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9 Overview

10 The dynamics of a nonlinear thermoelastic bar is

11 governed in the adiabatic case by a system of

12 conservation laws (see ▶Thermoelastic Bar

13 Theory) leading to the need to consider

14 discontinuous solutions. These are usually called

15 shock waves or phase boundaries and represent

16 essential mathematical tools in investigating

17 solutions of quasi-linear hyperbolic PDE

18 systems. Initial value problems for such systems

19 may havemultiple discontinuous solutions, hence

20 the necessity to impose selection criteria,

21 frequently called “entropy” conditions. In reality,

22 shock waves do not exist. In solids, the role of

23 viscous-like effects on the shock structure has

24 been experimentally identified in the 1960s by

25 velocity interferometry techniques, and a shock

26 thickness has been put into evidence (see, for

27 instance, [1, 2]). Thus, the study of steady, struc-

28 tured shock waves or traveling waves is an impor-

29 tant subject in the theory of waves both from

30 practical and theoretical point of view. Such an

31 analysis provides admissibility criteria for

32discontinuous solutions of the adiabatic

33thermoelastic theories which derive from associ-

34ated dissipative systems. For instance, thermo-

35viscous fluids have been considered in [3, 4, 5],

36while thermo-viscous fluids with capillarity

37effects in [6, 7]. One considers here a thermo-

38viscous heat-conducting bar whose equilibrium

39constitutive setting is described by a nonlinear

40thermoelastic relation. Both the viscous dissipa-

41tion and the heat conduction produce structure in

42steady waves. One shows that the admissibility

43criterion for viscous, heat-conducting shock

44layers is, in general, equivalent with

45a geometrical criterion, namely, the chord crite-

46rion with respect to the Hugoniot locus in the

47stress–strain space.

48Shock Waves in Thermoelastic Bars

49Balance Laws for One-Dimensional Bodies

50One considers a one-dimensional body whose

51particles in a fixed reference configuration are

52labeled by X, X 2 ð�1;1Þ. According to the

53▶ thermoelastic bar theory, the differential form

54of the kinematic compatibility condition, the bal-

55ance laws of linear momentum and energy, as

56well as the Clausius–Duhem inequality in the

57absence of external body forces and radiating

58heating can be written as

R. Hetnarski (ed.), Encyclopedia of Thermal Stresses, DOI 10.1007/978-94-007-2739-7,
# Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/


Comp. by: DMuthuKumar Stage: Proof Chapter No.: 727 Title Name: ETS
Date:27/3/13 Time:22:36:39 Page Number: 2

@e
@t

¼ @v

@X
; R

@v

@t
¼ @s

@X
;

R
@e

@t
¼ s

@e
@t

� @q

@X
; R

@�

@t
� � @

@X

q

y

� � (1)

59 where at the particle X and time t, e is the strain, v
60 is the particle velocity, s is the axial stress (s< 0

61 in compression), e is the specific internal energy,

62 q is the axial flux, � is the specific entropy, y is the
63 (positive) absolute temperature, and R ¼const. is

64 the density.

65 Let us suppose that across a curve X ¼ SðtÞ in
66 the t� X plane, called wave discontinuity (or

67 strong discontinuity), the quantities mentioned

68 above may have jumps. The most common exam-

69 ples are the shock waves and phase boundaries.

70 Then, the continuity of the motion, the balance

71 laws of momentum and energy, and the Clausius–

72 Duhem inequality across this discontinuity take

73 the form

9v0þ _S9e0 ¼ 0; R _S9v0þ 9s0 ¼ 0;

R _S9e0 þ sh i9v0� 9q0 ¼ 0;

� R _S9�0þ q

y

h ih i
� 0

(2)

74 Here, _SðtÞ denotes the speed of propagation of
75 the discontinuity, and for any quantity

76 f ¼ f ðX; tÞ, we have used the notations 9 f 0ðtÞ
77 ¼ fþðtÞ � f�ðtÞ ¼ f ðSðtÞþ; tÞ � f ðSðtÞ�; tÞ and

78 fh iðtÞ ¼ 1
2
ð fþðtÞ þ f�ðtÞÞ. We name X > SðtÞ as

79 the + side and X < SðtÞ as the � side of the

80 discontinuity.

81 The Adiabatic Thermoelastic System

82 For many applications, like wave propagation

83 theory, physical effects such as viscosity, heat

84 conduction, and relaxation either are neglected

85 or are not the focus of attention. In such situations

86 it is found to be sufficient to consider the response

87 of the material described only by the equilibrium

88 stress response function s ¼ seqðe; yÞ and to take
89 the heat flux q ¼ 0. From the▶ thermoelastic bar

90 theory, it is known that the thermodynamic

91 restrictions imposed by the Clausius–Duhem

92 inequality (1) 4 requires that the free energy func-

93 tion ceq ¼ ceqðe; yÞ be a potential for the stress

94 and for the entropy function, that is,

seqðe; yÞ ¼ R
@ceqðe; yÞ

@e
;

�eqðe; yÞ ¼ �ceqðe; yÞ
@y

(3)

95Hence, the free energy function c ¼ ceqðe; yÞ,
96the entropy function �eq ¼ �eqðe; yÞ, and the

97specific heat of the thermoelastic material

98Ceqðe; yÞ ¼ �y@
2ceq

@y2
are uniquely determined by

99the stress response function s ¼ seqðe; yÞ mod-

100ulo, an additive function of temperature

101f ¼ fðyÞ. This function is determined experi-

102mentally by measuring the specific heat at con-

103stant strain e0 over an interval of temperature, that

104is, Ceqðe0; yÞ, as it has been explained in the

105▶ thermoelastic bar theory.

