
Acta Mech. manuscript No.
(will be inserted by the editor)
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The structure of shock and interphase layers for a heat
conducting Maxwellian rate-type approach to solid-solid
phase transitions
Part I: Thermodynamics and admissibility

Abstract We consider a thermoelastic model for phase transforming materials which can adequately describe
the evolution with respect to the temperature of the hysteresis loop both in compression and tension tests. The
specificity of this model is that the Grüneisen coefficient changes its sign. The model is augmented by con-
sidering a dissipative mechanism governed by a Maxwellian rate-type constitutive equation that can describe
stress relaxation phenomena toward equilibrium between phases. Existence and uniqueness of traveling wave
solutions are investigated. One derives that the admissibility condition induced by the Maxwellian rate-type
approach, coupled or not with Fourier heat conduction law is related to the chord criterion with respect to the
Hugoniot locus. We investigate the structure of profile layers and we focus on their thermodynamic proper-
ties. The influence of the exothermic or endothermic character of phase transitions on the inner structure of
interphase layers is captured. A phenomenon of temperature overshoot/undershoot with respect the front state
temperature and Hugoniot back state temperature inside an interphase layer is revealed.

Keywords Phase transitions · Thermoelasticity · Shocks · Entropy · Traveling waves · Admissibility

1 Introduction

The subject of non-linear wave propagation which causes changes not only in stress or motion, but also in
heat and temperature has attracted the interest of both theoreticians and experimentalist. We mention here for
example, as background references, the comprehensive analysis of Drumheller [1] and the extensive review
article by Menikoff and Plohr [2].

The study of steady, structured shock waves or traveling waves is an important subject in the theory of
waves both from theoretical and experimental point of view. From a mathematical perspective the study of
traveling waves provides admissibility criteria for discontinuous solutions of adiabatic thermoelastic theories
which derive from associated dissipative systems (Liu [3], Slemrod [4], [5], Pego [6], Ngan and Truskinovsky
[7]). Steady shock waves were first analyzed in Newtonian fluids. It has been shown that discontinuous so-
lutions, called shock waves, arrising in inviscid flow equations have a physical sense as limits of traveling
wave profiles, named shock layers, of viscous, heat-conducting fluids (Weyl [8], Gilbarg [9], Hamad [10] and
the literature therein). In metallic materials, impact-induced traveling waves have been experimentally ob-
served in the 1960’s (see for instance Barker [11]). The structure of these steady shock waves, which is due to
the viscous effects governing the viscoplastic flow of metals, has been recently investigated and revisited by
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Molinari and Ravichandran [12]. For thermoelastic materials a complete study of traveling waves structured
only by heat conduction has been made by Dunn and Fosdick [13].

The subject of this paper is devoted to the study of some new thermo-mechanical aspects concerning the
propagation of steady, structured waves in materials which can exist in different solid phases and can un-
dergo reversible stress- and temperature-induced phase transitions, like shape memory alloys (SMAs). These
materials exhibit significant local temperature changes both in quasistatic and dynamic experiments. That is
due to the large amount of latent heat released (absorbed) during the phase transformation process. Temper-
ature measurements have been done in the quasistatic case (Leo et al [14], Shaw and Kyriakides [15]), but
they are exceedingly difficult to be realized during shock wave experiments, and too little is known about the
temperature variation across impact-induced propagating phase boundaries and about their internal structure.

From crystallographic point of view these materials are defined by a crystalline structure and the transition
from one phase to another is characterized by a rapid transition in the crystalline lattice. In continuum mechan-
ics, the thermoelasticity theory with non-convex stored energy has become a common constitutive framework
to model such materials (e.g Abeyaratne and Knowles [16] and the references). The theory of thermoelas-
tic materials undergoing solid-solid phase transformations requires additional constitutive information that
governs the evolution of a phase boundary.

One way is to introduce from the onset a nucleation criterion for the initiation of phase transition and
a kinetic relation which relates the interface velocity and the driving force of phase transformation (e.g.
Truskinovsky [17], Abeyaratne and Knowles [18]). These additional constitutive relations are sufficient to
ensure unique solutions for initial-boundary value problems. In this approach the transition from one stable
phase of the material to another one is an instantaneous process and the propagating interface separating two
distinct phases is a surface of zero thickness across which the thermo-mechanical variables suffer a jump.

A second way is to regularize the problem by augmenting the constitutive thermoelastic law in such a
way that the stress depends additionally on other physical mechanisms which usually are rate-type effects
and/or strain-gradient effects. Using this approach a nucleation criterion is no more necessary and the ther-
momechanical instabilities associated with the formation and propagation of phases occur in a natural way
(e.g Vainchtein [19] using only strain-rate effects, Faciu and Mihailescu-Suliciu [20] using strain-rate and
stress-rate effects, and Ngan and Truskinovsky [21] using strain-rate effects and strain-gradient effects). In
this approach, the study of traveling wave solutions reveals that the propagating interface separating two dis-
tinct phases becomes a transition layer of finite thickness where the thermomechanical variables vary rapidly,
but continuously. Due to the strain-rate effects the transition from one stable phase of the material to another
one is no more an instantaneous process, but it requires a small phase transition time.

This framework has been mainly used to derive kinetic relations for the sharp interface theory. These are
obtained by using the traveling wave solutions for the augmented theory, which may include various combina-
tions of strain-rate, strain gradient, heat conduction and convective heat transfer effects and by removing these
effects in a suitable limit process. One considers that the kinetic laws obtained in this way incorporate mi-
croscale processes associated with the transformation of one microstructure to another (e.g. lattice in the case
of a crystalline solid). For instance, such kinetics laws have been investigated by Slemrod [5], Turteltaub [22],
Ngan and Truskinovsky [7], [21] in the case where non-isothermal ”viscosity-capillarity” models are coupled
with heat conduction inside the phase transition front. The case of non-isothermal Kelvin-Voigt model coupled
with heat conduction and convection has been investigated by Vainchtein [23]. Depending on the properties of
these kinetic relations different thermo-mechanical aspects related with the propagation of a phase boundary
can be captured. For example, one gets a thermal trapping effect when the phase transition progresses only
for sufficiently large values of the driving force (e.g. [7], [21], [23]), or a ”stick-slip” behavior of the phase
boundary motion in the case of a non-monotone kinetic law (e.g. [22], [7], [21], [23]). Similar non-monotonic
kinetic laws have been already observed for a related non-isothermal Ginzburg-Landau model (e.g. Umantsev
[24] and the literature therein).

There exists a considerable literature on dynamics of martensitic phase boundaries for the non-isothermal
case. We recall here the pure thermal approach which neglect inertia, but take into account convective heat
exchange with ambient medium and radiation (Leo et al [14], Bruno et al [25]). When both inertia and
heat release are taken into account we mention Abeyaratne and Knowles [26], [27], Knowles [28] and the
references.

The novelty of this work consists in the fact that we consider a different augmented model of a phase trans-
forming thermoelastic material, with the special property that the Grüneisen coefficient changes its sign on
the constitutive domain, which corresponds to an important feature of a SMA. The study of its traveling wave
solutions reveals important thermomechanical consequences on the internal structure of propagating phase
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boundaries. Moreover, we show that it is possible that in the limiting case of vanishing of the augmented-
effects the resulting sharp interface theory can lose important information concerning the thermal behavior
inside the transition front.

We briefly introduce in Sect. 2 the dynamic thermomechanic bar theory in Lagrangian description. Based
on experimental observations on pseudoelastic NiTi (Shaw [29]), in Sect. 3 we describe the constitutive as-
sumptions for a thermoelastic three phase material, i.e. a material which can exist in the austenitic phase A and
in two variants of martensite M±, one obtained in tension (σ > 0) and the other in compression (σ < 0) tests.
As usual, for phase transforming materials (see for example Abeyaratne et al [30]) the stress-strain relation
σ = σeq(ε,θ ) at fixed temperature θ is non-monotone on certain strain intervals. The particular feature of

our assumptions, in agreement with the experimental behavior in [29], is that ∂ σeq
∂ θ is positive on that part of

the constitutive domain in the ε −θ plane associated with A ↔ M+ phase transformations and it is negative
on the complementary part associated with A ↔ M− phase transformations. This behavior reflects experi-
mental observations related with the shape memory effect and the fact that in traction tests the hysteresis
loop moves upwards, while in compression tests it moves downwards in the ε −σ plane, as the temperature
grows. Therefore, it follows that the Grüneisein coefficient, which typically is positive, changes its sign in the
ε −θ plane and this behavior has an important effect on the structure of interphase layers. Further, we recall
the thermodynamic relations arising from the Clausius-Duhem inequality, the Gibbsian thermostatic stability
conditions, and on the other side the dynamic stability condition which ensures the existence of a real sound
speed for the thermoelastic material. Consequently, we associate the stable/unstable phases of the material
with the domain of hyperbolicity/ellipticity of the dynamic thermoelastic PDE system. We end this section
by describing the jump relations across a first order discontinuity for the adiabatic system of thermoelasticity
and by characterizing the Hugoniot locus in the ε −θ plane and in the ε −σ plane.

In order to identify meaningful weak solutions for the quasilinear adiabatic thermoelastic system we aug-
ment in Sect. 4 the constitutive law σ = σeq(ε,θ ) by assuming that the stress depends additionally not only
on strain rate ε̇ (as in Vainchtein [23]), but also on the stress rate σ̇ . Thus, we introduce a dissipative regu-
larizing term which includes stress relaxation phenomena toward equilibrium between phases. Hence, we
consider the following approach which combines aspects of both the Maxwell and KelvinVoigt models,
i.e. σ = σeq(ε,θ ) + με̇ − τσ̇ , where μ > 0 is a ”viscosity” coefficient and τ > 0 is a time of relaxation.
Next, we describe the necessary and sufficient restrictions imposed by the Clausius-Duhem inequality on this
Maxwellian rate-type model. It is obvious that for phase transforming materials the use of the term ”viscosity”
for the Kelvin-Voigt model, or for this Maxwellian rate-type model is improper since there is no ”viscosity”
in such materials. In fact there are the rate-type effects which introduce physical mechanisms allowing for
describing non-instantaneous phase transitions, and thus, to get an internal structure in a propagating phase
boundary. Due to certain tradition concerning the terminology and due to analogies with similar constitutive
equations used in fluid mechanics or in viscoelasticity, and for simplicity reasons in the following we shall
often use the term ”viscosity effect” instead of ”rate-type effects”.

In order to exhibit the inner structure of shock and interphase layers corresponding to this augmented
thermomechanic theory, Sect. 5 is devoted to a detailed analysis of traveling wave solutions. Since for τ = 0
our rate-type constitutive equation reduces to the Kelvin-Voigt model in solid mechanics, which is equivalent
with the Navier-Stokes equation for one-dimensional flows, from our analysis one can retrieve classical results
obtained in studying steady wave solutions for viscous, heat conducting fluids. Let us recall that Gilbarg [9]
has given a sufficient set of conditions on the equation of state, which includes Weyl’s fluids [8], to prove the
existence of one-dimensional shock layers and has investigated their limit behavior for small viscosity and
heat conductivity. His constitutive restrictions correspond to a convex relation between pressure and specific
volume and to a positive Grüneisen coefficient. A direct consequence of these constitutive assumptions is that
the admissible shocks are of compressive heating type. The non-convex case in non-isothermal gas dynamics
has been considered later by Liu [31] and it leads to the occurrence of shocks of expansive cooling type. He
proposed an admissibility condition of Oleinik type [32], called extended entropy condition, which is just
a chord criterion with respect to the Hugoniot locus. His proof assumes there is no heat conduction. When
both viscosity and heat conduction are considered in the structure of the profile layer Gilbarg’s result for the
non-convex case has been extended by Pego [6].

Starting from our special constitutive assumptions we pursue two main objectives in Sect. 5. First, we
discuss the existence and uniqueness of traveling wave solutions for the augmented PDEs system. In this way
we answer the question, which is the admissibility condition induced by the Maxwellian rate-type approach,
coupled or not with Fourier heat conduction law. Second, we investigate the inner structure of profile layers,
the capacity of heat conduction and/or relaxation (”viscous”) dissipative mechanisms to structure shock waves
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and phase transition fronts and the effect of Grüneisen coefficient. The questions to be answered are: 1) what
happens when the ”viscous” added effect and the heat conductivity effect vanish ?; 2) does the adiabatic
thermoelastic wave structure with sharp interfaces inherits the wave structure of the augmented theory ?

We find that the chord criterion with respect to the Hugoniot locus in the ε −σ plane is, in general,
a necessary and sufficient condition for the existence and uniqueness of ”viscous”, heat conducting profile
layers. It should be noted that this is an extremely practical admissibility condition for discontinuous solutions
of the adiabatic thermoelastic system because it does not depend on the considered dissipative mechanism.

We also show that there may exist a non-physical situation, and we characterize it from thermodynamical
point of view, when a strong discontinuity satisfies the chord criterion, but a ”viscous”, heat-conducting profile
layer does not exist if the ”viscosity effect” is dominated by the heat conductivity effect, like in the example
given by Pego [6].

It is useful to note here that this chord criterion involves that the admissible propagating phase boundaries
are supersonic or sonic with respect to the front state, and subsonic or sonic with respect to the back state
of the front wave, as in gas dynamics. That means the chord criterion is consistent with Lax conditions [33].
Unlike this admissibility condition, generated by the rate-type effects in the augmented models, the presence
of both ”viscosity” and strain-gradient terms, which introduces dissipation and dispersion mechanisms, allows
propagating phase boundaries which are subsonic or sonic with respect to both front and back states of the
wave (e.g. Slemrod [5], Ngan and Truskinovsky [7], [21] and the literature therein). These phase boundaries
are referred in [7] and [21] as kinks.

We consider separately the cases when the Grüneisen coefficient is positive, negative or changes its sign
inside the profile layer. We find that when the Grüneisen coefficient changes sign inside the layer, the tem-
perature variation is non-monotone, and even more, it reaches lower/larger values than the initial and final
temperature for compressive/expansive wave discontinuity. This finding could be also important for inter-
preting experimental results. Thus, the profile layer of the temperature displays an asymmetric spike-layer
form which is in agreement with the exothermic or endothermic character of phase transformation. On the
other side, this behavior implies that, in this case, the adiabatic thermoelastic temperature structure with sharp
interface does not inherit the structure of the augmented theory.

We investigate the basic difference between the effect of ”viscosity” and heat conduction on the structure
of the profile layers. We illustrate that when the only structuring mechanism is the heat conduction the tem-
perature is continuous, but the strain may be discontinuous having isothermal jumps inside the profile layer.
Finally, we show that the entropy production in a ”viscous”, thermally conducting profile layer generated by
the Maxwellian rate-type approach does not depend on ”viscosity” or heat conduction. Moreover, we show
that when the ”viscosity effect” dominates the heat conductivity effect then the variation of entropy inside the
profile layer is monotone, while in the opposite case the entropy variation is non-monotone and even more its
values can become inside the profile layer lower than the entropy front state and/or larger than the entropy of
the Hugoniot back state.

For a quantitative analysis of these features an explicit piecewise linear model based on experimental
results of the type obtained by Shaw [29] will be considered in Part II [35] and investigated numerically.

2 Thermomechanic bar theory. Lagrangian description

We consider a thin cylindrical bar with length L, constant cross-sectional area, constant mass density ρ (mass
per unit length) in an unstressed reference configuration, which corresponds to a defined phase of the material.
Let the function x = χ(X , t) express the longitudinal motion of the bar and θ = θ (X , t) > 0 express the
absolute temperature. The first gives the actual position x occupied at the time t by a particle labelled X ∈ [0,L]
in the reference configuration. The function χ(X , t) is assumed to be injective and bi-continuous with respect
to X . Whenever χ(X , t) is differentiable we denote by ε(X , t) = ∂ χ

∂X − 1 > −1 the strain at point X and by

v= v(X , t)= ∂ χ
∂ t the particle velocity. We denote by σ =σ(X , t) the nominal stress (longitudinal force per unit

area in the reference configuration), by e = e(X , t) the specific internal energy per unit mass, by η = η(X , t)
the specific entropy per unit mass, by q = q(X , t) the axial heat flux, by r = r(X , t) the lateral heat exchange of
the bar with its surrounding. At points (X , t) where v, ε , θ , σ , e, q and r are smooth functions the compatibility
equation between strain and particle velocity, the balance of momentum and the balance of energy become

∂ ε
∂ t

− ∂v
∂X

= 0, ρ
∂v
∂ t

− ∂ σ
∂X

= 0, ρ
∂e
∂ t

−σ
∂ ε
∂ t

+
∂q
∂X

= r. (1)
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If we suppose that across a curve X = S(t) in the X − t plane at least one of the quantities v, ε , θ , σ , e, q
experience jumps then the continuity of the motion χ , the balances of momentum and of energy require

Ṡ�ε�+ �v� = 0, ρṠ�v�+ �σ� = 0, ρṠ�e�+ 〈σ〉�v�− �q� = 0. (2)

Such a curve is usually called a strong discontinuity, or a first order discontinuity. Here Ṡ(t) denotes the speed
of propagation of the discontinuity and for any quantity f = f (X , t) we have used the notations � f �(t) =
f+(t)− f−(t)= f (S(t)+, t)− f (S(t)−, t) and 〈 f 〉(t) = 1

2( f+(t)+ f−(t)). We name X > S(t) as the + side and
X < S(t) as the − side of the discontinuity.

