e
e0

@2seqðs; yÞ
@y2

dsþ
@seqð~e;yÞ

@y

� �2

E� @seqð~e;yÞ
@e

þ R
d2fðyÞ
dy2

0
B@

1
CA (27)

297

298 where ~e ¼ h�1ðs� Ee; yÞ.
299 Let us note that the free energy, entropy, and

300 internal energy of the Maxwellian thermo-

301 viscoelastic model at equilibrium are just the

302 free energy, entropy, and internal energy of the

303 thermoelastic model s ¼ seqðe; sÞ, that is,

cmxðe; seqðe; yÞ; yÞ ¼ ceqðe; sÞ;
�mxðe; seqðe; yÞ; yÞ ¼ �eqðe; sÞ:

(28)

304 Indeed, from (23) one gets that ~e ¼
305 ~eðe; seqðe; yÞ; yÞ ¼ h�1 ðseqðe; yÞ � Ee; yÞ ¼ e,
306 wherefrom by using (25) and (26), one retrieves

307 the relations obtained in ▶ thermoelastic bar

308 theory.

309 Not the same property is true for the specific

310 heat. Indeed, the specific heat (27) of the Max-

311 wellian model does not coincide at equilibrium

312 with the specific heat of the thermoelastic model.

313 Indeed, one can show that

Cmxðe; seqðe; yÞ; yÞ ¼ Ceqðe; yÞE� RU2ðe; yÞ
E� @seq

@e ðe; yÞ
(29)

314 where Uðe; yÞ is the adiabatic sound speed of the

315 thermoelastic material defined in▶ thermoelastic

316 bar theory. By requiring that the specific heat of

317 the Maxwellian model be positive, one derives an

318 important physical condition called the

319 subcharacteristic condition

RU2ðe; yÞ ¼ @seq
@e

þ y
RCeqðe; yÞ

@seq
@y

� �2

< E

(30)

320 whose meaning is explained below. Let us note

321 that this condition is stronger than condition (17).

322The additive function fðyÞ can be determined

323from calorimetric measurements. Indeed, it is

324reasonable to assume that the specific heat of

325the Maxwellian model at the equilibrium state,

326that is, Cmxðe0; sðe0; yÞ; yÞ, can be determined

327experimentally over an interval of temperature.

328Therefore, fðyÞ is the solution of the equation

329
d2fðyÞ
dy2

¼ � Cmxðe0;sðe0;yÞy;Þ
y up to an arbitrary linear

330function of y, which can be established once the

331free energy and the entropy at a given state

332ðe0; y0Þ are given.

333Remark 1. The free energy of the Maxwellian

334viscoelastic model is completely determined by

335the equilibrium response function s ¼ seqðe; yÞ,
336the dynamic Young modulus E, and the specific

337heat at an equilibrium state Cmxðe0; sðe0; yÞ; yÞ
338over an interval of temperature.

339Remark 2. The free energy of the Maxwellian

340rate-type thermo-viscoelastic model defined by

341equation (1) and conditions (9)–(10) corresponds

342for an entire class of functions G ¼ Gðe; s; yÞ
343having the same equilibrium s ¼ seqðe; yÞ.

344Remark 3. The rate sensitivity parameter l and

345the viscosity coefficient m influence only the rate

346effects, that is, how quickly or slowly the stability

347or unstability phenomena of the thermome-

348chanical processes take place and how close or

349far are these processes with respect to the equi-

350librium set.

351Remark 4. Condition (17) which ensures the

352existence of a unique free energy function for

353the Maxwellian thermo-viscoelastic model

354allows to include materials for which the equilib-

355rium response function has the property that

356
@seqðe;yÞ

@e < 0, which arise when studying materials

M 6 Maxwellian Rate-Type Thermo-viscoelastic Bar Theory
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357 that can undergo a phase change considered in

358 ▶ pseudoelasticity and shape memory effect –

359 a Maxwellian rate-type approach.

360 Energetic Estimates and Energetic Identities

361 By using relation (24) and restriction (17), one

362 derives the bounds

E

Eþ E�
ðs� seqðe; yÞÞ2

� ER
@cMxw

@s
ðe;s; yÞðs� seqðe; yÞÞ

� E

E� E� ðs� seqðe; yÞÞ2 (31)

363 wherefrom one obtains the following energetic

364 estimate: the intrinsic dissipation (8) for the Max-

365 wellian thermo-viscoelastic constitutive equation

366 (12) satisfies relation

E

mðEþ E�Þ
��s� seqðe; yÞ

��lþ1 � Dmxðe; s; yÞ

� E

mðE� E�Þ
��s� seqðe; yÞ

��lþ1
:

(32)