106Therefore, the system (1)1–3 supplemented

107with the equilibrium stress response function

108s ¼ seqðe; yÞ and the corresponding internal

109energy e ¼ eeqðe; yÞ ¼ ceq þ y�eq in the absence

110of heat conduction takes the form

@e
@t

¼ @v

@X
; R

@v

@t
¼ @seqðe; yÞ

@X
;

@y
@t

¼ y
RCeqðe; yÞ

@seqðe; yÞ
@y

@v

@X

(4)

111This nonlinear PDE system is called the adia-

112batic thermoelastic system. It is a strictly hyper-

113bolic system if

l2ðe; yÞ ¼ 1

R
@seq
@e

þ y
R2Ceq

@seq
@y

� �2

> 0 (5)

114and its characteristic directions are dX
dt ¼ 0 and

115
dX
dt ¼ �lðe; yÞ.

116If one investigates, for example, the impact of

117two semi-infinite thermoelastic bars, that is, if we

118consider a Riemann problem for the system (4),

119then discontinuous solutions of the form

120
X
t ¼ _S ¼const. may be generated by the initial

121data (see [8]). Moreover, it is well known that

122for this quasi-linear hyperbolic system even from

123smooth initial data, the solution may develop

124discontinuities in a finite time (see, for instance,

125[9]). Usually such a discontinuous solution is

126called a shock wave and the jump conditions (2)
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127 tell us how the shock wave changes the strain, the

128 stress, the velocity, and the temperature.

129 Rankine–Hugoniot Conditions

130 If _S > 0, that is, the shock wave propagates in the

131 positive-X direction, one calls the material at the

132 + side to be in the front of the wave, while the

133 material at the – side to be in back of the wave.

134 The shock wave is said to be compressive if the

135 deformation decreases after the passage of the

136 wave (e� < eþ) and expansive if the deformation

137 increases (e� > eþ). If _S < 0, one changes only +

138 to � and correspondingly the terminology.

139 According to jump relations (2), the discon-

140 tinuous solutions of the adiabatic thermoelastic

141 system have to satisfy the following front state–

142 back state relations:

v� � vþ ¼ � _Sðe� � eþÞ;
seqðe�; y�Þ � seqðeþ; yþÞ ¼ R _S

2 ðe� � eþÞ;
(6)

Rðeeqðe�; y�Þ � eeqðeþ; yþÞÞ
¼ 1

2
ðseqðe�; y�Þ þ seqðeþ; yþÞÞðe� � eþÞ;

(7)

_Sð�eqðe�; y�Þ � �eqðeþ; yþÞÞ � 0 (8)

143 Relations (6), (7) are usually referred to as the

144 Rankine–Hugoniot conditions, while (7) is the

145 famous Rankine–Hugoniot equation. Let us sup-
146 pose that the front state ðeþ; yþ; vþÞ is known.

147 Then, relations (6), (7) represent an algebraic

148 nonlinear system for the unknown back state

149 ðe�; y�; v�Þ and the speed of the discontinuity _S.

150 Depending on the thermoelastic constitutive

151 assumptions, this systemmay generally be solved

152 if one of these four quantities is prescribed. In

153 addition, such a weak solution has to satisfy the

154 constraint imposed by the entropy inequality (8),

155 which asserts that after the passage of a strong

156 discontinuity, the entropy of a particle will not

157 decrease. This condition has been firstly stated in

158 gas dynamics by Jouguet [10].

159 It is useful to note that the Rankine–Hugoniot

160 equation (7) provides only restrictions, on the

161back states ðe; yÞ which can be reached in

162a shock process which has ðeþ; yþÞ as a front

163state. Moreover, this restriction does not depend

164on the shock speed _S. One denotes by

Hðe; y; eþ; yþÞ ¼Reeqðe; yÞ � Reþ

� 1

2
ðseqðe; yÞ þ sþÞðe� eþÞ

(9)

165the Hugoniot function based at ðeþ; yþÞ where

166eþ ¼ eeqðeþ; yþÞ and sþ ¼ seqðeþ; yþÞ. The set

167fðe; yÞ jHðe; y; eþ; yþÞ ¼ 0g is called the

168Hugoniot set (locus) based at ðeþ; yþÞ in the

169e� y plane. It is obvious that ðeþ; yþÞ belongs

170to the Hugoniot set.

171Let us suppose for simplicity that the equation

172Hðe; y; eþ; yþÞ ¼ 0 can be solved uniquely with

173respect to e. That is, there exists a function

y ¼ YHðe; eþ; yþÞ; (10)

174with the properties that yþ ¼ YHðeþ; eþ; yþÞ and
175Hðe;YHðe; eþ; yþÞ; eþ; yþÞ ¼ 0 on its domain of

176definition. This is called the temperature–strain

177Hugoniot curve (locus) based at ðeþ; yþÞ and

178describes all those states in the e� y plane that

179are potentially attainable as back states in a shock

180process which has ðeþ; yþÞ as a front state.

181Situations when the Hugoniot set is not curve-

182like and can bifurcate have been considered

183in [11].