The second law of thermodynamics in the form of the Clausius-Duhem inequality and the corresponding
jump relation read

ρ
∂ η
∂ t

≥− ∂
∂X

( q
θ

)
+

r
θ
, −ρ Ṡ�η�+� q

θ

�
≥ 0. (3)

We note that for smooth processes the Clausius-Duhem inequality is used to restrict the form of the con-
stitutive relations, while for non-smooth processes, i.e. solutions with jump discontinuities, it becomes an
additional constraint that weak solutions must satisfy.

3 Three phase materials - the thermoelastic case

3.1 Constitutive assumptions

Solid-solid phase transformations are responsible for the remarkable properties of SMAs. They are well under-
stood and explained at crystallographic level. Basically, there are two relevant phases associated with SMAs,
the austenite (stable at high temperatures) and the martensite (stable at low temperatures). While the austenite
has a well-ordered body-centered cubic structure that presents only one variant, the martensite can form even
twenty four variants. For an uniaxial test at a given temperature, it is enough to consider a material which
exists in the austenite phase A, for sufficiently small values of strain, and in two variants of martensite M+

and M−. One variant is obtained for sufficiently large tensile strain and the other variant for sufficiently large
compressive strain, respectively. In general, this deformation behavior for single crystal and polycrystalline
NiTi was observed to be asymmetric in tension and in compression (Gall et al [34]).

From phenomenological point of view the reversible phase transformations in crystalline solids have been
successfully studied using the theory of thermoelasticity with non-convex free-energy or, equivalently, with
non-monotone stress-strain relation for certain interval of temperature (e.g. Abeyaratne and Knowles [16] and
the references therein). In this paper we consider such a stress-strain-temperature relation

σ = σeq(ε,θ ), (4)

in order to characterize the response of a three phase shape memory alloy in traction and compression tests.
This phenomenological constitutive equation can be determined starting from isothermal stress-strain curves
obtained experimentally at very low strain-rates over an interval of temperature and from the macroscopic
observations which accompany the evolution of inhomogeneous deformation. A typical example is given by
the pseudoelastic responses of a nearly equiatomic polycrystalline NiTi alloy under uniaxial traction tests
reported by Shaw and Kyriakides [15] and Shaw [29, Fig.3] for temperatures between 15 ◦C and 55 ◦C.

The above mentioned set of uniaxial displacement controlled tests conducted in nearly isothermal condi-
tions are characterized by hysteresis loops having the following characteristics. The bar, initially in the phase
of low stretch (austenite), starts to deform elastically in a homogeneous manner. This homogeneity is lost
shortly after a maximum stress σ = σ+

M(θ ), which corresponds to the strain level ε = ε+
M(θ ) (see Fig. 1).

Thus, the beginning of a stress decay is followed immediately by a significant stress-drop which accompanies
the first nucleation of martensite. The forward A → M+ phase transformation produces a well defined upper
stress plateau with small oscillations. Along it the transformation occurs in a localized way, i.e through nu-
cleation events and subsequent growth of the high stretch phase (martensite) into the austenite phase. Once
the transformation is complete the specimen starts again to deform elastically and homogeneously while the
slope of the stress-strain relation σ = σeq(ε,θ ) is again positive.

During unloading the stress decreases nonlinearly while the specimen deforms homogeneously in the new
martensite phase. This homogeneity is lost shortly after a minimum stress σ = σ +

m (θ ) has been reached (see
Fig. 1), which corresponds to the strain ε = ε+m (θ ). After a sudden stress rise, unstable transformation from
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martensite to austenite proceeds along a lower stress plateau by the propagation of distinct phase fronts along
the length of the unloaded specimen.

Since along the loading and unloading stress plateaus the coexistence of two solid phases is allowed and,
in general, multiple co-existent phase distributions are possible for a single axial stress state it is natural and
common to consider the slope of the stress-strain relation σ = σeq(ε,θ ) negative for ε ∈ (ε+M(θ ),ε+m (θ )).
We will see later in what way the monotone increasing/decreasing stress-strain relations σ = σ eq(ε,θ ) are
associated with the so called stable/unstable states of the material.

While the monotone increasing parts of the stress-strain relations σ = σeq(ε,θ ) can be chosen in such a
way to fit known quasi-static isothermal experiments like in Shaw [29, Fig.3], the monotone decreasing part
of these curves cannot be determined in a direct way from such experiments. Consequently, in general, they
are chosen in a conventional way which is illustrated in the example considered in Part II of this paper [35].

Let us note that for theories like those developed by Abeyaratne et al [30] based on additional constitutive
information in the form of driving force and nucleation criteria an explicit form for σ = σeq(ε,θ ) on the
unstable interval ε ∈ (ε+

M(θ ),ε+m (θ )) is necessary only in so far as the Maxwell stress need to be determined.
On the other side, theories which include rate-type effects, like in our case, possess their own kinetics due to
the intrinsic dissipation mechanism incorporated ( [19], [20], [21]). Thus, the form of the descending part of
the constitutive equation σ = σeq(ε,θ ) will only affect the kinetics of phase transformation, i.e. the rate at
which the transformation takes place in the unstable interval. Indeed, it was shown, for the isothermal case, in
Făciu and Molinari [36, Part II, Sect. 2, relations (11)-(12)] how the slope of the equilibrium curve influences
the growth/decay of a perturbation of an equilibrium state.

The same type of deformation behavior, but in general asymmetric, can be observed in compression tests.
Therefore, we suppose in the following that the pairs of strain and stress (ε = ε±

M(θ ),σ = σ±
M(θ )) and (ε =

ε±m (θ ),σ = σ±
m (θ )) associated with the changes of slope of the equilibrium stress-strain relation at constant

temperature (see Fig. 1) can be determined experimentally. Using this information we can plot a phase diagram
in the ε −θ plane, like in Fig. 2, which contains essential constitutive information on phase transformation.

In the following we assume (see also Abeyaratne et al [30]) there are two critical temperatures θm and θM
such as, for θ > θM the material only exists in its austenite form no matter what the stress level is, whereas
for θ < θm the material only exists in its martensitic forms. For θ ∈ [θm,θM] all three phases are available to
the material. The thermomechanical assumptions we consider here are.

H1) The boundary curves ε = ε±m (θ ), ε = ε±M(θ ) of the phase diagram in the ε −θ plane (see Fig. 2) are
continuously differentiable and have the following properties:

dε+M(θ )
dθ

> 0,
dε−M(θ )

dθ
< 0 for θ ∈ (θm,θM);

dε+m (θ )
dθ

> 0,
dε−m (θ )

dθ
< 0 for θ < θM

ε+M(θm) = ε−M(θm), ε−m (θM) = ε−M(θM), ε+m (θM) = ε+M(θM). (5)

H2) The stress response function σ = σeq(ε,θ ) is continuous, piecewise-smooth and satisfies the follow-
ing properties. a) At each temperature θ > θM , σ = σeq(ε,θ ) is a monotonically increasing function of strain.
b) At each temperature θ ∈ [θm,θM] (see Fig. 1) the function σ = σeq(ε,θ ) is: a monotonically increasing
function of strain for ε < ε−m (θ ), for ε ∈ (ε−M(θ ),ε+M(θ )) and for ε > ε+m (θ ); a monotonically decreasing
function of strain over the intervals (ε−

m (θ ),ε−M(θ )) and (ε+M(θ ),ε+m (θ )). c) At each temperature θ < θm,
σ = σeq(ε,θ ) is a monotonically increasing function of strain for ε < ε−

m (θ ) and ε > ε+m (θ ) while on the
remaining interval (ε−

m (θ ),ε+m (θ )) it is monotonically decreasing.
It is well known that the pseudoelastic hysteresis is strongly influenced by the temperature. Indeed, ac-

cording to the traction tests reported by Shaw [29] the hysteresis loop moves upward as the temperature
grows. On the other side, for compression tests, the hysteresis loop moves downward as the temperature
grows. Consequently, we consider the following natural assumption.

H3) There exists a monotone curve ε = εt(θ ) across which ∂ σeq(ε ,θ )
∂ θ changes the sign (Fig. 2), i.e.

∂ σeq(ε,θ )
∂ θ

> 0, for ε > εt(θ );
∂ σeq(ε,θ )

∂ θ
< 0, for ε < εt(θ ),

ε−M(θ )< εt(θ )< ε+M(θ ), for θ ∈ (θm,θM) and ε−m (θ )< εt(θ )< ε+m (θ ), for θ < θm. (6)

Concerning the smoothness assumptions of relation σ = σeq(ε,θ ) we distinguish two cases.
S1) First, we consider σ = σeq(ε,θ ) a smooth function (at least of class C2) on its domain of definition.
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S2) Second, we suppose σ = σeq(ε,θ ) a continuous and piecewise smooth function on its domain of
definition. More precisely, it is smooth on each domain delimitate by the curves ε = ε±

M(θ ), ε = ε±m (θ ), and

ε = εt(θ ) across which ∂ σeq
∂ ε , ∂ σeq

∂ θ , ∂ 2σeq

∂ θ 2 may have jump discontinuities. A typical example is given in Part II
[35] where a continuous piecewise linear relation is considered.

3.2 Thermodynamic considerations for the thermoelastic model

If one uses the Helmholtz free energy ψ = e−θη , the entropy inequality (3)1 takes the form

−ρ
∂ ψ
∂ t

+σ
∂ ε
∂ t

−ρη
∂ θ
∂ t

− q
θ

∂ θ
∂X

≥ 0. (7)

It is well known that the following restrictions on the free energy ψ = ψeq(ε,θ ), entropy η = ηeq(ε,θ ) and
dissipation of the thermoelastic model (4) are imposed by the second law of thermodynamics (7)

σeq(ε,θ ) = ρ
∂ ψeq(ε,θ )

∂ ε
, ηeq(ε,θ ) =−∂ ψeq

∂ θ
(ε,θ ), Dth =− q

θ
∂ θ
∂X

≥ 0. (8)

Indeed, in this case, for any smooth fields ε and θ there exists only thermal dissipation. Since we consider the
Fourier law for axial heat conduction, i.e. q =−κ ∂ θ

∂X , we recall that (8)3 requires κ > 0.
Let us first consider the smooth case S1). The stress response function σ = σeq(ε,θ ), determined mainly

from quasistatic experiments, defines a unique free energy function ψeq(ε,θ ), modulo an additive function of
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temperature φ = φ(θ ), as well as, the entropy η = ηeq(ε,θ ), the internal energy e = eeq(ε,θ ) = ψeq +θηeq
and the specific heat at constant strain C =Ceq(ε,θ ) by relations

ψeq(ε,θ ) =
∫ ε

ε0

1
ρ

σeq(s,θ )ds+φ(θ ), ηeq(ε,θ ) =−
∫ ε

ε0

1
ρ

∂ σeq(s,θ )
∂ θ

ds− dφ(θ )
dθ

, (9)

Ceq(ε,θ )≡ ∂eeq

∂ θ
≡ θ

∂ ηeq

∂ θ
≡−θ

∂ 2ψeq(ε,θ )
∂ θ 2 =−θ

∫ ε

ε0

1
ρ

∂ 2σeq(s,θ )
∂ θ 2 ds−θ

d2φ(θ )
dθ 2 , (10)

where ε0 is an arbitrary reference strain.
It is known that from calorimetric measurements it is possible to determine the specific heat at a constant

strain ε0 over an interval of temperature, i.e. Ceq(ε0,θ ). This information is sufficient to determine the additive
function φ = φ(θ ) as solution of the differential equation

d2φ(θ )
dθ 2 =−Ceq(ε0,θ )

θ
, (11)

up to an arbitrary linear function of θ , which can be established once the free energy and the entropy at a
given state, respectively ψeq(ε0,θ0) and ηeq(ε0,θ0) are given.

Moreover, according to assumption S1) the free energy ψeq(ε,θ ) and the entropy ηeq(ε,θ ) are at least
of C1 class and the specific heat Ceq(ε,θ ) is at least of C0 class on the domain of definition. If the weaker
assumption S2) is fulfilled one shows that the free energy is of class C1, the entropy as well as the internal
energy are of class C0, while the specific heat is a discontinuous function on its domain of definition.

We recall the following energy identity for smooth fields (first law of thermodynamics)

ρ
∂eeq(ε,θ )

∂ t
= σeq(ε,θ )

∂ ε
∂ t

−θ
∂ σeq

∂ θ
∂ ε
∂ t

+ρCeq
∂ θ
∂ t

, (12)

where the first right-term with minus sign is the rate of work, while the second and the third right-term describe
the contribution of the latent heat and specific heat, respectively, to the rate of heat of the thermoelastic
material.

Often are employed the strain ε and the entropy η , rather than ε and the temperature θ , as independent
variables. This is possible because the specific heat at constant strain Ceq(ε,θ ) is always strictly positive and,
according to (10), ηeq(ε,θ ) must be a strictly increasing function of θ for each fixed ε . It follows that the
equation (9)2 can be solved for θ in a unique manner as θ = θ̃ (ε,η). The internal energy is then defined
by e = ẽ(ε,η) = eeq(ε, θ̃ (ε,η)) and the stress by σ = σ̃(ε,η) = σeq(ε, θ̃ (ε,η)). Moreover, in this case the

internal energy is a thermodynamic potential for the stress and temperature, i.e. σ = σ̃(ε,η) = ρ ẽ(ε ,η)
∂ ε and

θ = θ̃ (ε,η) = ẽ(ε ,η)
∂ η . The specific heat at constant strain is then given by C̃(ε,η)=θ̃(ε,η)

(
∂ θ̃ (ε ,η)

∂ η

)−1
. Let

us note that by using the chain rule we get

∂ σ̃(ε,η)
∂ ε

=
∂ σeq(ε, θ̃ (ε,η))

∂ ε
+

θ̃ (ε,η)
ρCeq(ε, θ̃ (ε,η))

(
∂ σeq(ε, θ̃ (ε,η))

∂ θ

)2

. (13)

Since we will use as independent variables the strain ε and the temperature θ it is useful to recall here the
equation of an isentrope. By differentiating relation ηeq(ε,θ ) = η∗ =const. and by using relations (8) we get
that an isentrope in the ε −θ plane is a solution θ = θI(ε) of the differential equation

dθ
dε

=
θ

ρCeq(ε,θ )
∂ σeq(ε,θ )

∂ θ
. (14)

Let us note that if ∂ σeq(ε ,θ )
∂ θ < 0 the temperature decreases along the isentrope, while if ∂ σeq(ε ,θ )

∂ θ > 0 the
temperature increases along the isentrope.

Some dimensionless combinations are often used. For instance, sometimes it is convenient to introduce
the Grüneisen coefficient which is defined as

Γ = Γ (ε,θ ) =− 1+ ε
ρCeq(ε,θ )

∂ σeq(ε,θ )
∂ θ

, (15)
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and characterizes the temperature changes along an isentrope. Indeed, according to (14) we have dθ
θ =

−Γ (ε,θ ) dε
1+ε , i.e it is the negative slope of the isentrope in the logθ − log(1+ ε) plane.

The coefficient of thermal expansion at constant stress is defined as

α(ε,θ ) =−
(∂ σeq(ε,θ )

∂ θ

)(∂ σeq(ε,θ )
∂ ε

)−1
. (16)

and characterizes the temperature changes along an isobar (σ =const.) in the ε −θ plane.
Usually Γ and α are positive for most metals although there are known exceptions. Let us note that

according to our assumption H3, Γ changes its sign across the curve ε = εt(θ ) (Fig. 2). Moreover, α changes
also its sign in the ε − θ plane. Such behavior, when the thermal expansion coefficient is negative during
martensitic - austenitic transformation has been reported by Uchil et al [37] in near-equiatomic, cold-worked
Nitinol exhibiting shape memory effect.

3.3 Stability conditions. Constitutive domains of stable/unstable phases.

According to the Gibbsian thermostatics (Coleman and Noll [38]), a necessary condition for a point (ε,η) to

be thermostatically stable is that ẽ(ε ∗,η∗)− ẽ(ε,η)− ∂ ẽ(ε ,η)
∂ ε (ε∗ − ε)− ∂ ẽ(ε ,η)

∂ η (η∗ −η)≥ 0, for any (ε∗,η∗)

in the domain of ẽ(·, ·). One shows that conditions ∂ σeq(ε ,θ )
∂ ε ≥ 0 and Ceq(ε ,θ ) =−θ ∂ 2ψeq(ε ,θ )

∂ θ 2 > 0 are necessary
and sufficient to ensure the Gibbsian thermostatic stability.

A natural physical condition to be imposed on the constitutive functions is to require the existence of real
and finite sound speeds (acceleration waves) in the adiabatic case. We call it dynamic stability condition since
it ensures the stability of the solutions of the equations of motion. One shows that it is a weaker condition on
σeq(ε,θ ) than the thermostatic stability condition.