367 We also note that by investigating the proper-

368 ties of the thermodynamic potentials

369 corresponding to the Maxwellian thermo-

370 viscoelastic model when E ! 1, one gets from

371 relations (25)–(27) using (23)

lim
E!1

cmxðe; s; yÞ ¼ ceqðe; yÞ;
lim
E!1

�mxðe; s; yÞ ¼ �eqðe; yÞ;
lim
E!1

Cmxðe; s; yÞ ¼ Ceqðe; yÞ;
(33)

372 that is, the free energy, the entropy, and the spe-

373 cific heat of the Kelvin-Voigt model (16) coin-

374 cide with the free energy, entropy, and specific

375 heat of the thermoelastic model described in

376 ▶ thermoelastic bar theory. Moreover, the inter-

377 nal dissipation generated in a smooth process by

378 the Kelvin-Voigt model (16) is obtained from

379 (32) and (15) as

Dkvðe; s; yÞ ¼ lim
E!1

Dmxðe; s; yÞ

¼ 1

m

��s� seqðe; yÞ
��lþ1

¼ m
1
l
��_e��1lþ1

: (34)

380The thermodynamic relations (19) and

381(25)–(27) lead to the following energetic identi-

382ties for the Maxwellian model endowed with

383Fourier heat conduction law

R
@emxðe; s; yÞ

@t
¼ � _W þ _Q;

R
@�mxðe; s; yÞ

@t
þ @

@X

q

y

� �
¼ 1

y
ðDmx þ DthÞ � 0

(35)

384where the rate of work _W and the rate of heat _Q
385are given by

_W ¼ � s_e; _Q ¼ R
@cmx

@
Gðe; s; yÞ

� Ry
@2cmx

@s@y
Gðe; s; yÞ þ RCmxðe; s; yÞ _y:

(36)

386Let us note that the first term in the expression

387of _Q is always negative, being the internal dissi-

388pation Dmx with minus sign. The second term

389represents the heating or the cooling of the mate-

390rial due to the latent heat released or absorbed by

391the body during a thermomechanical process.

392One can show that

R
@2cmx

@s@y
ðe; s; yÞ ¼ � @seq

@y
ð~e; yÞ E� @seqð~e; yÞ

@e

� ��1

(37)

393where ~e ¼ ~eðe; s; yÞ ¼ h�1ðs� Ee; yÞ according

394to (23). Therefore, the latent heat depends essen-

395tially, like in the thermoelastic case, on the vari-

396ation of the equilibrium stress with respect to the

397temperature. Its role is illustrated numerically in

398▶ pseudoelasticity and shape memory effect –

399a Maxwellian rate-type approach. The third

400term represents the rate of heat due to the specific

401heat. One sees that the specific heat Cmx

Maxwellian Rate-Type Thermo-viscoelastic Bar Theory 7 M
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402 characterizes the amount of heat required to

403 change a body’s temperature by a given amount

404 by keeping the inelastic deformation ei ¼ e� s
E

405 fixed.

406 The heat propagation equation for

407 a Maxwellian thermo-viscoelastic bar allowing

408 lateral heat transfer to the environment and axial

409 Fourier heat conduction is obtained from the bal-

410 ance of energy (3)3 and the thermodynamic rela-

411 tions (25)–(27) as

RCmx
@y
@t

¼ � R
@cmx

@s
Gþ Ry

@2cmx

@s@y
Gþ @

@X
k
@y
@X

� �

� 2o
R

ðy� yextÞ þ Rr:

(38)

412 For the thermo-viscoelastic Kelvin-Voigt’s

413 material (16) with Fourier heat conduction law,

414 one gets the following energetic identities:

R
@eeqðe; yÞ

@t
¼ � _W þ _Q;

R
@�eqðe; s; yÞ

@t
þ @

@X

q

y

� �
¼ 1

y
ðDkv þ DthÞ � 0

(39)

415 where the rate of work _W and the rate of heat _Q

416 are given by

_W ¼ � seqðe; yÞ; _e
_Q ¼ � m

1
l
��_e��1lþ1 � Ry

@2ceq

@e@y
_e þ RCeqðe; yÞ _y:

(40)

417 We note that the first term in the expression of

418 _Q is always negative, being the internal dissipa-

419 tion Dkv with minus sign. The second and the

420 third term are identically with those in the

421 thermoelastic case and represent the contribution

422 to the rate of heat of the latent heat and of the

423 specific heat, respectively.

424 The heat propagation equation for the Kelvin-
425 Voigt thermo-viscoelastic bar (16) allowing lat-

426 eral heat transfer and axial Fourier heat conduc-

427 tion is

RCeq
@y
@t

¼ m
1
l
@e
@t

����
����
1
lþ1

þ Ry
@2ceq

@e@y
@e
@t

þ @

@X
k
@y
@X

� �

� 2o
R

ðy� yextÞ þ Rr:

(41)

428Let us note that the right-hand terms in (35)2
429and (39)2 represent the entropy production due to

430intrinsic dissipation and the entropy production

431due to thermal dissipation through axial heat

432conduction.