184The image of the curve (10) through the func-

185tion s ¼ seqðe; yÞ in the e� s plane is denoted by

s ¼ sHðe; eþ; yþÞ � seqðe;YHðe; eþ; yþÞÞ (11)

186and is called the stress–strain Hugoniot curve
187(locus) based at ðeþ; sþÞ. This function describes
188all reachable ðe; sÞ back states in a wave discon-

189tinuity which has ðeþ;sþÞ as a front state.
190The concept of the shock wave is an extremely

191useful tool that has allowed the study of a great

192variety of wave phenomena. However, the adia-

193batic thermoelastic system (4) may admit weak

194solutions that do not resemble physical solutions,

195so the system must be supplemented with
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196 conditions that exclude the nonphysical solu-

197 tions. These extra conditions should mimic the

198 physical effects that are not fully modeled by

199 system (4). In some situations, in gas dynamics

200 or in elastodynamics, simple rules such as the Lax

201 characteristics criterion [12], or the requirement

202 that the entropy should not decrease, suffice to

203 isolate physically reasonable solutions. In general,

204 more complex admissibility criteria are needed,

205 such as requiring the existence of viscous profiles.

206 Shock Layers and Admissibility
207 Conditions

208 A Thermo-viscous Heat-Conducting Material

209 The nonuniqueness of discontinuous solutions of

210 the adiabatic thermoelastic system (4) can be

211 resolved by requiring that shock waves arise as

212 limits of solutions of more complete equations.

213 When heat conduction and viscosity are included,

214 physical shock waves are limits of traveling wave

215 profiles.

216 One considers in the following an augmented

217 theory of the thermoelastic material by including

218 dissipative mechanisms described by Kelvin–

219 Voigt constitutive equation and by Fourier heat

220 conduction law, that is,

s ¼ seqðe; yÞ þ m
@e
@t

; and q ¼ �k
@y
@X

(12)

221 where m ¼ const. > 0 is a Newtonian viscosity

222 coefficient and k ¼ const. > 0 is the heat

223 conduction coefficient.

224 This is a simple linear model for viscosity. In

225 metals, according to the experimental results

226 obtained by Barker [1] (see also [11, 2]), the

227 relation between the impact pressure and the

228 strain rate is a power law which corresponds to

229 the generalized Kelvin–Voigt model considered

230 in ▶Maxwellian rate-type thermo-viscoelastic

231 bar theory. Here it has been shown by investigat-

232 ing the compatibility of the Kelvin–Voigt model

233 with the second law of thermodynamics that the

234 free energy, the entropy, the internal energy, and

235 the specific heat of this viscous model are the

236same as those of the thermoelastic model, that

237is, they satisfy relations (3).

238The system governing the motion of a viscous,

239heat-conducting bar is obtained from (1)1�3, by

240adding the Kelvin–Voigt constitutive relation,

241the Fourier heat conduction law (12), and the

242corresponding internal energy e ¼ eeqðe; yÞ of

243the thermoelastic material, that is,

@e
@t

¼ @v

@X
; R

@v

@t
¼ @s

@X
;

s ¼ seqðe; yÞ þ m
@v

@X

(13)

RCeqðe;yÞ@y
@t

¼ y
@seqðe;yÞ

@y
@v

@X
þm

@v

@X

� �2

þk
@2y
@X2

(14)

244It is a parabolic PDE system.When m ! 0 and

245k ! 0, one retrieves the adiabatic thermoelastic

246system (4).

247The total dissipation, that is, the intrinsic dis-

248sipation and the thermal dissipation, generated in

249a smooth process by the heat-conducting Kelvin–

250Voigt material is given by

Dtot ¼ m
@e
@t

� �2

þ k
y

@y
@X

� �2

� 0 (15)

251Traveling Wave Solutions

252Independent of any constitutive assumption,

253a traveling wave solution for a one-dimensional

254body is a set of smooth functions ðe;s;y; v;q; e; �Þ
255satisfying (1) and which depends on ðX; tÞ
256through the variable x ¼ X� _St, where

257_S ¼ const:. The functions ðe;s;y;v;q;e;�Þ
258ðX; tÞ¼ ðê; ŝ; ŷ; v̂; q̂; ê; �̂ÞðxÞ represent a smooth

259profile with constant shape propagating with

260a constant velocity _S. That is why often they are

261referred as steady, structured waves. According

262to (1), the following relations are verified

v̂0ðxÞ þ _Sê0ðxÞ ¼ 0; ŝ0ðxÞ þ R _Sv̂0ðxÞ ¼ 0;

_SðRê0ðxÞ � ŝðxÞê0ðxÞÞ ¼ q̂0ðxÞ; R _S�0 � q

y

� �0
(16)
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263 where prime denotes the derivative with respect

264 to x. The limiting values correspond to the

265 thermomechanical equilibrium states of the

266 augmented theory, that is,

lim
x!�1

ðê; ŝ; ŷ; v̂; q̂; ê; �̂ÞðxÞ¼ ðe�;s� ¼ seqðe�;y�Þ;

y�; v̂�;0;eeqðe�;y�Þ;�eqðe�;y�ÞÞ
(17)

267 where eþ, vþ, yþ, e�, v�, and y� are given values.