The system of equations (1) describing the motion of an isolated (r = 0) thermoelastic bar (4) in the
absence of conductivity (κ = 0) is called the adiabatic thermoelastic system, and can be written as

∂
∂ t

⎛
⎝ v

ε
θ

⎞
⎠−

⎛
⎜⎜⎝

0 1
ρ

∂ σeq
∂ ε

1
ρ

∂ σeq
∂ θ

1 0 0
θ

ρCeq

∂ σeq
∂ θ 0 0

⎞
⎟⎟⎠ ∂

∂X

⎛
⎝ v

ε
θ

⎞
⎠=

⎛
⎝0

0
0

⎞
⎠ . (17)

This system is appropriate for the description of wave propagation since the heat conductivity can be ignored
outside the narrow transition zones. The type of system is given by the eigenvalues and the right eigenvec-

tors of the above matrix. The eigenvalues are solution of the equation λ
[
λ 2 − ( 1

ρ
∂ σeq
∂ ε + θ

ρ2Ceq

( ∂ σeq
∂ θ
)2)]

= 0.

This system is strictly hyperbolic if the three eigenvalues are real and distinct, and the corresponding right
eigenvectors are linearly independent. One shows that this happens if and only if

λ 2(ε,θ )≡ 1
ρ

∂ σeq

∂ ε
+

θ
ρ2Ceq

(
∂ σeq

∂ θ

)2

> 0. (18)

In this case the non-zero characteristic direction λ(ε,θ ) is called the sound speed at the state (ε,θ ).
It is obvious that the hyperbolicity condition (18) is fulfilled for any pair (ε,θ ) such that ∂ σeq(ε ,θ )

∂ ε ≥ 0,
i.e. for ε ∈ (∞,ε−m (θ ))∪ (ε−M(θ ),ε+M(θ ))∪ (ε+m (θ ),∞). When the slope of the isotherm σ = σeq(ε,θ ) be-
comes negative the system may changes type becoming an elliptic one. Therefore, we consider an additional
assumption which allows to define the constitutive domain of phases.

H4) Let us suppose that at each temperature θ ∈ [θm,θM] there exists at least a value ε ∗ ∈ (ε−m (θ ),ε−M(θ ))
and at least a value ε ∗ ∈(ε+M(θ ),ε+m (θ )) such that λ 2(ε∗,θ ) < 0, i.e. the hyperbolicity condition is violated.
Then one proves there exists ε = γ±M(θ ) and ε = γ±m (θ ) (Fig. 2) such that

ε−m (θ )< γ−m (θ )< γ−M(θ )< ε−M(θ )< ε+M(θ )< γ+M(θ )< γ+m (θ )< ε+m (θ ) (19)
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with the property that

λ 2(ε,θ )> 0 for ε ∈ (∞,γ−m (θ ))∪ (γ−M(θ ),γ+M(θ ))∪ (γ+m (θ ),∞),

λ 2(ε,θ )< 0 for ε ∈ (γ−m (θ ),γ−M(θ ))∪ (γ+M(θ ),γ+m (θ )).

We also suppose that at each temperature θ < θm there exists at least an ε ∗ ∈ (ε−m (θ ),ε+m (θ )) such that
the hyperbolicity condition is violated. Then one proves there exists ε = γ−

m (θ ) and ε = γ+m (θ ) such that

λ 2(ε,θ )> 0 for ε ∈ (∞,γ−m (θ ))∪ (γ+m (θ ),∞), and λ 2(ε,θ )< 0 for ε ∈ (γ−m (θ ),γ+m (θ )).

Moreover, we suppose in the following that the boundary curves ε = γ±m (θ ), ε = γ±M(θ ) are continuously
differentiable and have the following properties:

dγ+M(θ )
dθ

> 0,
dγ−M(θ )

dθ
< 0, for θ ∈ (θm,θM);

dγ+m (θ )
dθ

> 0,
dγ−m (θ )

dθ
< 0, for θ < θM

γ+M(θm) = γ−M(θm), γ−m (θM) = γ−M(θM), γ+m (θM) = γ+M(θM). (20)

If we denote ς±
M (θ ) = σeq(γ±M(θ ),θ ) and ς±

m (θ ) = σeq(γ±m (θ ),θ ) we remark that ς+
M(θ )< σ+

M(θ ), ς+
m (θ )>

σ+
m (θ ), ς−

M(θ )> σ−
M(θ ), ς−

m (θ )< σ−
m (θ ) (Fig. 1).

Therefore, the functions ε = ε±m (θ ) and ε = ε±M(θ ) associated with the change of monotonicity of the
isotherms σ = σeq(ε,θ ) delimitate the domains of thermostatic stability in the ε − θ plane. On the other
side, the constitutive functions ε = γ±

m (θ ) and ε = γ±M(θ ) bound the regions of hyperbolicity/ellipticity of
the adiabatic thermoelastic system in the same plane, i.e the domains of dynamic stability (Fig. 2). Indeed,
it is known that if the initial boundary-value data belong to the domains of hyperbolicity of the adiabatic
thermoelastic system the problems are well-posed and even more they are stable according to a linearized
stability analysis. In the domains of ellipticity the initial-boundary data are ill-posed in the sense of Hadamard.
Thus, possible solutions belonging to these regions will be dismissed in a pure thermoelastic approach of
phase transitions.

We can identify the stable phases of the material, denoted by A phase and M± phases, with the domains
of hyperbolicity of the adiabatic system, while the so-called unstable phases, denoted by I± phases, with
the domains of ellipticity. For instance, in the case θ ∈ [θm,θM], we say that a particle X at a time t is in the
austenitic phase A if the pair (ε,θ )(X , t)∈ A, where A= {(ε,θ )|γ−

M(θ )< ε < γ+M(θ )}. The other stable phases
in which the material can exist are the martensitic phases M+ = {(ε,θ )| ε > γ+M(θ )} and M− = {(ε,θ )| ε <
γ−M(θ )}, while I+ = {(ε,θ )| γ+M(θ )< ε < γ+m (θ )}, I− = {(ε,θ )| γ−m (θ )< ε < γ−M(θ )} (Fig. 2).

3.4 Jump relations for thermoelastic materials

If Ṡ > 0 we call the material at the + side of the discontinuity to be in front of the wave, while the material
at the − side to be in back of the wave. The wave discontinuity is said to be compressive if the deformation
decreases after the passage of the wave (ε− < ε+), and expansive if the deformation increases (ε− > ε+). If
Ṡ < 0 we have to change only + to − and correspondingly the terminology. In the present setting a strain
discontinuity is called either a thermoelastic shock wave, or a phase boundary, according to whether the
particles separated by the discontinuity are in the same phase, or in distinct phases. We only consider the
adiabatic case when q+ = q− = 0. According to (2) and (3)2 the relations between the front and back state
read

v−− v+ =−Ṡ(ε−− ε+), σeq(ε−,θ−)−σeq(ε+,θ+) = ρ Ṡ2(ε−− ε+), (21)

ρ(eeq(ε−,θ−)− eeq(ε+,θ+)) =
1

2
(σeq(ε−,θ−)+σeq(ε+,θ+))(ε−− ε+), (22)

ρ Ṡ
(
ηeq(ε−,θ−)−ηeq(ε+,θ+)

)≥ 0. (23)

Relation (22) is known as the Rankine-Hugoniot equation. Relation (23) asserts that after the passage of a
strong discontinuity the entropy of a particle will not decrease.

Let us suppose that the front state (ε+,θ+,v+) is known. Then, relations (21)-(22) represent an algebraic
non-linear system for the unknown back state (ε−,θ−,v−) and the speed of the discontinuity Ṡ. Depending on
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the thermoelastic constitutive assumptions this system may generally be solved if one of these four quantities
is prescribed. In addition, such a solution have to satisfy the entropy inequality (23). Let us note that, the
Rankine-Hugoniot equation (22) provides only restrictions, on the back states (ε,θ ) which can be reached in
a shock process which has (ε+,θ+) as a front state. Moreover, this restriction does not depend on the shock
speed Ṡ. We denote by

H(ε,θ ;ε+,θ+) = ρeeq(ε,θ )−ρe+− 1
2
(σeq(ε,θ )+σ+)(ε − ε+) (24)

the Hugoniot function based at (ε+,θ+) where e+ = eeq(ε+,θ+) and σ+ = σeq(ε+,θ+). The set {(ε,θ )
| H(ε,θ ;ε+,θ+) = 0} is called the Hugoniot set (locus) based at (ε+,θ+) in the ε −θ plane.

In the smooth case S1, the Hugoniot function is at least of C1 class. If σ = σeq(ε,θ ) satisfies the weaker
smoothness assumption S2 then it is continuous, piecewise smooth, and

∂H(ε,θ )
∂ θ

= ρCeq(ε,θ )− 1
2

∂ σeq(ε,θ )
∂ θ

(ε − ε+)> 0, (25)

at the points where the derivative makes sense. The positivity is here an assumption justified by the fact that

we do not consider shocks of arbitrary intensity, and in general, for real materials | ∂ σeq(ε ,θ )
∂ θ |<< ρCeq(ε,θ ).

Situations when the Hugoniot set is not curve-like and can bifurcate has been considered by Dunn and Fosdick
[13]. According to (25) the implicit function theorem ensures that the equation H(ε,θ ;ε+,θ+) = 0 can be
solved (at least locally) with respect to θ . We suppose in the following that this unique solution

θ =ΘH(ε;ε+,θ+), (26)

called the temperature-strain Hugoniot curve (locus) based at (ε+,θ+) exists globally and has the properties
that θ+ =ΘH(ε+;ε+,θ+) and H(ε,ΘH(ε;ε+,θ+);ε+,θ+)= 0 on its domain of definition. If the smoothness
assumption S1 is satisfied, the function (26) is at least of C1 class, while if the smoothness assumption S2 is
fulfilled, it is continuous and piece-wise smooth. This function describes all those states in the ε − θ plane
that are potentially attainable as back states in a shock process which has (ε +,θ+) as a front state.

The image of (26) through the function σ = σeq(ε,θ ) in the ε −σ plane is

σ = σH(ε;ε+,θ+)
def
= σeq(ε,ΘH(ε;ε+,θ+)), (27)

and is called the stress-strain Hugoniot curve (locus) based at (ε+,σ+). This function describes all reachable
(ε,σ) back states in a wave discontinuity which has (ε+,σ+) as a front state.

4 A thermal Maxwellian rate-type approach to phase transitions

It is well known that initial-boundary value problems for the adiabatic thermoelastic system (17) can lead to
non-unique discontinuous solutions even if the requirement that the entropy has to increase after the passage
of the wave discontinuity is satisfied. We therefore need a selection criterion to identify meaningful physical
solutions. We use in the following a standard procedure to establish such a criterion. This procedure asserts
that: a propagating discontinuity, i.e. a thermoelastic shock wave or a phase boundary, is admissible within
the thermoelastic theory if and only if the limit values (ε±,θ±,v±) on either side of the discontinuity can be
connected by a traveling wave solution constructed within an augmented theory.

We introduce in the following an augmented theory whose dissipative mechanisms are described by regu-
larizing terms characterizing stress relaxation and pseudo-creep processes toward equilibrium between phases
and by axial heat conduction. Thus we consider in this paper the following Maxwellian rate-type constitutive
relation

∂ σ
∂ t

−E
∂ ε
∂ t

=−E
μ
(σ −σeq(ε,θ )), (28)

where E = const. > 0 is called the dynamic Young modulus, μ = const. > 0 is a ”viscosity” coefficient
and σ = σeq(ε,θ ) is called the equilibrium state equation and satisfies assumptions H1 - H4 for the phase
transforming thermoelastic material (4). Let us note that τ = μ

E is a relaxation time. When μ → 0 (or, τ → 0)
this constitutive equation is seen as a rate-type approximation of the thermoelastic model.
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The strain-rate effects and the stress-rate effects which intervene in the constitutive law (28) allow for
describing the way a particle of the material can deviate and return to the thermoelastic equilibrium state
equation. Consequently, the transition of a particle from one stable phase to another no longer occurs in-
stantaneously, but it requires a finite phase transition time. The ”viscosity” coefficient μ , or equivalently
the relaxation time τ , characterizes how fast a perturbation of an ”equilibrium state” decays, or grows in a
stable, or unstable phase of the thermoelastic material. It is only for simplicity reasons that we have taken
here the ”viscosity” coefficient μ as constant. This constitutive model has been successfully used to describe
quasistatic strain-controlled austenitic-martensitic phase transformation in shape memory alloys in Făciu and
Mihăilescu-Suliciu [20] and impact-induced phase transformation for the isothermal case in Făciu and Moli-
nari [36].

The rate-type constitutive equation (28) includes as a limiting case for E → ∞ the Kelvin-Voigt model

∂ ε
∂ t

=
1
μ
(σ −σeq(ε,θ )), (29)

which has been used to describe quasistatic austenitic-martensitic phase transitions by Vainchtein [19] and to
study the non-isothermal kinetics of a moving phase boundary by Vainchtein [23].

We assume here that the Fourier law of heat conduction q = −κ ∂ θ
∂X holds, where κ = const. > 0 is the

heat conductivity coefficient.

4.1 Thermodynamic considerations for the augmented theory.

By investigating the compatibility with the Clausius-Duhem inequality (7) of the Maxwellian rate-type ma-
terial (28) endowed with Fourier heat conduction law one obtains the following results (see also [20]). The
constitutive equation (28) admits a unique free energy function ψ = ψMxw(ε,σ ,θ ) (modulo an additive func-
tion of temperature) if and only if the slope of the straight line connecting any two points of an equilibrium
isotherm is bounded from above by the instantaneous Young modulus E. Moreover, in what follows we sup-
pose there are two positive constants E∗ and E∗ such that

−E∗ ≤ σeq(ε1,θ )−σeq(ε2,θ )
ε1 − ε2

≤ E∗ < E, for any ε1, ε2 and any θ . (30)

The free energy has to satisfy the following Cauchy problem for a first order PDE, i.e.

∂ ψMxw

∂ ε
+E

∂ ψMxw

∂ σ
=

σ
ρ
,

∂ ψMxw

∂ σ
(ε,σeq(ε,θ ),θ ) = 0, (31)

while the entropy, the intrinsic dissipation and the thermal dissipation are given, respectively by

η =−∂ ψMxw

∂ θ
(ε,σ ,θ ), DMxw ≡ E

μ
ρ

∂ ψMxw

∂ σ
(ε,σ ,θ )(σ −σeq(ε,θ ))≥ 0, Dth =

κ
θ

( ∂ θ
∂X

)2 ≥ 0. (32)

According to (31) the general form of the free energy function is

ρψMxw(ε,σ ,θ ) =
σ2

2E
+ϕ(σ −Eε,θ ), (33)

where ϕ = ϕ(τ,θ ) satisfies relation

∂ ϕ
∂ τ

(σeq(ε,θ )−Eε ,θ ) =−σeq(ε,θ )
E

. (34)

Let us denote by h(ε,θ ) = σeq(ε,θ )−Eε . Condition (30) ensures that function h is invertible with respect to
ε for any fixed θ . We denote by h−1(·,θ ) this function. Therefore, for any triplet (ε,σ ,θ ) there is a unique
ε̃ = ε̃(ε,σ ,θ ) = h−1(σ −Eε,θ ) such that

σ −Eε = h(ε̃,θ ) = σeq(ε̃,θ )−E ε̃. (35)
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Thus, the free energy function of the Maxwellian rate-type constitutive equation (28) is explicitly determined
(up to an additive function of θ ) by the equilibrium relation σ = σeq(ε,θ ) and the Young modulus E through
relation

ρψMxw(ε,σ ,θ ) =
σ2

2E
− σ2

eq(ε̃,θ )
2E

+

∫ ε̃

ε0

σeq(s,θ )ds+ρφ(θ ), (36)

where φ(θ ) is a smooth function. The entropy function is given by

ρηMxw(ε,σ ,θ ) =−
∫ ε̃

ε0

∂ σeq(s,θ )
∂ θ

ds−ρ
dφ(θ )

dθ
, (37)

and the specific heat by

CMxw(ε,σ ,θ ) = θ
∂ ηMxw

∂ θ
=−θ

ρ

(∫ ε̃

ε0

∂ 2σeq(s,θ )
∂ θ 2 ds+

(
∂ σeq(ε̃ ,θ )

∂ θ )2

E − ∂ σeq(ε̃ ,θ )
∂ ε

+ρ
d2φ(θ )

dθ 2

)
. (38)

If the equilibrium relation σ =σeq(ε,θ ) satisfies the smoothness assumptions S1 then the free energy ψMxw(ε,σ ,θ )
and the entropy ηMxw(ε,σ ,θ ) are at least of C1 class, while the specific heat CMxw(ε,σ ,θ ) is at least of C0

class on the domain of definition. If the smoothness assumption S2 is satisfied, i.e. σ =σeq(ε,θ ) is continuous
and piecewise smooth, then the free energy ψMxw(ε,σ ,θ ) is still of C1 class, the entropy is of C0 class and
piecewise smooth, while the specific heat CMxw(ε,σ ,θ ) is a discontinuous and piecewise smooth function.