433The Adiabatic Thermo-viscoelastic System:

434A Relaxation System with Stiff Source Terms

435The adiabatic Maxwellian thermo-viscoelastic

436system is composed by the balance of momen-

437tum, the compatibility equation between strain

438and velocity, the heat propagation equation (38),

439written for an isolated bar o ¼ 0; r ¼ 0ð Þ in the

440absence of axial heat conduction k ¼ 0ð Þ and by

441the thermo-viscoelastic constitutive equation (1).

442For the example (12), it takes the form of

443a relaxation system

@

@t

v

e

y

s

0
BBBBB@

1
CCCCCA
�

0 0 0
1

R

1 0 0 0

0 0 0 0

E 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

@

@X

v

e

y

s

0
BBBBB@

1
CCCCCA
¼

0

0

s3 e; s; yð Þ
s4 e; s; yð Þ

0
BBBBB@

1
CCCCCA

(42)

444with the stiff sources

s3 ¼E

m

��s� seqðe; yÞ
��l�1ðs� seqðe; yÞÞ

1

Cmx

@cmx

@s
� y

@2cmx

@s@y

� �

s4 ¼ � E

m

��s� seqðe; yÞ
��l�1ðs� seqðe; yÞÞ:

445One expects that when m ! 0 solutions of the

446rate-type system (42) “approach” solutions of the

447adiabatic thermoelastic system described in

448▶ thermoelastic bar theory, in the sense that the

449stress s is rapidly driven back to the equilibrium

M 8 Maxwellian Rate-Type Thermo-viscoelastic Bar Theory
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450 seqðe; yÞ, except perhaps in narrow zones where

451 s, e, y, and v have a very steep variation.

452 It is easy to verify that this system is always

453 hyperbolic semilinear as long as the dynamic

454 Young’s modulus E is strictly positive and finite.

455 Indeed, the system is semilinear since all

456 nonlinear terms are included in the right part of

457 (42), that is, in the source terms, and the eigen-

458 values of the matrix are given by r1;2 ¼ � ffiffiffiffiffiffiffiffi
E=R

p
459 and r3;4 ¼ 0. In other words, the information for

460 the adiabatic thermo-viscoelastic system propa-

461 gates with the characteristic speed
ffiffiffiffiffiffiffiffi
E=R

p
and the

462 source terms do not change this fact. On the other

463 side, we have seen that “the approximated sys-

464 tem,” or the so-called reduced system, that is, the

465 adiabatic thermoelastic system, has the charac-

466 teristic speed Uðe; yÞ given by (30). Usually, for

467 systems involving relaxation, one requires

468 a priori that the characteristic speed of the

469 reduced system cannot exceed the characteristic

470 speed of the system with relaxation, that is, in our

471 case condition (30). That means, the information

472 for the reduced system can not propagate faster

473 than the speed
ffiffiffiffiffiffiffiffi
E=R

p
. That is why it is called

474 subcharacteristic condition. The terminology

475 was introduced by Liu in [6] for relaxation sys-

476 tems (see also [7]). For the adiabatic thermo-

477 viscoelastic system, the subcharacteristic condi-

478 tion appears naturally when studying the consis-

479 tency with the second law of thermodynamics of

480 the rate-type constitutive equation. We have seen

481 that requirement (30) is a necessary condition for

482 the existence of a positive specific heat for the

483 Maxwellian thermo-viscoelastic model.

484 An important consequence of the fact that the

485 adiabatic thermo-viscoelastic system is always

486 hyperbolic irrespective of the sign of
@seq
@e is that

487 the initial-boundary value problems for system

488 (42) are nowwell-posed. Therefore, this rate-type

489 approach proves to be appropriate to describe

490 phase transition phenomena and has been used

491 in ▶ pseudoelasticity and shape memory effect –

492 a Maxwellian rate-type approach.

493 If one considers instead of the Maxwellian

494 thermo-viscoelastic constitutive equation (12)

495 the Kelvin-Voigt thermo-viscoelastic model

496 (16), then the corresponding adiabatic system

497can be viewed as a limiting case of the adiabatic

498Maxwellian rate-type system (42) for E ! 1. In

499this case, the characteristic directions of the

500hyperbolic system in the t-X plane tend to be

501infinite, that is, the hyperbolic system (42) trans-

502forms into a parabolic one.