268 By integrating relations (16) between x and

269 þ1, one gets

v̂ðxÞ ¼ vþ � _SðêðxÞ � eþÞ (18)

ŝðxÞ ¼ sRð̂eðxÞÞ � sþ þ R _S
2 ðêðxÞ � eþÞ (19)

q̂ðxÞ ¼ _SðRêðxÞ � Reþ

� 1

2
ðêðxÞ � eþÞðŝðxÞ þ sþÞÞ

(20)

q̂ðxÞ � R _SŷðxÞð�̂ðxÞ � �þÞ (21)

270 If we set x ! �1, we recover the Rankine–

271 Hugoniot relations (6), (7) and the entropy jump

272 inequality (8) for the adiabatic thermoelastic sys-

273 tem. Therefore, if _S > 0 and ðeþ; yþÞ is a given

274 front state of a wave discontinuity, then the pair

275 ðe�; y�Þ has to belong to the Hugoniot set based

276 at ðeþ; yþÞ given by (9), that is,

277 Hðe�; y�; eþ; yþÞ ¼ 0 or equivalently

278 y� ¼ YHðe�; eþ; yþÞ. The constant steady wave

279 speed _S is determined by the equilibrium states to

280 be connected through relation

R _S
2 ¼ seqðeþ; yþÞ � seqðe�; y�Þ

eþ � e�
: (22)

281 Let us note that relation (19) asserts that in

282 a steady structured wave, the strain–stress pairs

283 ðêðxÞ; ŝðxÞÞ belong to a straight line of slope R _S
2

284 in the e� s plane. This is called the Rayleigh line
285 construction. That is why the function s ¼ sRðeÞ
286 defined above is called the Rayleigh line.

287By using the Kelvin–Voigt constitutive equa-

288tion and the Fourier law (12), one gets that

289e ¼ ê ðxÞ and y ¼ ŷðxÞ have to satisfy the

290nonlinear autonomous system with boundary

291conditions

ê0 ¼ � 1

m _S
Rðê; ŷÞ; lim

x!�1
êðxÞ ¼ e� (23)

ŷ
0 ¼ �

_S

k
HKVðê; ŷÞ; lim

x!�1
ŷðxÞ ¼ y� (24)

292where if _S > 0,

Rðe; y; eþ; yþ; e�Þ � sRðeÞ � seqðe; yÞ
¼ sþ þ R _S

2 ðe� eþÞ � seqðe; yÞ
(25)

HKVðe; y; eþ; yþ; e�Þ � Reeqðe; yÞ
� Reþ � 1

2
ðe� eþÞðsRðeÞ þ sþÞ

(26)

293Admissibility Condition

294One says that a shock wave is an admissibleweak

295solution for the adiabatic thermoelastic system if

296there exists a unique traveling wave solution

297ðeðxÞ; yðxÞ; vðxÞÞ provided by the augmented

298constitutive approach which connects the limit

299values ðe�; y�; v�Þ. Such a traveling wave dis-

300plays the character of a shock wave (for small

301viscosity m and heat conductivity k) because it

302differs sensibly from their end states at x ¼ �1
303only in a small interval of rapid transition. This

304behavior explains why it is usually called a shock

305layer.

306The Isothermal Case

307For nonlinear isothermal elasticity, the

308elastodynamic system is composed by (1)1,2 and

309the equilibrium stress–strain relation s ¼ seqðeÞ.
310If one considers the isothermal Kelvin–Voigt vis-

311coelastic constitutive equation (12)1, then v̂ðxÞ
312and ŝðxÞ satisfy relations (18) and (19), and êðxÞ
313is a solution of the differential equation with

314boundary conditions

Heat Conduction and Viscosity as Structuring Mechanisms for Shock Waves 5 H
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ê0ðxÞ ¼ � 1

m _S
ðsRðêðxÞÞ � seqðêðxÞÞ;

lim
x!�1

ðêÞðxÞ ¼ e�
(27)

315 It has been shown (see [6, 13]) that a unique

316 solution of the problem (27) exists or, in other

317 words, a viscous shock layer exists, if and only if

318 the following criterion is satisfied.

319 Chord Criterion With Respect to the Elastic

320 Constitutive Equation s ¼ seqðeÞ
321 A compressive wave discontinuity, that is,

322 ðeþ � e�Þ _S > 0, is admissible iff the chord

323 s ¼ sRðeÞ which joins ðeþ; sþ ¼ seqðeþÞÞ to

324 ðe�;s� ¼ seqðe�ÞÞ lies below the graph of the

325 function s ¼ seqðeÞ for e between eþ and e�,
326 while an expansive wave discontinuity, that is,

327 ðeþ � e�Þ _S < 0, is admissible if the chord

328 s ¼ sRðeÞ lies above the graph in the same

329 interval.

330 This result shows that a viscosity admissibility

331 criterion is equivalent with a geometrical crite-

332 rion with respect to the elastic constitutive equa-

333 tion s ¼ seqðeÞ. In addition, it is a simple and

334 extremely practical criterion since it allows to

335 detect directly admissible discontinuous solu-

336 tions for the nonlinear elastodynamic system

337 and thus to build solutions for initial step data

338 problems like Riemann problem, for instance.

339 It has been shown in [14] that the Maxwellian

340 rate-type viscoelastic constitutive equation,

341 investigated in ▶Maxwellian rate-type thermo-

342 viscoelastic bar theory, leads to the same admis-

343 sibility criterion. Moreover, this criterion is valid

344 even for phase transforming thermoelastic bars

345 for which the equilibrium stress–strain relation

346 s ¼ seqðeÞ is non-monotone (see also [6, 13]). In

347 this case when e� belongs to different stable

348 phases of the material, then the corresponding

349 discontinuous solution is called propagating

350 phase boundary. In fact, mathematically, propa-

351 gating phase boundaries are discontinuities sepa-

352 rating states in one hyperbolic domain from states

353 in another hyperbolic domain.