One can show that the following two relations hold

ρE
∂ ψMxw

∂ σ
(ε,σ ,θ ) = σ −σeq(ε̃,θ ) = E(ε − ε̃) = E(ε −h−1(σ −Eε,θ )), (39)

E
E +E∗

(σ −σeq(ε,θ ))2 ≤ Eρ
∂ ψMxw

∂ σ
(ε,σ ,θ )(σ −σeq(ε,θ ))≤ E

E −E∗ (σ −σeq(ε,θ ))2. (40)

Thus, from (32)2 one gets the following estimate on the intrinsic dissipation generated by the Maxwellian
rate-type model

E
μ(E +E∗)

(σ −σeq(ε,θ ))2 ≤ DMxw ≤ E
μ(E −E∗)

(σ −σeq(ε,θ ))2. (41)

Let us note that the free energy, entropy and internal energy of the Maxwellian model at equilibrium
are just the free energy, entropy and internal energy of the thermoelastic model σ = σeq(ε,σ), that is,
ψMxw(ε,σeq(ε,θ ),θ ) = ψeq(ε,σ), ηMxw(ε,σeq(ε,θ ),θ ) = ηeq(ε,σ) and eMxw(ε,σeq(ε,θ ),θ ) = eeq(ε,σ).
Indeed, from (35) we get that σ = σeq(ε,θ ) involves ε = ε̃ , wherefrom by using (36) and (37) we obtain
relations (9). Concerning the relation between the specific heat of the Maxwellian model (38) at equilibrium
and the specific heat of the thermoelastic model (10) we get by using notation (18)

CMxw(ε,σeq(ε,θ ),θ ) =Ceq(ε,θ )− θ
ρ

(∂ σeq(ε ,θ )
∂ θ

)2

(
E − ∂ σeq(ε ,θ )

∂ ε
) =Ceq(ε,θ )

E −ρλ 2(ε,θ )

E − ∂ σeq
∂ ε (ε,θ )

. (42)

Therefore, a necessary condition on the constitutive functions σ = σeq(ε,θ ) and E to ensure the positiveness
of the specific heat of the Maxwellian model is that the sound speed (18) satisfies

ρλ 2(ε,θ ) =
∂ σeq

∂ ε
+

θ
ρCeq(ε,θ )

(
∂ σeq

∂ θ

)2

< E. (43)

In order to determine the unknown function φ(θ ) in (36) we suppose again that the specific heat of the
thermoelastic model at a constant strain ε0 is known over an interval of temperature, i.e we may use again the
equation (11).

By investigating the properties of the thermodynamic functions of the Maxwellian model when E → ∞
we obtain

lim
E→∞

ψMxw(ε,σ ,θ ) = ψeq(ε,θ ), lim
E→∞

ηMxw(ε,σ ,θ ) = ηeq(ε,θ ), lim
E→∞

CMxw(ε,σ ,θ ) =Ceq(ε,θ ), (44)
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that means, the free energy, entropy, internal energy and specific heat of the Kelvin-Voigt model coincide with
the free energy, entropy, internal energy and specific heat of the thermoelastic model (4).

Consequently, the internal dissipation generated in a smooth process by the Kelvin-Voigt model can be
obtained from (41) and (29) as

DKV = lim
E→∞

DMxw =
1
μ
(σ −σeq(ε,θ ))2 = μ

∂ ε
∂ t

2

. (45)

By using the balance laws (1), the constitutive equations (28) and relations (31)-(32) we can establish
the following energy identities. For the Maxwellian rate-type material with Fourier heat conduction law the
smooth solutions of the corresponding PDEqs system satisfy relations

ρ
∂eMxw(ε,σ ,θ )

∂ t
= σ

∂ ε
∂ t

− E
μ

ρ
∂ ψMxw

∂ σ
(σ −σeq(ε,θ ))+

E
μ

ρθ
∂ 2ψMxw

∂ σ∂ θ
(σ −σeq(ε,θ ))+ρCMxw

∂ θ
∂ t

, (46)

ρ
∂ ηMxw(ε,σ ,θ )

∂ t
+

∂
∂X

( q
θ

)
=

1
θ
(
DMxw +Dth

)≡ PMxw ≥ 0. (47)

Let us note that in relation (46) the first right term with minus sign is the rate of work, while the second, the
third, and the forth right-terms represent the contribution to the rate of heat of the internal dissipation, of the
latent heat and of the specific heat, respectively. Since, according to (37) we have

ρ
∂ 2ψMxw

∂ σ∂ θ
(ε,σ ,θ ) =−∂ σeq

∂ θ
(ε̃,θ )

(
E − ∂ σeq

∂ ε
(ε̃,θ )

)−1

, (48)

where ε̃ is given by equation (35) it follows, as usually, that the latent heat released or absorbed by the
rate-type material depends mainly on the variation of the equilibrium stress with respect to the temperature.

We also note that the right-hand term in (47) denoted by PMxw represents the total entropy production
corresponding to a heat conducting smooth process of a Maxwellian material.

The system of equations (1) and (28), with e = eMxw(ε,σ ,θ ), describing the adiabatic motion (q = 0) of
an isolated (r = 0) Maxwellian rate-type bar can be written as a relaxation system with stiff sources

∂
∂ t

⎛
⎜⎝

v
ε
θ
σ

⎞
⎟⎠−

⎛
⎜⎝

0 0 0 1/ρ
1 0 0 0
0 0 0 0
E 0 0 0

⎞
⎟⎠ ∂

∂X

⎛
⎜⎝

v
ε
θ
σ

⎞
⎟⎠=

E
μ
(
σ −σeq(ε,θ )

)
⎛
⎜⎜⎜⎝

0
0

1
CMxw

(∂ ψMxw
∂ σ −θ ∂ 2ψMxw

∂ σ∂ θ

)
−1

⎞
⎟⎟⎟⎠ . (49)

This system is always hyperbolic semi-linear irrespective of the slope with respect to ε of the equilibrium
curve σ = σeq(ε,θ ) as long as the dynamic Young’s modulus E is strictly positive and finite. Indeed, this
system is semi-linear since all non-linear terms are included in the right part of (49) and the eigenvalues of
the matrix are given by λ =±√E/ρ and λ = 0 (twice). Therefore, initial-boundary value problems are now
well-posed even in the unstable domains I± where phase transformations occur. One expects that when μ → 0
solutions of the rate-type system (49) ”approach” solutions of the adiabatic thermoelastic system (17) in the
sense that the stress σ is rapidly driven back to the equilibrium σeq(ε,θ ), except perhaps in narrow phase
transition time intervals where σ , ε , θ and v have a very steep variation.

Let us note that while the information for the adiabatic thermo-viscoelastic system propagates with the
characteristic speeds ±√E/ρ , for the ”approximated” adiabatic thermo-elastic system it propagates with
the characteristic speeds ±λ(ε,θ ) given by (18). Usually, for systems with relaxation one requires a priori
that the characteristic speed of the reduced system cannot exceed the characteristic speed of the system with
relaxation, i.e. condition (43) in our case. This condition it is called sub-characteristic condition and was
introduced by Liu in [39] for relaxation systems. For the Maxwellian thermo-viscoelastic system (49) the
sub-characteristic condition appears naturally when studying the restrictions imposed by the second law of
thermodynamics on the rate-type constitutive equation. In fact this is a necessary condition for the existence
of a positive specific heat for the Maxwellian thermo-viscoelastic model and it implies condition (30) which
ensures the existence of a free energy function.

The adiabatic Kelvin-Voigt rate-type system (1) and (29), where e = eeq(ε,θ ), can be viewed as a limiting
case of the Maxwellian rate-type system for E → ∞. In this case the characteristic directions of the hyperbolic
system in the X − t plane tend to infinite, i.e. the hyperbolic system (49) transforms into a parabolic one.
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5 Traveling wave solutions.

We seek steady wave solutions for the system of six equations composed by the balance laws (1), the
Maxwellian rate-type constitutive equation (28), the corresponding internal energy law e = eMxw(ε,σ ,θ )
and the Fourier law which satisfy the entropy inequality (3)1 for r = 0. These solutions, sought in the form
(ε,σ ,θ ,v,q,e,η)=(ε̂, σ̂ , θ̂ , v̂, q̂, ê, η̂)(ξ ), where ξ =X− Ṡt, Ṡ = const. have to satisfy the boundary conditions

lim
ξ→±∞

(ε̂ , σ̂ , θ̂ , v̂, q̂, ê, η̂)(ξ ) = (ε±,σ± = σeq(ε±,θ±),θ±,v±,0,e± = eeq(ε±,θ±),η± = ηeq(ε±,θ±)),

(50)
where ε+, v+, θ+, ε−, v−, θ− are given values.

?In general, such traveling wave solutions of the rate-type systems represent a profile layer which con-
nects two thermomechanical equilibrium states of the material and approximates a strong discontinuity of the
adiabatic thermoelastic system propagating with a constant velocity Ṡ.

Let us look first smooth steady wave solutions. We denote by prime the derivative with respect to ξ .
Independent of any constitutive assumption we get from balance laws (1) and entropy inequality (3)1 relations

v̂′(ξ )+ Ṡε̂ ′(ξ ) = 0, σ̂ ′(ξ )+ρ Ṡv̂′(ξ ) = 0, Ṡ
(
ρ ê′(ξ )− σ̂(ξ )ε̂ ′(ξ )

)
= q̂′(ξ ), ρ Ṡη ′ ≤ ( q

θ
)′
, (51)

wherefrom, by using the boundary conditions (50) one gets

v̂(ξ ) = v+− Ṡ(ε̂(ξ )− ε+), σ̂(ξ ) = σR(ε̂(ξ ))
def
= σ++ρ Ṡ2(ε̂(ξ )− ε+),

q̂(ξ ) = Ṡ
(
ρ ê(ξ )−ρe+− 1

2

(
ε̂(ξ )− ε+

)(
σ̂(ξ )+σ+

))
, q̂(ξ )≤ ρṠθ̂ (ξ )(η̂(ξ )−η+). (52)

If we set ξ → −∞ we recover the Rankine-Hugoniot relations (21)-(22) and the entropy jump inequality
(23) for the adiabatic thermoelastic system. Therefore, if Ṡ > 0 and (ε+,θ+) is a given front state of a wave
discontinuity then the pair (ε−,θ−) has to belong to the Hugoniot set based at (ε+,θ+) given by (24), i.e.
H(ε−,θ−;ε+,θ+) = 0 or equivalently θ− = ΘH(ε−;ε+,θ+). If Ṡ < 0 and (ε−,θ−) is a given front state
of a wave discontinuity then the pair (ε+,θ+) has to belong to the Hugoniot set based at (ε−,θ−), i.e.
H(ε+,θ+;ε−,θ−) = 0 or equivalently θ+ =ΘH(ε+;ε−,θ−). Moreover, the constant steady wave speed Ṡ is
determined by the equilibrium states to be connected through relation

ρ Ṡ2 =
σeq(ε+,θ+)−σeq(ε−,θ−)

ε+− ε−
< E. (53)

Let us note that relation (52)2 asserts that in a steady structured wave the strain-stress pairs ( ε̂(ξ ), σ̂(ξ ))
belong to a straight line of slope ρ Ṡ2 in the ε −σ plane. This is called the Rayleigh line construction. There-
fore, the function σ = σR(ε) defined above is called the Rayleigh line.

By using the Maxwellian rate-type constitutive equation (28) and the Fourier law we get that ε = ε̂(ξ )
and θ = θ̂ (ξ ) have to satisfy the non-linear autonomous system with boundary conditions

ε̂ ′ =− E
μ Ṡ(E −ρ Ṡ2)

R(ε̂, θ̂ ), limξ→±∞ ε̂(ξ ) = ε±

θ̂ ′ =− Ṡ
κ HMxw(ε̂, θ̂ ), limξ→±∞ θ̂ (ξ ) = θ±,

(54)

where, if Ṡ > 0,

R(ε,θ ;ε+,θ+,ε−)≡ σR(ε)−σeq(ε,θ ) = σ++ρ Ṡ2(ε − ε+)−σeq(ε,θ ), (55)

HMxw(ε,θ ;ε+,θ+,ε−)≡ ρeMxw
(
ε,σR(ε),θ

)−ρe+− 1
2

(
ε − ε+

)(
σR(ε)+σ+

)
. (56)

and (ε+,θ+) represents the front state, while (ε−,θ−) is the Hugoniot state, i.e. θ− =ΘH(ε−;ε+,θ+).
If Ṡ < 0, the initial front state is (ε−,θ−) and (ε+,θ+) is the Hugoniot state, i.e. θ+ = ΘH(ε+;ε−,θ−),

then the superscripts + and - have to be inverted in (56). For simplicity, when there are no ambiguities we will
drop from the notations of R and HMxw their dependence on (ε+,θ+). and (ε−,θ−).

We note that the pairs (ε±,θ±) are fixed points for the dynamical systems (54). Indeed, according to
(53) we have R(ε±,θ±) = 0. On the other side, since eMxw(ε±,σeq(ε±,θ±),θ±) = eeq(ε±,θ±) it follows
HMxw(ε±,θ±) = H(ε±,θ±) = 0. In the ε −σ plane that means the pairs (ε±,σ±) represent the intersection
of the Hugoniot locus (27) with the Rayleigh line.
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Remark 1 For future use it is important to note that function HMxw(ε,θ ;ε+,θ+,ε−) is related to the Hugoniot
function H(ε,θ ;ε+,θ+) through relation

HMxw(ε,θ ) = H(ε,θ )+ρeMxw(ε,σR(ε),θ )−ρeeq(ε,θ )− 1
2
(ε − ε+)R(ε,θ ). (57)

Remark 2 According to relation (44) we can obtain the autonomous system describing the traveling wave
solutions for the Kelvin-Voigt model (29) with Fourier heat conduction law by making E → ∞ in the system
(54). Moreover, from the results obtained below concerning traveling wave solutions for the Maxwellian rate-
type model we can derive by the same limiting process the characterization of the traveling wave solutions
for the Kelvin-Voigt model.

The question to be answered in the following concerns the conditions which ensure the existence and
uniqueness of traveling wave solutions for the system (54). These conditions also provide a selection criterion
for admissible discontinuous solutions of the adiabatic thermoelastic system (17).

5.1 Structuring mechanism: only Maxwellian rate-type effects without heat conduction

5.1.1 Admissibility condition: chord criterion with respect to the Hugoniot locus in the strain-stress plane

We say that an elastic shock wave or a phase boundary is an admissible weak solution for the adiabatic
thermoelastic system if there exists a unique traveling wave (ε(ξ ),θ (ξ ),v(ξ )) provided by the augmented
constitutive approach which connects the limit values (ε±,θ±,v±). We say that the traveling wave describes
a shock layer if (ε±,θ±) are in the same phase, or an interphase transition layer if (ε±,θ±) are in different
phases. We designate them in a generic way as a profile layer.

In order to clarify our result we briefly recall the case of isothermal elasticity with non-monotone stress-
strain relation. In this case the PDEs system is composed by equations (1)1−2 and an isothermal equilibrium
curve σ = σeq(ε). We have shown in Făciu and Molinari [36, Part II] that by considering the Maxwellian
rate-type approach as an augmented theory for the non-monotone elastic model we obtain the same viscosity
admissibility criterion as that obtained by Pego [40] using Kelvin-Voigt isothermal viscoelastic constitutive
equation (see also Slemrod [4]). According to the traveling wave analysis for the rate-type system one has
shown that the Maxwellian admissibility criterion in the isothermal case is equivalent with a chord crite-
rion with respect to the elastic constitutive equation σ = σeq(ε) which claims that: a compressive wave
discontinuity, i.e. (ε+− ε−)Ṡ > 0, is admissible if and only if the chord which joins (ε+,σ+ = σeq(ε+))
to (ε−,σ− = σeq(ε−)) lies below the graph of the function σ = σeq(ε) for ε between ε+ and ε−, while an
expansive wave discontinuity, i.e. (ε+− ε−)Ṡ < 0, is admissible if and only if the chord lies above the graph
in the same interval.

When we consider the non-isothermal case we extend this result and we derive as admissibility condition
for shock waves and phase boundaries of the thermoelastic adiabatic system a chord criterion with respect to
the Hugoniot locus in the strain-stress plane σ = σH(ε;ε+,θ+) defined by (27).

Proposition 1 Let us suppose that the thermoelastic constitutive equation σ = σeq(ε,θ ) satisfies the general
assumptions H1-H4, which includes the case of negative Grüneisen coefficients. If (ε±,θ±) are the strain
and temperature states across a propagating discontinuity such that at least one of the sound speed (18) at
these states is different from the discontinuity speed Ṡ, i.e. λ(ε+,θ+) �= Ṡ, or λ(ε−,θ−) �= Ṡ, then the admis-
sibility criterion generated by the Maxwellian rate-type approach (28) when heat conduction is neglected is
equivalent with the following selection criterion:

Chord criterion with respect to the Hugoniot locus in the strain-stress plane.
If Ṡ > 0, the front state is (ε+,θ+) and the Hugoniot back state is (ε−,θ−) then a compressive wave

discontinuity is admissible if and only if the Rayleigh line lies below the Hugoniot locus, i.e.