503There is a considerable interest in the study of

504relaxation systems and on the conditions under

505which convergence of solutions occur as the stiff

506parameter goes to zero (see, for instance, [8], [7],

507and their references). We illustrate some aspects

508for the case of isothermal motions.

509Approach to Equilibrium in the

510Isothermal Case

511Let us consider the isothermal motions of

512a Maxwellian viscoelastic material described by

513the relaxation system

R
@v

@t
� @s
@X

¼ 0;
@e
@t

� @v

@X
¼ 0;

@s
@t

� E
@e
@t

¼ � E

m

��s� seqðeÞ
��l�1ðs� seqðeÞÞ:

(43)

514In the formal zero limit m ! 0, the system

515yields the equations of isothermal

516elastodynamics:

R
@v

@t
� @seqðeÞ

@X
¼ 0;

@e
@t

� @v

@X
¼ 0: (44)

517This relaxation system has been studied from

518thermodynamical point of view in [9] for mono-

519tone equilibrium curves s ¼ seqðeÞ. The result

520has been extended in [10] for the non-monotone

521case. For the case l ¼ 1, the relaxation system

522has been used to describe the behavior of a phase-

523transforming material, like shape memory alloys,

524in the quasistatic case in [11, 12] and in the

525dynamic case in [13].

526By using the properties (19) of the free energy

527function in the isothermal case, one can establish

528the following energy identity for the smooth solu-

529tions of the system (43)
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@

@t
R
v2

2
þ cmxðe; sÞ

� �
¼ @

@X
ðsvÞ

� E

m
R
@cmx

@s

��s� seqðeÞ
��l�1ðs� seqðeÞÞ:

(45)

530 If we denote the total energy of a bar of length

531 L by

EmxðtÞ ¼
ðL
0

R
v2

2
þ cmxðe; sÞ

� �
ðX; tÞdX; (46)

532 one gets the energy identity

dEmxðtÞ
dt

¼ �E

m

ðL
0

R
@cmx

@s
js� seqðeÞjl�1

ðs� seqðeÞÞdX þ ðsvÞðL; tÞ � ðsvÞð0; tÞ:
(47)

533 Then, for an isolated body problem, that is,

534 a boundary value problem for which

ðsvÞðL; tÞ ¼ 0 and ðsvÞð0; tÞ ¼ 0;

(48)

535 one derives, by using the consequence (18) of the

536 dissipation inequality, that

dEmxðtÞ
dt

� 0: (49)

537 Therefore, for an isolated body problem, the

538 total energy of a rate-type bar is a nonincreasing

539 function of time. Moreover, by integrating (47)

540 with respect to the time t and using the inequality

541 (31), one gets the following estimates for the

542 solutions of an isolated body problem (48) for

543 the rate-type system (43):

ðt
0

ðL
0

js� seqðeÞjlþ1

� m
E� E�

E
ðEmxð0Þ � EmxðtÞÞ

� m
E� E�

E
Emxð0Þ: (50)

544 Consequently, when m ! 0, we get an Llþ1

545 approach to the equilibrium set of the solutions of

546the system with relaxation for an isolated body

547problem. This result is valid irrespective of the

548slope of the equilibrium curve s ¼ seqðeÞ, that is,
549even when the semilinear hyperbolic system

550“approximates” a mixed hyperbolic-elliptic

551quasilinear system.

552Let us note that for smooth initial data the rate-

553type viscoelastic system admits smooth solutions,

554while the nonlinear elastodynamic system may

555develop discontinuous solutions (shock waves) in

556finite time. In fact, the rate-type viscoelastic sys-

557tem can smooth the shock waves caused by the

558physically nonlinear elastic constitutive equation

559s ¼ seqðeÞ. The problem of constructing weak

560solutions of the equations of isothermal elasticity

561as limits of the relaxation system when m ! 0 has

562been addressed in [14]. The convergence prob-

563lem of viscosity approximations for conservation

564laws is by nomeans trivial. It has been considered

565in [14] where it has been discussed the uniform

566stability and compactness for solutions of the

567relaxation system (43) (when l ¼ 1) in the zero-

568relaxation limit. The convergence to the system

569of isothermal elastodynamics has been

570established by using compensated compactness.

571The result is obtained only for the monotonous

572case when
@seq
@e > 0, that is, only when one

573approximates a hyperbolic quasilinear system

574with the solutions of a hyperbolic semilinear

575system.
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dσ
 =

 E
dεσ

ε

Maxwellian Rate-Type
Thermo-viscoelastic Bar
Theory: An Approach to
Non-monotone
Thermoelasticity,
Fig. 1 Instantaneous

process relative to an

equilibrium state and

behavior of relaxation

processes and pseudo-creep

processes near the

equilibrium isotherm

s ¼ seq e; y0ð Þ
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