354Non-isothermal Case: Only Viscous Dissipation as

355Structuring Mechanism

356Let us consider the viscosity as the only structur-

357ing mechanism for a steady, structured shock

358wave. By taking k ¼ 0 in relation (24), it follows

359that the strain–temperature structured solutions

360ðêðxÞ; ŷðxÞÞ have to satisfy an algebraic equation

361and a differential equation with boundary condi-

362tions, that is,

HKVðê; ŷÞ¼ 0; ê0 ¼� 1

m _S
Rðê; ŷÞ; lim

x!�1
êðxÞ¼ e�

(28)

363The set fðe; yÞ jHKVðe; y; eþ; yþ; e�Þ ¼ 0g
364describes the trajectory in the e� y plane of the

365traveling wave governed by the Kelvin–Voigt

366dissipative mechanism in the absence of heat

367conduction. Since @HKV

@y ðe;yÞ¼ R@eeq@y ðe;yÞ¼
368RCeqðe;yÞ> 0, it follows that the implicit equa-

369tion HKVðe;yÞ¼ 0 is locally uniquely represent-

370able as a single valued function of e. Let us

371suppose there exists a unique function

y ¼ YKVðe; eþ; yþ; e�Þ; (29)

372with the properties that HKVðe;YKV

373ðe; eþ; yþ; e�ÞÞ ¼ 0 for any e belonging to an

374interval containing e� and eþ, and

375YKVðe�; eþ; yþ; e�Þ ¼ y�. Its image through the

376equilibrium stress response function

377s ¼ seqðe; yÞ in the e� s plane is given by

s ¼ sKVðe; eþ; yþ; e�Þ
� seqðe;YKVðe; eþ; yþ; e�ÞÞ; (30)

378which connects the states ðe�; s�Þ. It is useful to
379note that s� ¼ sKVðe�Þ ¼ sHðe�Þ ¼ seqðe�; y�Þ.
380By using the previous notations, one gets from

381(28) that e ¼ êðxÞ is solution of the problem

ê0 ¼ � 1

m _S
ðsRðêðxÞÞ � sKV ð̂e; eþ; yþ; e�ÞÞ;

lim
x!�1

êðxÞ ¼ e�
(31)
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382 Taking into account the result described in the

383 isothermal case, it follows that a solution of this

384 problem exists if and only if the previous chord

385 criterion is satisfied, but now with respect to the

386 curve s ¼ sKVðe; eþ; yþ; e�Þ.

387 Chord Criterion With Respect to the

388 Hugoniot Locus

389 It can be shown that the chord criterion with

390 respect to the curve s ¼ sKVðe; eþ; yþ; e�Þ is

391 equivalent with the chord criterion with respect

392 to the Hugoniot locus s ¼ sHðe; eþ; yþÞ defined
393 by (11). The proof uses the reduction to the

394 absurd and relies on the relation

395 Hðe; yÞ ¼ HKVðe; yÞþ 1
2
ðe� eþÞRðe; yÞ which

396 exists between the Hugoniot function based at

397 ðeþ; yþÞ and the functions (25) and (26).

398 This result is extremely useful in practice

399 since, like in the isothermal case, it reduces the

400 problem of existence of a shock layer to

401 a geometrical criterion which depends only on

402 the properties of the adiabatic thermoelastic sys-

403 tem, that is, on the stress–strain Hugoniot locus

404 based ðeþ; yþÞ.

405 Non-isothermal Case: Viscous Dissipation and

406 Heat Conduction as Structuring Mechanisms

407 Let us investigate the traveling wave solutions

408 when the viscosity and the heat conduction are

409 coupled. The method used here has been initiated

410 by Gilbarg [3] for the study of shock profiles in

411 fluid dynamics. To analyze this system, it is

412 important to characterize its critical points. The

413 linearization of (23)–(24) in a neighborhood of

414 ðe�; y�Þ leads to the system

d

dx

ê

ŷ

 !
¼

� 1

m _S
R _S

2�@seq
@e

� �
1

m _S

@seq
@y

_S

k
y�

@seq
@y

�
_S

k
RCeq

0
BBB@

1
CCCA

ê

ŷ

 !

(32)

415 The characteristic equation of the linearized sys-

416 tem at the critical points ðe�; y�Þ is

r2þ r
1

m _S
ðR _S

2�@seq
@e

Þþ
_S

k
RCeq

� �

þ 1

km
RCeq R _S

2�@seq
@e

� �
� y�

@seq
@y

� �2
( )

¼ 0

(33)

417The discriminant of this equation

Dðe�; y�Þ ¼ 1

m _S
R _S

2 � @seq
@e

� �
�

_S

k
RCeq

� �2

þ 4

km
y�

@seq
@y

� �2

(34)

418is positive and then both eigenvalues r1;2ðe�; y�Þ
419are real. Let us note that their product and their

420sum are

r1r2 ¼ R2

mk
Ceqð _S2 �l2Þ (35)

r1 þ r2 ¼� 1

_S

R
m
ð _S2 �l2Þ

�

þ 1

mRCeq
y�

@seq
@y

� �2

þ
_S
2

k
RCeq

)

(36)

421where l2ðe�; y�Þ is given by (5) and represents

422the square of the nonzero characteristic directions

423of the adiabatic thermoelastic system (4) at the

424critical points. Let us note that the sign of the

425product of the eigenvalues is positive or negative

426according to whether the speed of the propagating

427discontinuity _S is larger or smaller than the adia-

428batic sound speed at the critical point. Thus, if

429r1r2 < 0, that is, _S
2
< l2ðe; yÞ, (subsonic case)

430the eigenvalues have opposite signs and the crit-

431ical point is a saddle point. If r1r2 > 0, that is,

432_S
2
> l2ðe; yÞ, (supersonic case) the eigenvalues

433have the same sign. The sign of r1 þ r2 is equal to

434the sign of � _S. Thus, if _S > 0, then both eigen-

435values are negative and the critical point is an

436attractive node, while if _S < 0, both eigenvalues

437are positive and the critical point is a repulsive
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438 node. If r1 ¼ 0, that is, _S
2 ¼ l2ðe; yÞ, then the

439 sign of r2 is equal to the sign of � _S.