σR(ε) = σ++ρ Ṡ2(ε − ε+)< σH(ε;ε+,θ+), for any ε ∈ (ε−,ε+), (58)

and an expansive wave discontinuity is admissible if and only if the Rayleigh line lies above the Hugoniot
locus, i.e.

σR(ε) = σ++ρ Ṡ2(ε − ε+)> σH(ε;ε+,θ+), for any ε ∈ (ε+,ε−). (59)
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If Ṡ < 0, the front state is (ε−,θ−) and the Hugoniot back state is (ε+,θ+) then the above statement remains
valid if we invert superscripts + with - in relations (58) and (59).

This result is related with the extended entropy condition for gas dynamic equations of Liu [3] (see also
Pego [6]). We have to prove in the following that conditions (58)-(59) are necessary and sufficient for the
existence of a unique profile layer connecting the limit values (ε±,θ±).

5.1.2 Traveling waves for the Maxwellian rate-type model (28) without heat conduction.

The only structuring parameters of these layers are the ”viscosity” μ and the dynamic Young’s modulus E.
Such traveling waves are solutions of the problem

ε̂ ′ = − E
μ Ṡ(E −ρ Ṡ2)

R(ε̂, θ̂ ), limξ→±∞ ε̂(ξ ) = ε±,

0 = HMxw(ε̂, θ̂ ).
(60)

Let us consider Ṡ> 0 and (ε+,θ+) a fixed front state and (ε−,θ−) a Hugoniot state, i.e. θ−=ΘH(ε−;ε+,θ+).
The strain-temperature pair (ε̂(ξ ), θ̂(ξ )) has to satisfy the algebraic equation (60)2 where function HMxw(ε̂, θ̂ )
is given by (56). The set {(ε,θ ) | HMxw(ε,θ ;ε+,θ+,ε−) = 0} describes the trajectory in the ε −θ plane of a
traveling wave governed by a Maxwellian rate-type dissipative mechanism in the absence of heat conduction.
Let us note that HMxw(ε±,θ±;ε+,θ+,ε−) = 0. The function HMxw(ε,θ ) is at least of C1 class if the smooth-
ness assumption S1 is satisfied and it is a continuous and piecewise C1 function on its domain of definition
for the weaker assumption S2. Since ∂HMxw

∂ θ (ε,θ ) = ρ ∂eMxw(ε ,σR(ε),θ )
∂ θ = ρCMxw(ε,σR(ε),θ )> 0 at the points

where the derivative makes sense, by using the theorem of implicit function it can be shown that the equation
HMxw(ε,θ ) = 0 can be solved at least locally with respect to ε . In the following we suppose that it can be
solved globally, that means, there exists a unique function

θ =ΘMxw(ε;ε+,θ+,ε−), (61)

with the property that HMxw(ε,ΘMxw(ε;ε+,θ+,ε−)) = 0 for ε belonging to an interval which contains ε±
and ΘMxw(ε±;ε+,θ+,ε−) = θ±. This function is at least of C1 class if assumption S1 is satisfied and it is
continuous and piecewise C1 for the weaker assumption S2. Its image through the function σ = σeq(ε,θ ) in
the ε −σ plane is given by

σ = σMxw(ε;ε+,θ+,ε−)def
= σeq

(
ε,ΘMxw(ε;ε+,θ+,ε−)

)
, (62)

and connects the states (ε±,σ±). It is useful to note that σ± = σMxw(ε±) = σH(ε±) = σeq(ε±,θ±).
By using the above notations we get from (60) that ε = ε̂(ξ ) has to be solution of the problem

ε̂ ′ =− E

μ Ṡ(E −ρ Ṡ2)

(
σ++ρ Ṡ2(ε̂ − ε+)−σMxw(ε̂;ε+,θ+,θ−)

)
, lim

ξ→±∞
ε̂(ξ ) = ε± (63)

It is already known from the isothermal case of the Maxwellian rate-type model studied in [36, Part II] that a
unique solution of the problem (63) exists if and only if a chord criterion with respect to the curve σ =σMxw(ε)
is fulfilled.

Thus, for a right-facing discontinuity Ṡ > 0, in the compressive case (ε− < ε+), the Rayleigh line has to
lie below the curve σMxw(ε), i.e. σR(ε) = σ+ + ρ Ṡ2(ε − ε+) < σMxw(ε;ε+,θ+,ε−), for any ε ∈ (ε−,ε+),
while for the expansive case (ε+ < ε−), the Rayleigh line has to lie above, i.e. σR(ε) = σ++ρ Ṡ2(ε − ε+)>
σMxw(ε;ε+,θ+,ε−), for any ε ∈ (ε+,ε−).

For a left-facing wave Ṡ < 0, when the front state is (ε−,θ−) and the Hugoniot state is (ε+,θ+) the
admissibility condition is obtained by inverting the superscripts + and - in the above relations.

Proof of Proposition 1. Let us consider the compressive case of a forward propagating discontinuity, that
is Ṡ > 0 and ε− < ε+. In this case the chord criterion with respect to the curve σ = σMxw(ε;ε+,θ+,ε−)
requires that

s(ε)def
= σR(ε)−σMxw(ε;ε+,θ+,ε−)< 0, for any ε ∈ (ε−,ε+). (64)

We first prove that, if the chord condition (64) is satisfied, then the Hugoniot curve σ = σH(ε) cannot inter-
sect the Rayleigh line σ = σR(ε) for ε ∈ (ε−,ε+). The proof is based by reduction to the absurd. Suppose
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there is an ε∗ ∈ (ε−,ε+) such that σR(ε∗) = σH(ε∗;ε+,θ+). We denote by θ ∗ = θH(ε∗;ε+,θ+). There-
fore, H(ε∗,θ ∗;ε+,θ+) = 0 and σR(ε∗) = σH(ε∗;ε+,θ+) ≡ σeq(ε∗,θH(ε∗;ε+,θ+)) = σeq(ε∗,θ ∗). By us-
ing (57) and the fact that eMxw(ε,σeq(ε,θ ),θ ) = eeq(ε,θ ) we get that HMxw(ε∗,θ ∗;ε+,θ+) = 0. There-
fore, θ∗ = θMxw(ε∗;ε+,θ+), which implies σMxw(ε∗;ε+,θ+) ≡ σeq(ε∗,θMxw(ε∗;ε+,θ+)) = σeq(ε∗,θ ∗) =
σR(ε∗). Thus, it results a contradiction with assumption (64). In a similar way one shows that if the chord
condition with respect to the Hugoniot curve (58) is satisfied then the curve σ = σMxw(ε) can not intersect
the Rayleigh line σ = σR(ε) for ε ∈ (ε−,ε+). The proof is similar for the expansive case and for a back
propagating discontinuity Ṡ < 0.

To complete the proof we have to show that the curves σ = σMxw(ε) and σ = σH(ε) are always on the
same side of the Rayleigh line for ε between ε− and ε+.

We first establish some properties of the functions (61) and (62). By using the theorem of implicit functions
and the thermodynamic properties established in Section 4.1 for the Maxwellian rate-type model we show that

dΘMxw(ε)
dε

=
(E −ρ Ṡ2)

CMxw

(∂ ψMxw

∂ σ
−ΘMxw(ε)

∂ 2ψMxw

∂ θ∂ σ

)
(ε,σR(ε),ΘMxw(ε)), (65)

and using relations (39) and (48) we can rewrite (65) as

dΘMxw(ε)
dε

=
(E −ρ Ṡ2)

ρCMxw(ε,σR(ε),ΘMxw(ε))

(
σR(ε)−σeq(·, ·)

E
+ΘMxw(ε)

∂ σeq
∂ θ (·, ·)

E − ∂ σeq

∂ ε
(·, ·)

)∣∣∣∣∣
(ε̃,ΘMxw(ε))

, (66)

where ε̃ = ε̃(ε) is the unique solution of equation (35) for σ = σR(ε) and θ =ΘMxw(ε), i.e. it satisfies

σR(ε)−Eε = σeq(ε̃ ,ΘMxw(ε))−E ε̃. (67)

Finally, one shows that at the critical points we have

dΘMxw(ε±)
dε

=
(E −ρ Ṡ2)θ± ∂ σeq

∂ θ
(ε±,θ±)

ρCMxw(ε±,σ±,θ±)
(

E − ∂ σeq

∂ ε
(ε±,θ±)

) . (68)

Since dσMxw(ε)
dε =

∂ σeq
∂ ε (ε,ΘMxw(ε))+

∂ σeq
∂ θ (ε,ΘMxw(ε)) dΘMxw(ε)

dε , by using (68) and (42) we get from (64) that

s′(ε±) =
dσR(ε±)

dε
− dσMxw(ε±)

dε
=

Ceq(ε±,θ±)
CMxw(ε±,σ±,θ±)

ρ
(
Ṡ2 −λ 2(ε±,θ±)

)
. (69)

Because s(ε±) = 0, a direct consequence of the condition (64) is s′(ε−) ≤ 0 and s′(ε+) ≥ 0. Thus, by using
(69) one obtains that for the compressive case the chord criterion with respect to σ = σMxw(ε) requires

Ṡ2 −λ 2(ε−,θ−)≤ 0, and Ṡ2 −λ 2(ε+,θ+)≥ 0, ε− < ε+. (70)

That means that the chord criterion with respect to σ = σMxw(ε) is consistent with the shock inequalities of
Lax [33], which for a right-facing wave discontinuity read λ(ε+,θ+) < Ṡ < λ(ε−,θ−). It is worth noting
here that ”viscosity-capillarity” augmented models (e.g. Slemrod [5], Ngan and Truskinovsky [7], [21]) can
generate admissible nonclassical shock waves or subsonic propagating phase transitions which violate the
Lax criterion.

We also establish some properties of the Hugoniot curves (26) and (27). By using the theorem of implicit
functions and the thermodynamic properties established in Section 3.2 for the thermoelastic model one gets

dΘH(ε)
dε

=

1
2(σ

+−σH(ε))+ 1
2 (ε − ε+)∂ σeq

∂ ε (ε,ΘH(ε))+ΘH(ε)
∂ σeq

∂ θ
(ε,ΘH(ε))

ρCeq(ε,ΘH(ε))− 1
2
(ε − ε+)

∂ σeq

∂ θ
(ε,ΘH(ε))

, (71)
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wherefrom, after some computations one derives that

dσR(ε+)
dε − dσH(ε+)

dε = ρ
(
Ṡ2 −λ 2(ε+,θ+)

)
,

dσR(ε−)
dε − dσH(ε−)

dε =
ρ2Ceq(ε−,θ−)

(
Ṡ2 −λ 2(ε−,θ−)

)
ρCeq(ε−,θ−)− 1

2(ε
−− ε+)∂ σeq

∂ θ (ε−,θ−)
,

(72)

Using (25) one obtains sgn
(dσR(ε±)

dε − dσMxw(ε±)
dε

)
= sgn

( dσR(ε±)
dε − dσH (ε±)

dε
)
. This implies that if the curve

σ = σMxw(ε) lies, in the interval (ε−,ε+), above (or, below) the Rayleigh line σ = σR(ε) at least in a neigh-
borhood of ε+, or ε−, then the Hugoniot curve σ = σH(ε) also lies above (or, below) the Rayleigh line in
this neighborhood, and vice versa. Thus, both curves have to be on the same side of the Rayleigh line which
proves the equivalence between the two chord criteria in the conditions of Proposition 1.

Remark 3 In the degenerate case when λ(ε±,θ±) = Ṡ the chord criterion with respect to the curve σ =
σMxw(ε) ensures the existence of a unique ”viscous”, heat non-conducting profile layer, but we cannot prove
from the above considerations that the Hugoniot curve σ = σH(ε) and σ = σMxw(ε) lies on the same side of
the Rayleigh line for ε between ε− and ε+.

Remark 4 The equivalence between the two chord criteria transfers the admissibility condition from a relation
which depends on the energetic properties of the rate-type dissipative model, namely σ = σMxw(ε), to a
relation which depends only on the energetic properties of the thermoelastic constitutive model, namely σ =
σH(ε). That is why the chord criterion with respect to the Hugoniot locus is extremely useful in practice.

The entropy production in a ”viscous”, thermally non-conducting profile layer. Let us denote by ψ̂(ε) ≡
ψMxw(ε,σR(ε),ΘMxw(ε)), η̂(ε)≡ ηMxw(ε,σR(ε),ΘMxw(ε)) and ê(ε)≡ eMxw(ε,σR(ε),ΘMxw(ε)) the free en-
ergy, entropy and internal energy along a ”viscous”, heat non-conducting profile layer. In these equations
ε = ε̂(ξ ) is solution of (63). By using relation (31) we get

σR(ε) = ρ
dê(ε)

dε
+(E −ρ Ṡ2)ρ

∂ ψMxw

∂ σ
(ε,σR(ε),ΘMxw(ε))−ρΘMxw(ε)

dη̂(ε)
dε

. (73)

Since HMxw(ε,ΘMxw(ε;ε+,θ+,ε−)) = 0 for any ε between ε+ and ε− one obtains from (56) the following
identities

ρ ê(ε)−ρe+ =
1
2
(ε − ε+)(σ++σR(ε)), and ρ

dê(ε)
dε

= σR(ε). (74)

From (73) and (74)2 we derive

ρ
dη̂(ε)

dε
=

E −ρ Ṡ2

ΘMxw(ε)
ρ

∂ ψMxw

∂ σ
(ε,σR(ε),ΘMxw(ε)), (75)

wherefrom, by integration, one obtains

ρ(ηeq(ε+,θ+)−ηeq(ε−,θ−)) = ρ(η̂(ε+)− η̂(ε−)) =
∫ ε+

ε−
E −ρ Ṡ2

ΘMxw(ε)
ρ

∂ ψMxw

∂ σ
(ε,σR(ε),ΘMxw(ε))dε. (76)

According to relations (32)2, (47), (63) and (76) the total entropy production induced by a traveling wave
governed by a Maxwellian rate-type constitutive equation in the absence of heat conduction is given by

Ptrav
Mxw =

∫ ∞

−∞

DMxw(ε̂, σ̂ , θ̂ )
ΘMxw(ε̂)

dξ =

∫ ∞

−∞

E
μ

ρ
ΘMxw(ε̂)

∂ ψMxw

∂ σ
(ε̂,σR(ε̂),ΘMxw(ε̂))

(
σR(ε̂)−σMxw(ε̂)

)
dξ

=−Ṡ
∫ ∞

−∞

(E −ρ Ṡ2)

ΘMxw(ε̂)
ρ

∂ ψMxw

∂ σ
(ε̂,σR(ε̂),ΘMxw(ε̂))ε̂ ′dξ =−Ṡρ(ηeq(ε+,θ+)−ηeq(ε−,θ−))≥ 0. (77)

Remark 5 Therefore, in a ”viscous”, thermally non-conducting profile layer, the entropy of the Hugoniot back
state can not be lower than the entropy of the front state. Moreover, the total entropy production Ptrav

Mxw of the
traveling wave solution does not depend on the ”viscosity” and is, according to (23), exactly the entropy
production of a strong discontinuity compatible with the second law of thermodynamics for the associated
thermoelastic constitutive equation σ = σeq(ε,θ ). Thus, a strong discontinuity which satisfies the ”chord
criterion” is compatible with the second law of thermodynamics
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5.2 Structuring mechanisms: Maxwellian rate-type effects coupled with heat conduction.

We are now interested to investigate the existence and uniqueness of the solutions of the non-linear au-
tonomous system (54). Following the method proposed by Gilbarg [9] we first analyze the system behavior
near its critical points. The linearization of (54) in a neighborhood of (ε±,θ±) leads to the system

d
dξ

(
ε̂
θ̂

)
= JMxw(ε±,θ±)

(
ε̂
θ̂

)
, (78)

where

JMxw(ε,θ ) =−
⎛
⎝ E

μ Ṡ(E −ρ Ṡ2)
∂R
∂ ε

E
μ Ṡ(E −ρ Ṡ2)

∂R
∂ θ

Ṡ
κ

∂HMxw
∂ ε

Ṡ
κ

∂HMxw
∂ θ

⎞
⎠ . (79)

One shows that

∂R
∂ ε

(ε±,θ±) = ρ Ṡ2 − ∂ σeq

∂ ε
,

∂R
∂ θ

(ε±,θ±) =−∂ σeq

∂ θ
, (80)

∂HMxw

∂ ε
(ε±,θ±) =−θ±

(E −ρ Ṡ2)
∂ σeq

∂ θ(
E − ∂ σeq

∂ ε
) ,

∂HMxw

∂ θ
(ε±,θ±) = ρ

∂eeq

∂ θ
−θ±

(∂ σeq

∂ θ

)2

(
E − ∂ σeq

∂ ε
) . (81)

To prove relations (81) we have to use the properties of the free energy function ψ = ψMxw(ε,σ ,θ ) of the
Maxwellian model from Section 4.1. Starting from (56), by using the properties (31)1 and (32)1 we get

∂HMxw

∂ ε
(ε,θ ) =−ρ(E −ρ Ṡ2)

(∂ ψMxw

∂ σ
(ε,σR(ε),θ )−θ

∂ 2ψMxw

∂ σ∂ θ
(ε,σR(ε),θ )

)
. (82)

Relation (81)1 is obtained by using (39) and (48) in (82) and taking into account that ε̃(ε±,σeq(ε±,θ±),θ±)=
ε±. Relation (81)2 is obtained directly from (42).

The characteristic equation of the linearized system (78) at the critical points (ε ±,θ±) is

r2+r
{E
(

ρ Ṡ2 − ∂ σeq
∂ ε

)
μ Ṡ(E −ρ Ṡ2)

+
Ṡ
κ

(
ρ

∂eeq

∂ θ
−

θ±
(∂ σeq

∂ θ

)2

(
E − ∂ σeq

∂ ε

))}+ E
(

ρ Ṡ2 − ∂ σeq
∂ ε

)
κμ(E −ρ Ṡ2)

{
ρ

∂eeq

∂ θ
−

θ±
(∂ σeq

∂ θ

)2

(
ρ Ṡ2 − ∂ σeq

∂ ε

)}= 0.

(83)
The discriminant of this equation

Δ (ε±,θ±) =
{E
(

ρ Ṡ2 − ∂ σeq
∂ ε

)
μ Ṡ(E −ρ Ṡ2)

− Ṡ
κ

(
ρ

∂eeq

∂ θ
−

θ±
(∂ σeq

∂ θ

)2

(
E − ∂ σeq

∂ ε
)
)}2

+
4Eθ±

(∂ σeq
∂ θ

)2

μκ
(

E − ∂ σeq
∂ ε

) , (84)

is positive and then both eigenvalues r1,2(ε±,θ±) are real. Let us note that their product and their sum are

r1r2 =
ρ2E

μκ(E −ρ Ṡ2)

∂eeq

∂ θ
(
Ṡ2 −λ 2), (85)

r1 + r2 =−1

Ṡ

[ρE(Ṡ2 −λ 2)

μ(E −ρ Ṡ2)
+

Eθ±
(∂ σeq

∂ θ

)2

μ(E −ρ Ṡ2)ρ
∂eeq

∂ θ

+
Ṡ2

κ
ρ

∂eeq

∂ θ

(
E −ρλ 2)(
E − ∂ σeq

∂ ε

)], (86)

where λ 2(ε±,θ±) represents according to (18) the square of non-zero characteristic directions of the adiabatic
thermoelastic system at the critical points. Let us note that the sign of the product of the eigenvalues is positive
or negative according to whether the speed of the propagating discontinuity Ṡ is larger or smaller than the
adiabatic sound speed at the critical point.
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If r1r2 < 0, i.e Ṡ2 < λ 2(ε,θ ), (subsonic case) the eigenvalues have opposite signs and the critical point is
a saddle point.

If r1r2 > 0, i.e Ṡ2 > λ 2(ε,θ ), (supersonic case) the eigenvalues have the same sign. According to (30),

(43) and (53) we have E >
∂ σeq
∂ ε , E > ρλ 2(ε,θ ) and E > ρ Ṡ2, respectively. Therefore, the sign of r1 + r2 is

equal to the sign of −Ṡ. Thus, if Ṡ > 0 then both eigenvalues are negative and the critical point is an attractive
node while if Ṡ < 0 both eigenvalues are positive and the critical point is a repulsive node.

If r1 = 0, i.e. Ṡ2 = λ 2(ε,θ ) then the sign of r2 is equal to the sign of −Ṡ. In this case, in the neighborhood
of the critical point the orbits are straight lines parallel with the eigenvector corresponding to the non-zero
eigenvalue. The orientation being away (r2 > 0), or towards (r2 < 0) an axis of stationary points parallel with
the eigenvector corresponding to the null eigenvalue.

5.2.1 Existence, uniqueness and structure of ”viscous”, heat conducting profile layers.

We assume that the thermoelastic constitutive equation σ = σeq(ε,θ ) satisfies assumptions H1-H4 corre-
sponding to a phase transforming material, the smoothness assumption S1, and the dynamic Young’s modulus
E satisfies the sub-characteristic condition (43).

Our goal is to investigate if the chord criterion (58)-(59) with respect to the Hugoniot locus σ =σH(ε;ε+,θ+)
is still a necessary and sufficient condition for the existence of a unique profile layer when the structuring
mechanism is governed by the Maxwellian rate-type constitutive equation coupled with the Fourier law. In
fact, we first investigate under what conditions the chord criterion with respect to the stress-strain curve
σ = σMxw(ε), defined in (62), ensures the existence and uniqueness of a ”viscous”, heat conducting profile
layer for any given coefficients μ > 0 and κ > 0. Then, one gets by using the same proof like in Proposition 1,
that this criterion is equivalent with the chord criterion with respect to the Hugoniot locus σ = σH(ε;ε+,θ+).

The study of the behavior of the solutions of the system (54) is based on the idea of Gilbarg [9] and used
later by Pego [6] to exploit the topological properties of the curves HMxw(ε,θ ) = 0 and R(ε,θ ) = 0 along
which θ̂ ′(ξ ) and ε̂ ′(ξ ) vanishes.

Remark 6 We have seen in Section 5.1.2 that the curve HMxw(ε,θ ) = 0, or equivalently θ = ΘMxw(ε), rep-
resents the trajectory in the θ − ε plane of a traveling wave solution governed by the Maxwellian rate-type
constitutive equation in the absence of heat conduction. From thermodynamical point of view it is useful to
note that relation (65) can be directly obtained by writing the energy identity (46) for the ”viscous” traveling
wave solution (ε̂(ξ ), σ̂(ξ ) = σR(ε̂(ξ )), θ̂(ξ ) = ΘMxw(ε̂(ξ ))) described by (63) and then by using relation
(74)2. One can give now a clear physical meaning to the right-terms in relation (65), or equivalently, in rela-
tion (66). The first right-term in the parenthesis is related to the contribution of the intrinsic dissipation, while
the second one is related to the contribution of the latent heat, to the increase or decrease of the temperature in
the ”viscous”, heat non-conducting profile layer. In other words, the slope of the curve θ =ΘMxw(ε) reflects
a competition inside the profile layer between the heating due to the intrinsic dissipation and the heating, or
cooling, due to the latent heat.

C. The compressive case ( ε− < ε+ ).
We consider Ṡ > 0 and (ε+,θ+) a front state and (ε−,θ−) a Hugoniot back state of a wave discontinuity

for the adiabatic thermoelastic system. One has seen in the proof of Proposition 1 that in the compressive case
the chord criterion (64) with respect to the curve σ = σMxw(ε) requires that the characteristic directions at
the critical points λ(ε±,θ±) satisfy the inequalities (70). Let us note that if these inequalities are strict, one
gets from relations (85)-(86), that (ε−,θ−) is a saddle node (subsonic critical point), while (ε+,θ+) is an
attractive node (supersonic critical point) for the linearized system (78).

We distinguish several situations depending on the sign of ∂ σeq
∂ θ (ε±,θ±), i.e. on the sign of the Grüneisen

coefficient (15) at the critical points. The expansive case when ε+ < ε− can be treated in a similar way.

Case C1. ∂ σeq
∂ θ (ε±,θ±)< 0, i.e. positive Grüneisen coefficients (15) at the critical points.

That means (ε±,θ±) belong to the region where ∂ σeq
∂ θ < 0, that is where ε < εt(θ ) (Fig. 2). According

to assumption H3-H4 the front state and the Hugoniot state (ε±,θ±) lie in the austenitic phase A or in the
martensitic variant M−. A typical compressive jump discontinuity from A to M− is illustrated in Fig. 3a.
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Fig. 3 Typical compressive jump discontinuities from state (ε+,θ+) to (ε−,θ−) satisfying the chord criterion with respect to the
Hugoniot curve σ = σH(ε ;ε+,θ+). Phase transformations: a) Case C1. A→ M−; b) Case C2. M+ → A; c) Case C3. M+ →M−.

Since ∂R(ε ,θ )
∂ θ =− ∂ σeq(ε ,θ )

∂ θ > 0 for ε < εt(θ ), it follows that R(ε,θ ) = 0 is locally uniquely representable
as a single valued function of ε . We assume there exists a function denoted θ = ΘR(ε;ε+,θ+,ε−) for ε
belonging to an interval which contains ε± such that R(ε,ΘR(ε)) = 0 and θ± =ΘR(ε±;ε+,θ+,ε−). Its image
through the function σ = σeq(ε,θ ) in the ε −σ plane is just the Rayleigh line, i.e. σR(ε) = σeq(ε,ΘR(ε)).
Moreover, we have

dΘR(ε)
dε

=
(

ρ Ṡ2 − ∂ σeq

∂ ε
(ε,ΘR(ε))

)(∂ σeq

∂ θ
(ε,ΘR(ε))

)−1
. (87)

Let us introduce the function t(ε) def
=ΘR(ε)−ΘMxw(ε) for ε ∈ (ε−,ε+). We note that t(ε±) = 0, and these

are the only points where function t = t(ε) vanishes, or equivalently, (ε±,θ±) are the only critical points
of (54) in the interval (ε−,ε+). Indeed, if we suppose there exists an ε∗ ∈ (ε−,ε+) such that ΘR(ε∗) =
ΘMxw(ε∗) we get σR(ε∗) = σeq(ε∗,ΘR(ε∗)) = σeq(ε∗,ΘMxw(ε∗)) = σMxw(ε∗) which is in contradiction with
our assumption that the chord condition (64) is satisfied. By using relations (66) and (87) we get that

t ′(ε±) =
dΘR(ε±)

dε
− dΘMxw(ε±)

dε
= s′(ε±)

(
ρ

∂ σeq(ε±,θ±

∂ θ

)−1
. (88)

Since the chord criterion (64) requires s′(ε−) ≤ 0 and s′(ε+) ≥ 0 one gets that t ′(ε−) ≥ 0 and t ′(ε+) ≤ 0.
Thus, it follows that t(ε) =ΘR(ε)−ΘMxw(ε)> 0, for any ε ∈ (ε−,ε+) (Fig. 4).

Let us note that in case C1 the function θ = ΘMxw(ε) is a strictly decreasing function of ε ∈ (ε−,ε+),
and consequently, the Hugoniot back state temperature has to be larger than the front state temperature,
i.e. θ− > θ+. Therefore, the corresponding compressive discontinuity is of heating type. The result is in
agreement with the fact that the phase transformation A → M− is exothermic. This behavior is a consequence
of the fact that both terms in the parenthesis of the right part of relation (66) are negative. From physical point
of view that means, according to Remark 6, that both the intrinsic dissipation and the latent heat contribute
to the increase of temperature in the ”viscous”, heat non-conducting profile layer.

To prove this assertion we have to note that ∂ σeq
∂ θ (ε̃(ε),ΘMxw(ε))< 0, and the chord condition (64) implies

that σR(ε)−σeq(ε̃(ε),ΘMxw(ε))< 0, where ε̃(ε) is given by (67), for any ε ∈ (ε−,ε+). The last inequality fol-

lows from the identity
(
σR(ε)−σeq(ε̃,ΘMxw(ε))

)(
E − ∂ σeq

∂ ε (ε∗,ΘMxw(ε))
)
=
(
σR(ε)−σeq(ε,ΘMxw(ε))

)
E,

where ε∗ lies between ε and ε̃(ε).
Concerning the function θ = ΘR(ε), we note that it can be monotone decreasing, but it can be non-

monotone, too. Indeed, the inequalities dΘR(ε+)
dε < dΘMxw(ε+)

dε < 0 and dΘR(ε−)
dε > dΘMxw(ε−)

dε , which follow from
relation (88), require only that θ =ΘR(ε) is a decreasing function of ε in the neighborhood of ε+ (Fig. 4).

The existence of a connecting orbit follows now from topological considerations similar with those used
by Gilbarg [9]. The closed curve formed by θ =ΘMxw(ε) and θ =ΘR(ε), for ε ∈ (ε−,ε+), bounds a simply
connected region P of the ε −θ plane. Since HMxw > 0 on the curve R = 0 and R < 0 on the curve HMxw = 0,
for ε ∈ (ε−,ε+), one concludes that everywhere in P, HMxw > 0 and R < 0. Let us note that on the boundaries
HMxw = 0 and R = 0 all vector fields of the flow induced by (54) point toward the region P, horizontally and
vertically, respectively.

Let us first consider the case of strict inequalities, i.e. Ṡ2 > λ 2(ε+,θ+) and Ṡ2 < λ 2(ε−,θ−). Since dθ
dε =

μ(E−ρṠ2)Ṡ2

κE
HMxw

R , all integral curves of (54) must be monotone decreasing in P, and because they cannot leave
P and there is no critical point in this region they must tend to the attractive point (ε +,θ+) (Fig. 4). Taking
into account that (ε−,θ−) is a saddle point one obtains that a trajectory connecting (ε+,θ+) and (ε−,θ−)
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exists and lies inside the region P. Moreover, the temperature and the deformation vary monotonously across
this ”viscous”, thermally conducting profile layer.

When Ṡ2 = λ 2 at a critical point, i.e. when one eigenvalue given by (83) is zero and the another one is
negative, the two curves HMxw = 0 and R = 0 are tangent at this point. Moreover, they are tangent with the
integral curve of (54) and with the isentrope (14) passing through this point. The direction of this common tan-
gent coincides with the direction of the eigenvector corresponding to the eigenvalue zero. Similar topological
arguments prove the existence of a trajectory connecting (ε+,θ+) and (ε−,θ−).

_ _
(ε ,θ  )

+(ε ,θ  )+
M

xw
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xw

H
        >0 ; R
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H
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R
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θ
ε

Fig. 4 Case C1 - phase portrait of (54) for A → M− phase transformation illustrated in Fig. 3a.

Conversely, let us prove that the chord criterion is also a necessary condition for the existence of a profile
layer. We suppose by absurd that a profile layer connecting (ε±,θ±) exists, but the chord criterion is vio-
lated. Let us assume there exists at least one point ε ∗ ∈ (ε−,ε+) such that σR(ε∗) = σMxw(ε∗;ε+,θ+,ε−).
According to relation

s(ε) = σR(ε)−σMxw(ε) = σeq(ε,ΘR(ε))−σeq(ε,ΘMxw(ε)) =−∂ σeq(ε, θ̄ (ε))
∂ θ

(ΘMxw(ε)−ΘR(ε)), (89)

where θ̄ (ε) lies between ΘMxw(ε) and ΘR(ε), it follows that ΘMxw(ε∗) =ΘR(ε∗)≡ θ ∗, i.e. R(ε∗,θ ∗) = 0 and
HMxw(ε∗,θ ∗;ε+,θ+,ε−) = 0. Therefore, (ε∗,θ ∗) is a critical point of the system (54). On the other side, by
using relation (57) we obtain H(ε∗,θ ∗;ε+,θ+) = 0, that is (ε∗,θ ∗) is also a Hugoniot state. Therefore, the
curves θ = ΘMxw(ε;ε+,θ+,ε−) and θ = ΘR(ε;ε+,θ+,ε−) pass through the critical points between ε− and
ε+. We also note that the Rayleigh line provides a natural ordering for these points. Considering the position
of σ = σMxw(ε;ε+,θ+,ε−) with respect to the Rayleigh line one proves as before that these critical points
alternate between being saddle points and attractive points. Because HMxw > 0 above θ =ΘMxw(ε) and R < 0
below θ =ΘR(ε) one gets from a phase portrait diagram of type in Fig. 4 that (ε+,θ+) can be connected by
a trajectory only with the first critical point with smaller strain than ε + and thus it is impossible to connect
(ε+,θ+) by a trajectory with (ε−,θ−). Contradiction.

The uniqueness of the profile layer is based on the fact that a trajectory connecting (ε+,θ+) and (ε−,θ−)
can not lie outside P (see also Pego [6]).