440 Trajectories of the Shock Layers in the e� y Plane
441 TheCompressive Case: _S> 0 and «� < «þ One

442 shows that in the compressive case the chord
443 criterion with respect to the curve

444 s¼ sKVðe;eþ;yþ;e�Þ, and hence, the chord

445 criterion with respect to the Hugoniot locus

446 s¼ sHðe;eþ;yþ;e�Þ, is also a necessary and suf-

447 ficient condition for the existence and uniqueness

448 of a solution of the nonlinear autonomous system

449 (23), (24).

450 In this case, the chord criterion with respect to

451 the curve s ¼ sKVðe; eþ; yþ; e�Þ requires that

sðeÞ ¼ sRðeÞ � sKVðe; eþ; yþ; e�Þ < 0;

for any e 2 ðe�; eþÞ (37)

452 By using the thermodynamic properties (3)

453 and the definitions of the functions introduced

454 through relations (26), (29), and (30), one shows

455 that

dYKVðeÞ
de

¼ 1

RCeqðe;YKVðeÞÞ ðsRðeÞ � sKVðeÞ

þYKVðeÞ @seq
@y

ðe;YKVðeÞÞÞ
(38)

456 wherefrom one gets that dsKV
de ðe�Þ ¼ Rl2ðe�; y�Þ

457 and, consequently, s0ðe�Þ ¼ Rð _S2 �l2ðe�; y�ÞÞ.
458 Because sðe�Þ ¼ 0, as a direct consequence of

459 the chord condition (37), we have s0ðe�Þ � 0

460 and s0ðeþÞ � 0. That means the chord criterion

461 in the compressive case requires

_S
2 �l2ðe�; y�Þ � 0; _S

2 �l2ðeþ; yþÞ � 0

(39)

462 If the inequalities are strict, from (35), (36)

463 one gets that ðe�; y�Þ is a saddle node (subsonic
464 critical point), while ðeþ; yþÞ is an attractive

465 node (supersonic critical point). On the other

466 side, one sees that the chord criterion is consistent

467with the shock inequalities of Lax [12] which for

468a right-facing wave discontinuity read

4690 < lðeþ; yþÞ < _S < lðe�; y�Þ. Geometrically,

470this criterion requires that the characteristics

471from the same family impinge on the shock

472front as time advances. In gas dynamics, it

473requires the flow to be supersonic ahead and

474subsonic behind the wave discontinuity. The

475degenerate case when _S ¼ lðe�; y�Þ should be

476considered separately.

477We suppose in the following, as usual, that

478
@seqðe;yÞ

@y < 0. This assumption involves that the

479coefficient of thermal expansion coefficient and

480the Gr€uneisen coefficient are positive (see

481▶Thermoelastic Bar Theory). Moreover, this

482assumption coupled with the chord condition

483(37) involves, according to (38), that in the

484compressive case, the function y ¼ YKV

485ðe; eþ; yþ; e�Þ is monotonically decreasing for

486e 2 ðe�; eþÞ. Consequently, after the passage of

487a compressive shock wave, the Hugoniot back

488state temperature has to be larger than the front

489state temperature, that is, y� > yþ. One says that
490the compressive discontinuity is of heating type.

491Let also note that since
@Rðe;yÞ

@y ¼ �@seqðe;yÞ
@y > 0,

492the implicit equation Rðe; yÞ ¼ 0 is locally

493uniquely representable as a single valued function

494of e. We suppose there exists a function denoted

495y ¼ YRðe; eþ; yþ; e�Þ for e belonging to an inter-

496val which contains e� such that Rðe;YRðeÞÞ ¼ 0

497and y� ¼ YRðe�; eþ; yþ; e�Þ. Its image through

498the function s ¼ seqðe; yÞ in the e� s plane is just
499the Rayleigh line, that is, sRðeÞ ¼ seqðe;YRðeÞÞ.
500Therefore, one can show that

sRðeÞ�sKVðeÞ ¼ @seq
@y

ðe;�yðeÞÞðyRðeÞ� yKVðeÞÞ;
for any e2 ðe�; eþÞ

(40)

501where �yðeÞ lies between yRðeÞ and yKVðeÞ. From
502here and from the chord condition (37), it follows

503that yRðeÞ > yKVðeÞ for any e 2 ðe�; eþÞ. More-

504over, one can show the inequalities

505
dYRðeþÞ

de < dYKVðeþÞ
de < 0 and

dYRðe�Þ
de > dYKVðe�Þ

de ,
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506 which require only that y ¼ YRðeÞ is a decreasing
507 function of e in the neighborhood of eþ (Fig. 1a).