Thus, for any μ > 0 and κ > 0 there exists a unique profile layer (ε̂(ξ ), θ̂(ξ ); μ ,κ) joining (ε+,θ+) and
(ε−,θ−). The limit behavior of such profile layer as μ → 0 and κ → 0 can be studied in a similar way as was
done by Gilbarg [9] for a viscous, thermally conducting fluid. One proves the existence of the iterated limits
and their equality with the double limit. The limit is just a step wave discontinuity connecting (ε +,θ+) and
(ε−,θ−). Moreover, Gilbarg [9] has put into evidence a basic difference in the effect of ”viscosity” and of
heat conduction on the structure of the profile layers which holds for the Maxwellian approach, too. Thus,
if we consider a fixed ”viscosity” μ = μ̄ and κ → 0, the trajectories in ε − θ plane of all profile layers
(ε̂(ξ ), θ̂(ξ ); μ̄,κ) are increasingly close to the decreasing curve θ =ΘMxw(ε) and approach the solutions of
the reduced system (60). This traveling wave solution is smooth with respect to ξ and describes a ”viscous”,
heat non-conducting profile layer.
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If θ = ΘR(ε) is monotone decreasing and if we consider a fixed heat conductivity κ = κ̄ and μ → 0,
all profile layers curves (ε̂(ξ ), θ̂(ξ ); μ , κ̄) are increasingly close to the curve θ = ΘR(ε) and approach the
solutions of the following reduced system

0 = R(ε̂, θ̂ ),
θ̂ ′ =− Ṡ

κ HMxw(ε̂ , θ̂), limξ→±∞ θ̂(ξ ) = θ±,
(90)

These solutions describe ”non-viscous”, heat conducting profile layers.
An important difference appears when θ =ΘR(ε) is non monotone. Since all integral curves of the system

(54) are strictly decreasing in P one shows that as μ → 0 the trajectories in ε −θ plane of the profile layers
(ε̂(ξ ), θ̂(ξ ); μ , κ̄) are increasingly close to the monotone decreasing curve θ = Θ̄R(ε) defined by

θ = Θ̄R(ε) = min
ζ∈[ε−,ε ]

ΘR(ζ ), for ε ∈ [ε−,ε+]. (91)

This function is the maximum among all monotone decreasing curves bounded from above by the curve
θ = ΘR(ε). It is represented with dotted line on those parts which do not coincide with θ = ΘR(ε) in Fig. 4.
If θ =ΘR(ε) has a finite number of minima then θ = Θ̄R(ε) has at most a finite number of intervals on which
θ is constant. They correspond to isothermal jumps in strain inside the profile layer. Therefore, in this case,
as μ → 0 the profile layers (ε̂(ξ ), θ̂(ξ ); μ , κ̄) approach a pair of functions denoted by (ε̂(ξ ), θ̂(ξ ); μ = 0, κ̄)
with the property that ε̂(ξ ; μ = 0, κ̄) is discontinuous and θ̂ (ξ ; μ = 0, κ̄) is continuous and piecewise smooth.
Thus, the notion of traveling wave solution must be enlarged in order to admit such discontinuous solutions
for the reduced system (90).

Case C2. ∂ σeq
∂ θ (ε±,θ±)> 0, i.e. negative Grüneisen coefficients at the critical points.

That means (ε±,θ±) belong to the region where ∂ σeq
∂ θ > 0, that is where ε > εt(θ ) (Fig. 2). According

to assumptions H3-H4 the front state and the Hugoniot state (ε±,θ±) lie in the austenitic phase A or in the
martensitic variant M+. A typical compressive jump discontinuity from M+ to A is illustrated in Fig. 3b.

Since ∂R(ε ,θ )
∂ θ = − ∂ σeq(ε ,θ )

∂ θ < 0 for ε > εt(θ ), it follows that R(ε,θ ) = 0, given by (55), is representable
as a single valued function of ε . We suppose there exists a function θ = ΘR(ε;ε+,θ+,θ−), which satisfies
R(ε,ΘR(ε)) = 0 and consequently, σR(ε) = σeq(ε,ΘR(ε))), for ε belonging to an interval which contains ε−
and ε+. Moreover, relations (66) and (87) are still valid.

By defining the function t(ε)def
=ΘR(ε)−ΘMxw(ε), for ε ∈ (ε−,ε+), taking into account that the Grüneisen

coefficient is negative at the critical points, and using the same reasoning based on the chord condition (64) as
in case C1 we obtain from (88) that t ′(ε−)≤ 0 and t ′(ε+)≥ 0, which involves that t(ε) =ΘR(ε)−ΘMxw(ε)<
0, for any ε ∈ (ε−,ε+) (Figs. 5-6).

From (68) one gets that dΘMxw(ε±)
dε ≥ 0. Therefore, θ = ΘMxw(ε) is monotone increasing in the neigh-

borhood of ε±, but we cannot say anything, without additional constitutive assumptions, neither about its
monotonicity, nor about the order relation between θ− and θ+. Indeed, in the present compressive case, the
first term in the right part of relation (66) is always negative as a consequence of the chord criterion. That
means the intrinsic dissipation always contributes to the increase of the temperature inside the ”viscous”,
heat non-conducting profile layer. The second term is always positive, since the Grüneisen coefficient is neg-
ative. That means the latent heat contributes to the decrease of the temperature inside this layer. Therefore,
θ = ΘMxw(ε) is monotone increasing on those intervals where the cooling due to latent heat dominates the
heating due to intrinsic dissipation and it is monotone decreasing when the opposite case happens.

The following representative cases will be analyzed:
a) θ− < θ+ and θ =ΘMxw(ε) monotone increasing (Fig. 5a).
b) θ− <ΘMxw(ε)< θ+, but θ =ΘMxw(ε) is non-monotone (Fig. 5b).
c) θ− > θ+ (Figs. 6).
We consider as natural from physical point of view for phase transforming materials the case a) where the

latent heat effect is more important than the dissipation effect.
Example. Let us consider a thermoelastic constitutive equation σ = σeq(ε,θ ) satisfying the conditions

θ
∣∣∣∂ 2σeq(ε,θ )

∂ θ 2

∣∣∣� ∣∣∣∂ σeq(ε,θ )
∂ θ

∣∣∣, ∣∣∣ε ∂ 2σeq(ε,θ )
∂ ε∂ θ

∣∣∣� ∣∣∣∂ σeq(ε,θ )
∂ θ

∣∣∣, ∣∣∣ε ∂ 2σeq(ε,θ )
∂ ε2

∣∣∣� E. (92)
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Then one can show by using relation (66) that

dΘMxw(ε)
dε

≈ (E −ρ Ṡ2)ΘR(ε)

ρCMxw(ε,σR(ε),ΘMxw(ε))
(
E − ∂ σeq

∂ ε (ε,ΘMxw(ε))
) ∂ σeq(ε,ΘMxw(ε))

∂ θ
> 0. (93)

Consequently, θ = ΘMxw(ε) is a strictly increasing function of ε ∈ (ε−,ε+) and the Hugoniot back state
temperature has to be lower than the front state temperature, i.e. θ − < θ+. Therefore, the corresponding
compressive wave discontinuity is of cooling type. The result is in agreement with the fact that the reverse
phase transformation M+ → A is endothermic.

Let us note that, since θ ∂ 2σeq(ε ,θ )
∂ θ 2 = −ρ ∂Ceq(ε ,θ )

∂ ε , condition (92)1 requires in fact that the variation of the
specific heat Ceq(ε,θ ) with respect to ε be negligible regarding the variation of σeq(ε,θ ) with respect to θ . In
Part II [35] an explicit piecewise linear thermoelastic model which describes phase transformation in a SMA
alloy and fulfills conditions (92) is considered.

Remark 7 Let us note that in the complementary expansive case (ε+ < ε−) with positive Grüneisen coeffi-

cients at the critical points, i.e. ∂ σeq
∂ θ (ε±,θ±)< 0, according to relation (66), the intrinsic dissipation and the

latent heat act again in opposite sense. Indeed, this happens because the chord condition in the expansive case

requires that σR(ε)−σMxw(ε) > 0 for any ε ∈ (ε+,ε−) and ∂ σeq
∂ θ is supposed negative along the ”viscous”

traveling wave solution. Restrictions (92), which lead to relation (93), imply that in this case θ = ΘMxw(ε)
is a strictly decreasing function of ε , that is, the heating due to the intrinsic dissipation is dominated by the
cooling due to latent heat inside the layer. Thus, the Hugoniot back state temperature has to be lower than the
front state temperature, i.e. θ+ > θ−. Therefore, the corresponding expansive wave discontinuity (rarefac-
tion shock) is of cooling type. Such behavior is natural and in agreement with the fact that the reverse phase
transformation M− → A is also endothermic.

We can show now that for the phase diagrams illustrated in Figs. 5 and Fig. 6a, which correspond to cases
a), b) and c), respectively, the chord condition (64) is a necessary and sufficient requirement for the existence
and uniqueness of a ”viscous”, heat conducting profile layer for any given coefficients μ > 0 and κ > 0. The
proof, given below, is based on the properties of the vector field of the flow induced by (54) and topological
considerations related to the corresponding figures.

On the other side, for the phase diagram illustrated by Fig. 6b, where the chord criterion is satisfied, but
the curves θ =ΘMxw(ε;ε+θ+,θ−) and θ =ΘR(ε;ε+θ+,θ−) meet again at a critical point (ε0,θ0), with the
properties that ε0 > ε+ and θ0 < θ−, a trajectory connecting (ε+,θ+) and (ε−,θ−) no longer exists if the
heat conduction dominates the ”viscosity”. This phase diagram corresponds to the example given by Pego
[6]) concerning the nonexistence of a shock layer in gas dynamics with a nonconvex equation of state.

Let us consider, for example, case b) represented by Fig. 5b). We denote by P the simply connected region
bounded by θ =ΘMxw(ε) and θ =ΘR(ε) for ε ∈ (ε−,ε+). Since HMxw < 0 and R< 0 in P any integral curves
of (54) is monotone increasing inside P. On the boundary R = 0 all vector fields of the flow induced by (54)
point vertically toward the region P while on the boundary HMxw = 0 all vector fields point horizontally right.
Therefore, on the ascending branches of the curve θ = ΘMxw(ε) the vector fields point toward the region P
while on the descending branches of the curve θ = ΘMxw(ε) they point horizontally outwards the region P.
Let us note that if ε ∈ (ε−,ε+) and θ > ΘMxw(θ ) we have HMxw > 0 and R < 0. Consequently, any integral
curve which leaves the domain P through the descending branches of the curve θ = ΘMxw(ε) is monotone
decreasing and when it meets again an ascending branch of this curve it is directed inside the region P.

Let us introduce the continuous and monotonic function

θ = Θ̄Mxw(ε) = max
ζ∈[ε−,ε ]

ΘMxw(ζ ), for ε ∈ [ε−,ε+]. (94)

This is the minimum among all monotone increasing curves bounded from below by the curve θ =ΘMxw(ε).
It is composed by ascending branches of θ =ΘMxw(θ ) and by the horizontal lines marked with dotted lines in
Fig. 5b. Let us denote by P̄ the simply connected region bounded by θ = Θ̄Mxw(ε) and θ =ΘR(ε). According
to the above said, any integral curve of (54) cannot leave P̄ and since there is no critical point in region P̄ they
must tend to the attractive point (ε+,θ+). Because (ε−,θ−) is a saddle point one obtains that a trajectory
connecting (ε+,θ+) and (ε−,θ−) exists for any μ > 0 and κ > 0 and lies inside P̄.

The reverse implication can be proved in the same way as in case C1 using relation (89). The uniqueness
of the connecting orbit is based on the fact that a trajectory connecting (ε±,θ±) cannot lie outside P̄.
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Fig. 5 Case C2 - phase portrait of (54) when: a) θ− < θ+ and θ =ΘMxw(ε) monotone increasing; b) θ− <ΘMxw(ε)< θ+, but
θ =ΘMxw(ε) is non-monotone.
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Fig. 6 Case C2 - possible phase portraits of (54) when θ− > θ+ and the chord criterion is satisfied: a) profile layers exists for
any μ > 0 and κ > 0 ; b) profile layers does not exists if heat conduction dominates the ”viscosity”.

Let us note that, for fixed ”viscosity” μ = μ̄ and sufficiently small κ , the connecting orbit (ε̂(ξ ), θ̂(ξ ); μ̄,κ)
is close to the non-monotone curve θ = ΘMxw(ε). In this case the smooth profile layer has the property that
ε = ε̂(ξ ) is strictly monotone, but θ = θ̂(ξ ) may become non-monotone as it happens in Fig. 5b. On the other
side, when the heat conduction dominates the ”viscosity”, the connecting orbit has to be close to the curve
θ =ΘR(ε) if this is monotone increasing or to the curve θ = Θ̄R(ε) defined by relation

θ = Θ̄R(ε) = max
ζ∈[ε−,ε ]

ΘR(ζ ), for ε ∈ [ε−,ε+], (95)

if θ = ΘR(ε) is non-monotone. In this second case the limit trajectory (ε̂(ξ ), θ̂(ξ );0, κ̄) has the property
that ε̂(ξ ) is discontinuous (isothermal jumps inside the profile layer) and piecewise smooth, while θ̂ (ξ ) is
continuous and piecewise smooth. Its trajectory in the ε − θ plane is given by the ascending branches of
θ =ΘR(ε) and by the isothermal strain jumps represented by dotted lines in Fig. 5b.

The case when the non-monotone function θ = ΘMxw(ε) overcomes θ+ can be treated as in case c)
considered in the following.

Let us first consider the phase diagram in Fig. 6a. Since θ− > θ+ and dΘMxw(ε±)
dε ≥ 0 it follows that

θ =ΘMxw(ε) must necessarily be non-monotone. According to relation (88) we have dΘR(ε+)
dε > dΘMxw(ε+)

dε > 0

and dΘR(ε−)
dε < dΘMxw(ε−)

dε . Consequently, θ =ΘR(ε) has to be also a non-monotone function for ε ∈ (ε−,ε+),
but always ending with a positive slope in the neighborhood of ε+. Since HMxw < 0 and R < 0 in the region
P bounded by θ = ΘMxw(ε) and θ = ΘR(ε), for ε ∈ (ε−,ε+) it follows that any integral curve of (54) is
monotone increasing inside P. On the boundary R = 0, for ε ∈ (ε−,ε+), all vector fields of the flow point
vertically toward the region P, while on the curve θ = ΘMxw(ε) the vector fields point horizontally toward
the region P on the ascending branches and point horizontally outwards P on the descending branches. In
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the region above HMxw = 0 for ε ∈ (ε−,ε+) we have HMxw > 0 and R < 0, and consequently the integral
curves of (54) are monotone decreasing. Therefore, the integral curve starting from the saddle point (ε−,θ−)
towards P has to be monotone increasing until it meets the descending branch of the curve θ =ΘMxw(ε). After
traversing it, this integral curve is monotone descending. If the ”viscosity” dominates the heat conduction then
this integral curve is close to the curve θ =ΘMxw(ε). It may happen that θ̂ (ξ ) descends below θ+. Then, this
integral curve will meet the ascending branch of the curve θ =ΘMxw(ε) and will enter again inside P reaching
the attractive point (ε+,θ+) by an ascending curve.

A different situation appears when the ”viscosity” is dominated by the heat conduction. In this case the
strain ε̂(ξ ) may overcome ε+. Thus, when μ → 0 the profile layers (ε̂(ξ ), θ̂(ξ ); μ , κ̄) will approach a pair of
functions denoted by (ε̂(ξ ), θ̂(ξ ); μ = 0, κ̄) with the property that ε̂(ξ ) is discontinuous while θ̂ (ξ ) is contin-
uous and piecewise smooth. Let us denote by (ε∗,θ−) the unique point with the property that R(ε∗,θ−) = 0,
where ε∗ > ε+ (Fig. 6a). Due to the above topological considerations this discontinuous limit solution, which
corresponds to a ”non-viscous”, heat conducting profile layer, is characterized by an isothermal jump from
(ε−,θ−) to (ε∗,θ−) and next is described by a pair of smooth functions (ε̂(ξ ), θ̂(ξ )) which are solution of
the reduced system (90) and connect the point (ε∗,θ−) with the attractive point (ε+,θ+).

The reverse implication that the chord criterion is also a necessary condition for the existence of a con-
necting orbit and its uniqueness can be also proved. We omit here the details.

Let us consider now the uncommon case c) illustrated in Fig. 6b. We denote again by (ε∗,θ−) the unique
point with the property that R(ε∗,θ−) = 0, where ε∗ > ε+. Unlike the diagram in Fig. 6a, we suppose that
between ε− and ε∗ there exists another critical point (ε0,θ0) for the system (54), i.e. a point where the curves
θ = ΘMxw(ε;ε+,θ+,ε−) and θ = ΘR(ε;ε+,θ+,ε−) intersect each other again. Let us note that this point
has to be a saddle point like (ε−,θ−). The chord condition is satisfied for ε ∈ (ε−,ε+) and if the ”viscosity”
dominates heat conduction it is obvious that a shock layer connecting (ε±,θ±) exists. Instead, if the ”vis-
cous” effects are negligible with respect to heat conduction effects, it is possible that there is no trajectory
connecting (ε−,θ−) with (ε+,θ+). Indeed, for fixed κ and μ → 0, the trajectory (ε̂(ξ ), θ̂(ξ ); μ , κ̄) leaving
the saddle point (ε−,θ−) is almost horizontal and must enter in the region between R(ε,θ ;ε+,θ+,ε−) = 0
and HMxw(ε,θ ;ε+,θ+,ε−) = 0, for ε > ε0. Since in this region HMxw > 0 and R > 0 the trajectory must be
monotone increasing (ε increasing, θ increasing). Consequently, the trajectory can not more reach the critical
point (ε+,θ+). Such an explicit example has been constructed by Pego [6] for gas dynamics equations in
order to exemplify that there may be a wave discontinuity which satisfies the chord criterion, but for which a
profile layer doest not exist if the heat conduction dominates the ”viscosity”.