508 Therefore, unlike the function y ¼ YKVðeÞ, the
509 function y ¼ YRðeÞ can be non-monotone.

510 The existence of a connecting orbit, that is, of

511 a shock layer, results now from the following

512 topological considerations, which follow the

513 analysis made by Gilbarg [3]. The closed curve

514 formed by y ¼ YKVðeÞ and y ¼ YRðeÞ, for

515 e 2 ðe�; eþÞ, bounds a simply connected region

516 P in the plane e� y. SinceHKV > 0 on R ¼ 0 and

517 R < 0 on HKV ¼ 0, for e 2 ðe�; eþÞ, one con-

518 cludes that everywhere in P, HKV > 0 and

519 R < 0. Let us note that on the boundaries

520 HKV ¼ 0 and R ¼ 0, all vector fields of the flow

521 (23), (24) point toward the region P, horizontally

522 and vertically, respectively. Since dy
de ¼ m _S

2

k
HKV

R , all

523 integral curves must be monotone decreasing in

524 P, and because they cannot leave P and there is no

525 critical point in this region, they must tend to the

526 attractive point ðeþ; yþÞ. Taking into account that
527 ðe�; y�Þ is a saddle point, one obtains that

528 a trajectory connecting ðeþ; yþÞ and ðe�; y�Þ
529 exists and lies inside the region P. One can

530 prove, by reduction to the absurd, that the chord

531 criterion is also a necessary condition for the

532 existence of a shock layer. The uniqueness of

533 this shock layer is based on the fact that

534 a trajectory connecting ðeþ; yþÞ and ðe�; y�Þ can-
535 not lie outside P.

536 Therefore, for any m > 0 and k > 0, there

537 exists a unique shock layer ðêðx; m; kÞ;
538 ŷðx; m; kÞÞ joining ðeþ; yþÞ and ðe�; y�Þ. Its

539 limit behavior as m; k ! 0 can be studied as in

540 the case of viscous, heat-conducting fluids con-

541 sidered by Gilbarg [3]. One can prove the exis-

542 tence of iterated limits and their equality with the

543 double limit. The limit is just a shock wave with

544 the same end states. This study points up a basic

545 difference in the effects of viscosity and heat

546 conduction on the structure of the shock layers.

547 Thus, if one considers a fixed viscosity m ¼ �m and

548 k ! 0, the trajectories in the e� y plane of the

549 shock layer ðêðx; �m; kÞ; ŷðx; �m; kÞÞ are increas-

550 ingly close to the decreasing curve y ¼ yKVðeÞ
551 and approach the smooth solution of the reduced

552system (28). This limit solution describes

553a viscous, heat-nonconducting shock layer.

554If y ¼ yRðeÞ is monotone decreasing and one

555considers a fixed conductivity k ¼ �k and m ! 0,

556the shock layers ðêðx; m; �kÞ; ŷðx; �m; �kÞÞ are

557increasingly close to the curve y ¼ yRðeÞ and

558approach the solutions of the reduced system

Rð̂e; ŷÞ ¼ 0; ŷ
0 ¼ �

_S

k
HKVðê; ŷÞ;

lim
x!�1

ŷðxÞ ¼ y�
(41)

559This limit solution describes a nonviscous,

560heat-conducting shock layer.
561A significant difference appears when

562y ¼ YRðeÞ is non-monotone. Since the integral

563curves of the system (23), (24) are monotone

564decreasing in P, one shows that as m ! 0, the

565trajectories in e� y plane of the shock layers

566ðŷðxÞ; êðxÞ; m; �kÞ are increasingly close to the

567monotone decreasing curve y ¼ �YR ðeÞ defined

568by

y ¼ �YR ðeÞ ¼ min
z2½e�;e�

YRðzÞ; for e 2 ½e�; eþ�
(42)

569This function is the maximum among all

570monotone decreasing curves bounded from

571above by the curve y ¼ YRðeÞ. It is represented
572with dotted line on those parts which do not

573coincide with y ¼ YRðeÞ in Fig. 1a. If

574y ¼ YRðeÞ has a finite number of minima, then

575y ¼ �YR ðeÞ has at most a finite number of inter-

576vals on which y is constant, which correspond to

577what are called isothermal jumps in strain inside

578the profile layer. Therefore, in this case, as m ! 0,

579the profile layers ðŷðxÞ; êðxÞ; m; �kÞ approach a pair
580of functions denoted by ðŷðxÞ; êðxÞ; m ¼ 0; �kÞ
581with the property that êðx; m ¼ 0; �kÞ is discontin-
582uous and ŷðx; m ¼ 0; �kÞ is continuous and piece-

583wise smooth. Thus, the notion of traveling wave

584solution must be enlarged in order to admit

585such discontinuous solutions for the reduced

586system (41).
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587 The Expansive Case: _S > 0 and «� > «þ In

588 the expansive case, the chord criterion with

589 respect to the curve s ¼ sKVðeÞ requires that

590 sðeÞ ¼ sRðeÞ � sKVðe; eþ; yþ; e�Þ > 0, for any

591 e 2 ðeþ; e�Þ. Since sðe�Þ ¼ 0, the chord condi-

592 tion results in s0ðeþÞ ¼ Rð _S2 �l2ðeþ; yþÞÞ � 0

593 and s0ðe�Þ ¼ Rð _S2 �l2ðe�; y�ÞÞ � 0. If the

594 inequalities are strict, one obtains again that

595 ðe�; y�Þ is a saddle node and ðeþ; yþÞ is an attrac-
596 tive node. From (38) one gets that

597
dYKV

de ðe�Þ ¼ y�

RCeqðe�;y�Þ
@seqðe�;y�Þ

@y < 0. Therefore,

598 y ¼ YKVðeÞðeÞ is a monotone decreasing func-

599 tion in the neighborhood of e�, but one cannot

600 say anything without additional constitutive

601 assumptions, neither about its monotonicity nor

602 about the order relation between y� and yþ. By
603 using relation (40), one gets that yRðeÞ < yKVðeÞ
604 for any e 2 ðeþ; e�Þ (Fig. 1b).
605 Let us consider in Fig. 1b the phase portrait of

606 the system (23), (24) for the case when

607 y� < YKVðeÞ < yþ, for any e 2 ðeþ; e�Þ, and

608 functions y ¼ yRðeÞ and y ¼ YKVðeÞ are non-

609 monotone. A similar phase portrait analysis like

610 in the compressive case shows that the chord

611 criterion ensures the existence of a unique trajec-

612 tory which connects the states ðeþ; yþÞ and

613 ðe�; y�Þ and lies between the curves y ¼ yRðeÞ
614 and y ¼ YKVðeÞ, for e 2 ðe�; eþÞ. In this case, the
615 expansive shock is of cooling type since the

616 Hugoniot back state temperature is lower than

617 the front state temperature, that is, y�� < yþ.
618 For the unusual case, when y� > yþ, Pego [5]
619 has constructed an equation of state with the

620 property that there may exist a shock wave dis-

621 continuity satisfying the chord criterion, but for

622 which a profile layer does not exist if the heat

623 conduction dominates the viscosity. Thus, in the

624 expansive case, the chord criterion is no longer

625 a necessary and sufficient condition for the exis-

626 tence of a profile layer.

627 Remark. In fluid dynamics, Liu [4] has proved

628 that a compressive viscous shock profile exists if

629 and only if the chord condition with respect to the

630 Hugoniot locus is satisfied. When both the vis-

631 cosity and the heat conduction are present,

632Gilbarg’s [3] result and Liu’s [4] chord criterion

633have been extended and discussed by Pego [5].

634Traveling wave solutions for a heat

635conducting Maxwellian rate-type approach to

636thermoelastic materials have been analyzed in

637[15].

638The Entropy Production in a Viscous,

639Thermally Conducting Shock Layer

640The entropy production due to the intrinsic and

641thermal dissipation in a smooth process for

642a heat-conducting Kelvin–Voigt material (see

643▶Maxwellian Rate-Type Thermo-viscoelastic

644Bar Theory) is

P ¼ Dtot

y
¼ 1

my
@e
@t

� �2

þ k

y2
@y
@X

� �2

� 0: (43)

645If ðêðxÞ; ŷðxÞÞ is a traveling wave solution of

646the system (23), (24), the total entropy production

647in a profile layer structured by Kelvin–Voigt

648viscosity and heat conduction is

Ptrav ¼
ð1
�1

m _S
2

ŷ
ðê0Þ2 þ k

ŷ
2
ðŷ0Þ2

 !
dx

¼ � _S

ð
G

Rðe; yÞ
y

deþ HKVðe; yÞ
y2

dy
� �

� 0;

(44)

649where G ¼ fðêðxÞ; ŷðxÞÞ j x 2 ð�1;1Þg is the

650continuous piecewise smooth curve connecting

651ðe�; y�Þ and ðeþ; yþÞ in the ðe; yÞ plane. Let us
652note that the integrand is a total differential since

653
@
@y

Rðe;yÞ
y

� �
¼ @

@e
HKVðe;yÞ

y2

� �
and

Ptrav ¼� _S

ð
G
d �HKVðe; yÞ

y
þ R�eqðe; yÞ

� �
¼ � _SRð�eqðeþ; yþÞ � �eqðe�; y�ÞÞ � 0:

(45)

654It follows that the total entropy production in

655a profile layer does not depend on viscosity or

656heat conductivity. It is just the entropy production

657(8) generated by a thermoelastic shock wave

658compatible with the second law. As
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659 a consequence, in a profile layer structured by

660 Kelvin–Voigt viscosity and heat conductivity,

661 the entropy of the Hugoniot state ðe�; y�Þ is

662 never less than the entropy of the initial state

663 ðeþ; yþÞ. Therefore, a shock wave which satisfies
664 the chord criterion with respect to the Hugoniot

665 locus s ¼ sHðe; eþ; yþÞ is compatible with the

666 entropy inequality.

667 Concerning the variation of the entropy inside

668 a shock layer, one can show even more. Thus, in

669 a viscous, heat-nonconducting shock layer, or

670 when the viscosity effect dominates the heat con-

671 ductivity effect, there is a monotonous variation

672 of the entropy. On the other side, in a nonviscous,

673 heat-conducting profile layer, or when the heat

674 conductivity effect is more important than the

675 viscosity effect, the entropy variation is non-

676 monotone inside the layer and the entropy over-

677 shoots its final value at the Hugoniot state (see,

678 for instance, [11, 15, 16]).

679 Cross-References
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681 Bar Theory – An Approach to Non-monotone
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72815. Făciu C, Molinari A (2013) The structure of shock

729and interphase layers for a heat conducting Maxwel-

730lian rate-type approach to solid-solid phase transi-

731tions. Part I: thermodynamics and admissibility. Part

732II: numerical study for a SMA model. Acta Mech.

733DOI: 10.1007/s00707-013-0846-X, DOI: 10.1007/

734s00707-013-0847-9

73516. Landau LD, Lifschitz EM (1971) Mécanique des
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Materials, Fig. 1 Phase

portrait of the system

(23)–(24) and shock layer

trajectory. (a) The
compressive case e�<eþ.
(b) The expansive case
e� > eþ
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