Case C3.
∂ σeq
∂ θ (ε+,θ+) > 0 and ∂ σeq

∂ θ (ε−,θ−) < 0, i.e. different signs of the Grüneisen coefficient at the
critical points.

That means, (ε−,θ−) belongs to the region D− where ∂ σeq
∂ θ < 0, that is, where ε < εt(θ ) and (ε+,θ+)

belongs to the region D+ where ∂ σeq
∂ θ > 0, that is, where ε > εt(θ ) (Fig. 2). A typical compressive jump

discontinuity M+ → M− is illustrated in Fig. 3c and Fig. 7.
We recall that the chord condition (64) requires that the inequalities (70) be satisfied. We suppose first that

the inequalities are strict. That means (ε −,θ−) is a saddle point and (ε+,θ+) is an attractive point.

By using relation (68) one gets that dΘMxw(ε−)
dε < 0 and dΘMxw(ε+)

dε > 0. Therefore, θ = ΘMxw(ε) must
necessarily be a non-monotone function. It is monotone decreasing in the neighborhood of ε− and monotone
increasing in the neighborhood of ε+. Moreover, by using the chord condition (64) and relation (66) one gets
that the branch of the curve θ =ΘMxw(ε) which lies in D− is monotone decreasing. This reflects the fact that,
on this part of the trajectory of a ”viscous”, heat non-conducting profile layer, both the intrinsic dissipation
and the latent heat contribute to the heating process inside the layer. After the intersection with ε = ε t(θ ),
the function θ =ΘMxw(ε) reaches a minimum point at (ε ∗,θ ∗) and we suppose, that later on, it is monotone
increasing as in Fig. 7. This situation always happens if the additional restrictions (92) are satisfied. On this
part of the trajectory of the ”viscous”, heat non-conducting profile layer, the intrinsic dissipation contributes
to the heating, while the latent heat contribute to the cooling process inside the layer. Let us note that we can
not say anything about the order relation between θ+ and θ−.

Since the Grüneisen coefficients have different signs at the critical points it follows that the implicit equa-
tion R(ε,θ ) = 0, given by (55), is representable, and we assume that globally, by two functions of ε . One
branch θ = Θ−

R (ε), passing through (ε−,θ−), lies in the domain D− and satisfies R(ε,Θ−
R (ε)) = 0 and

σR(ε) = σeq(ε,Θ−
R (ε)) on the corresponding interval of definition. The second branch θ = Θ+

R (ε), passing



28 Cristian Făciu, Alain Molinari

MxwH        
<0 ; R<0

MxwH        <0 ; R>0

_ _
(ε ,θ  )

++(ε ,θ  )

MxwH        >0 ; R>0

ε=
ε 

(θ
)

t

P+

_
P

Mxw

H        =0

θ*

θrMxwH        >0 ; R<0

θ
ε

S

R
=0

R
=0

Fig. 7 Case C3 - phase portrait of (54) for the M+ → M− phase transformation illustrated in Fig. 3c.

_
ε

ε+

θ
_

θ+
θ
_

θ+

_
ε

ε+

θr
θ*

ξ ξ

ξξ

a) b)

Fig. 8 Case C3 - temperature spike-layers and strain interphase transition layers corresponding to Fig. 7. a) ”viscous” (μ > 0),
heat non-conducting layer (κ = 0); b) ”non-viscous” (μ = 0), heat conducting (κ > 0).

through (ε+,θ+), lies in the domain D+ and satisfies R(ε,Θ+
R (ε)) = 0 and σR(ε) = σeq(ε,Θ+

R (ε)) on the
corresponding interval of existence. Relations (87) and (88) are still valid for each branch and we get that
dΘ−

R (ε−)
dε > dΘMxw(ε−)

dε and
dΘ+

R (ε+)
dε > dΘMxw(ε+)

dε > 0. Therefore, θ = Θ+
R (ε) is an increasing function of ε in

the neighborhood of ε+ and moreover Θ+
R (ε) < ΘMxw(ε) in D+ for ε < ε+. Indeed, this inequality can be

proved by taking into account that it is satisfied in a neighborhood of ε+ and from the fact that θ = Θ+
R (ε)

(even non-monotone) cannot intersect θ =ΘMxw(ε) a second time without violating the chord condition (64).
In a similar way one shows that Θ−

R (ε)>ΘMxw(ε) in D− for ε > ε−.
Let us note that θ = Θ−

R (ε) has to be a non monotone function. Indeed, when (ε,Θ−
R (ε)) ∈ I− ⊂ D−

(see Fig. 2) we have
∂ σeq(ε ,Θ−

R (ε))
∂ ε < 0 and we get from (87) that θ = Θ−

R (ε) is monotone decreasing. When
θ = Θ−

R (ε) enters on that part of the austenitic domain A ⊂ D−, it must end with a positive slope since
otherwise would intersect the curve θ = ΘMxw(ε), which would contradict the chord criterion. Therefore,
there exists a point (ε r,θ r) ∈ D− where the branch θ = Θ−

R (ε) reaches its minimum and for simplicity we
assume that its form is as shown in Fig. 7. We suppose first that θ r < θ+.

The existence of a profile layer, follows now from the following topological considerations. We denote by
P− the simply connected region bounded from above by θ = Θ−

R (ε), from the right by ε = εt(θ ) and from
below by θ =ΘMxw(ε). We denote by P+ the simply connected region bounded from below by θ = Θ+

R (ε),
from the left by ε = εt(θ ) and from above by θ = ΘMxw(ε). We denote by S the simply connected region
bounded from below by θ = ΘMxw(ε), from the left by ε = εt(θ ) and from the right by θ = Θ+

R (ε) for
ε > ε+. Let us note that HMxw > 0 on the curve θ =Θ−

R (ε) for ε > ε− and HMxw < 0 on the curve θ =Θ+
R (ε)

for ε < ε+. On the other side, R < 0 on the curve θ = ΘMxw(ε) for ε ∈ (ε−,ε+). Therefore, on the curve
HMxw = 0 all vector fields of the flow induced by (54) point horizontally to the right, for ε ∈ (ε−,ε+). On the
curve θ =Θ−

R (ε) the vector fields point vertically down, while on the curve θ =Θ+
R (ε) they point vertically

up (Fig. 7). The integral curves of (54), which satisfy dθ
dε = μ(E−ρṠ2)Ṡ2

κE
HMxw

R , have the following properties.
For given μ > 0 and κ > 0 they are monotone decreasing in P−∪S and are monotone increasing in P+. Since
(ε−,θ−) is a saddle point, the trajectory starting from this point toward region P− is monotone decreasing
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and intersects the curve θ = ΘMxw(ε) at a point in the region D+. At this point the temperature reaches a
minimum value in the profile layer. After entering in the domain P+ the trajectory is monotone increasing and
since it cannot leave this domain it must end at the attractive point (ε +,θ+).

Therefore, when the Grüneisen coefficient has different signs at the critical points the temperature varia-
tion inside a ”viscous”, heat conducting profile layer is non-monotone. Moreover, in the compressive case, the
temperature reaches lower values than the front and back state temperature (Fig. 7), while in the expansive
case it will reach higher values. Thus, the profile layer of the temperature displays a narrow peak (or, spike)
pointing down as it is illustrated for instance in Fig. 8. At the point ξ0 where dθ̂

dξ = 0 the heat flux q changes the
sign, that means the heat flux q changes the direction inside the profile layer. This behavior is in agreement
with the fact that, a continuous transformation from variant M+ to variant M− passes through the phase A
and the transformation M+ → A is endothermic (cooling for ξ > ξ0) while the transformation A → M− is
exothermic (heating for ξ < ξ0) (Fig. 8).

The limit behavior of the profile layers (ε̂(ξ ), θ̂(ξ ); μ ,κ) as μ → 0 and/or κ → 0 can be studied in the
same way as in the previous compressive cases.

One observes that when the ”viscosity” largely dominates the heat conduction, the trajectory of the con-
necting integral curve is closer to the curve HMxw = 0. Moreover, for fixed ”viscosity” μ = μ̄ and κ = 0 the
connecting orbit (ε̂(ξ ), θ̂(ξ ); μ̄,0) is solution of the reduced system (60) and matches with the non-monotone
curve θ =ΘMxw(ε). The corresponding ”viscous”, heat non-conducting profile layer is illustrated in Fig. 8a.
It is worth to remark that when μ → 0 the limit of the strain profile ε̂(ξ ; μ ,0) is a step discontinuous function
whose value is ε− for ξ < ξ0 and ε+ for ξ > ξ0. On the other side, due to the spike-layer form of the tem-
perature profiles, the limit of θ̂ (ξ ; μ ,0), for μ → 0, is a discontinuous function whose value is θ− for ξ < ξ0,
θ ∗ at ξ = ξ0 and θ+ for ξ > ξ0, where θ ∗ represents the minimum value of the function θ = ΘMxw(ε), for
ε ∈ (ε−,ε+). For both strain and temperature profiles the convergence for μ → 0 is uniform in ξ in any closed
interval not containing the discontinuity point ξ0.

We have to remark that the adiabatic thermoelastic temperature structure with sharp interface does not in-
herit the temperature structure of the augmented theory. Indeed, the minimum value θ ∗ of θ =ΘMxw(ε) does
not play any role in solving a Riemann problem involving a compressive shock induced M− → M+ phase
transformation in the framework of the adiabatic thermoelastic wave theory. In this approach only the lateral
limits θ± across the discontinuity are relevant. On the other side, for an adiabatic rate-type approach of the
same problem, with small ”viscosity” μ , the minimum value θ ∗ and the corresponding spike-layer tempera-
ture structure may become extremely important, specially when one describes wave interaction phenomena.
The prediction of the augmented theory of larger values of the temperature inside the profile layer than the
front state and back state temperatures could be extremely important from experimental point of view.

Let us consider the opposite case when the heat conduction largely dominates the ”viscosity”. In a similar
way as in the previous cases one shows that for fixed κ = κ̄ , as μ → 0, the trajectories (θ̂(ξ ), ε̂(ξ ); μ , κ̄) of
the integral curves of (54) in the region D− tend to be closer to a monotone decreasing curve θ = Θ̄−

R (ε) of
the type (91), while the trajectories of the integral curves in the region D+ tend to be closer to a monotone
increasing curve θ =Θ+

R (ε) of the type (95). We also note that the intersection point between the trajectory
of the profile layer (ε̂(ξ ), θ̂(ξ ); μ , κ̄) with the curve θ = ΘMxw(ε) moves up as μ → 0. The corresponding
limit value of the temperature is θ r, which is the minimum value of the function θ = Θ̄−

R (ε).
Since the sign of the slope of these trajectories is negative in P− ∪ S and positive in P+ one gets that

the limit trajectory (ε̂(ξ ), θ̂(ξ );0, κ̄) in the ε − θ plane, for the phase portrait in Fig. 7, is composed by: a
horizontal line starting at (ε−,θ−) and ending at the intersection point with the curve θ = Θ −

R (ε) (dotted
line in Fig. 7), then by the curve θ = Θ̄−

R (ε) until its minimum point having the temperature θ r, next by a
horizontal line which ends at the intersection point with the curve θ =Θ +

R (ε) (dotted line in Fig. 7) and finally
by the curve θ =Θ+

R (ε) until the point (ε+,θ+). Thus, for this ”non-viscous”, heat conducting profile layer,
illustrated in Fig. 8b, the temperature is continuous, but the strain is discontinuous having isothermal jumps
inside the profile layer.

The limit of the ”non-viscous”, heat conducting profile layer (ε̂(ξ ), θ̂(ξ );0,κ), as κ → 0, has the follow-
ing properties. The strain profile is a step discontinuous function whose value is ε− for ξ < ξ0 and ε+ for
ξ > ξ0, while the temperature profile is a discontinuous function whose value is θ − for ξ < ξ0, θ r at ξ = ξ0
and θ+ for ξ > ξ0 (Fig. 8b).

It should be noted that as μ , κ → 0 the iterated limits coincide and are equal with the double limit for any
ξ �= ξ0. The difference appears at ξ = ξ0 where the iterated limits do not coincide more.
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The case Ṡ2 = λ 2(ε+,θ+), or Ṡ2 = λ 2(ε−,θ−) can be treated as previously. The reverse implication that
the chord criterion is also a necessary condition for the existence of a connecting orbit and its uniqueness can
be also proved. We omit here the details.

When θ r > θ+ in Fig. 7 two phase portraits similar with those illustrated in Figs. 6 are possible, but we
disregard here their analysis.

5.2.2 The entropy production in a ”viscous”, thermally conducting profile layer.

Let the pair (ε̂(ξ ; μ ,κ), θ̂(ξ ; μ ,κ)) be a traveling wave solution of the system (54). According to the entropy
identity (47) and the dissipation relations (32) established for the Maxwellian rate-type material coupled with
the Fourier heat conduction law it follows that the total entropy production in a profile layer is given by

Ptrav
Mxw =−Ṡ

∫
Γ

(E −ρ Ṡ2)

θ
ρ

∂ ψMxw(ε,σR(ε),θ )
∂ σ

dε +
1

θ 2 HMxw(ε,θ )dθ ≥ 0, (96)

where Γ = {(ε̂(ξ ; μ ,κ), θ̂(ξ ; μ ,κ)) | ξ ∈ (−∞,∞) } is the continuous piece-wise smooth curve connecting
(ε−,θ−) and (ε+,θ+) in the ε − θ plane. Let us note that, by using relation (31)1, we can prove that the
integrand is a total differential. Moreover, one can show that

Ptrav
Mxw =−Ṡ

∫
Γ

d
(
− HMxw(ε,θ )

θ
+ρηMxw(ε,σR(ε),θ )

)
=−Ṡρ

(
ηeq(ε+,θ+)−ηeq(ε−,θ−)

)≥ 0 (97)

Therefore, the total entropy production in the profile layer does not depend on ”viscosity” or heat conductivity.
All the comments in Remark 5 remain valid.

5.2.3 The entropy variation inside a profile layer.

Let us denote by θ = θ̂ (ε; μ ,κ) the trajectory in the ε−θ plane of the Maxwellian ”viscous”, heat conducting
traveling wave solution of the problem (54). By using the thermodynamic properties established in Sect. 4.1
and relation (48) one gets that, if the strain profile ε = ε̂(ξ ; μ ,κ) is strictly monotone, the entropy along this
trajectory, denoted by η = η̂(ε; μ ,κ)≡ ηMxw(ε,σR(ε), θ̂ (ε; μ ,κ)), satisfies relation

ρ
dη̂(ε; μ ,κ)

dε
=

ρCMxw(ε,σR(ε), θ̂ (ε))
θ̂ (ε)

dθ̂ (ε)
dε

−
(
E −ρ Ṡ2

)
(
E − ∂ σeq

∂ ε (ε̃, θ̂ (ε))
) ∂ σeq

∂ θ
(ε̃, θ̂ (ε)), (98)

for ε between ε− and ε+, where ε̃(ε) is the unique solution of equation (67).

a) Monotonous variation of the entropy inside a ”viscous”, heat non-conducting profile layer. We have seen
that for fixed μ = μ̄ and κ → 0, ε̂(ξ ; μ̄,κ) and θ̂ (ξ ; μ̄,κ) approach the solution of the reduced system (60)
and the curves θ = θ̂ (ε; μ̄,κ) are increasingly close to the curve θ =ΘMxw(ε). Therefore, by making κ → 0

in relation (98) and taking into account that limκ→0 θ̂ (ε; μ̄ ,κ) =ΘMxw(ε) and limκ→0
dθ̂ (ε ;μ̄,κ)

dε = dΘMxw(ε)
dε , at

the points where the derivative makes sense, we obtain by using relation (66) that

ρ
dη̂(ε; μ ,0)

dε
=

(E −ρ Ṡ2)

E

(σR(ε)−σeq(ε̃,ΘMxw(ε)))
ΘMxw(ε)

, (99)

where ε̃(ε) is given by relation (67). From (39) it results that this relation is just relation (75) already estab-
lished when investigating the entropy production in a ”viscous”, heat non-conducting profile layer.

It is obvious now that for the compressive case, when ε− < ε+, the chord condition (64) requires that the
entropy η = η̂(ε; μ̄ ,0) in a ”viscous”, heat non-conducting profile layer be a strictly decreasing function of
ε , while for the expansive case, ε+ < ε−, it requires to be a strictly increasing function of ε .

By using continuity arguments, we expect that this property of monotonicity of the entropy inside a profile
layer remains valid when the ”viscosity” effect largely dominates the heat conductivity effect.
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b) Non-monotonous variation of the entropy inside a ”non-viscous”, heat conducting profile layer. We show
now that when the heat conductivity effect largely dominates the ”viscosity” effect the variation of the entropy
η = η̂(ξ ), for ξ ∈ (−∞,∞), is non-monotone and even more its value can become inside the profile layer lower
than the front state value η+ and/or larger than Hugoniot back state value η− > η+. This phenomenon of
entropy overshoot or undershoot has been mentioned for instance by Landau and Lifschitz [41, Chap. IX,
§87] in gas dynamics and by Dunn and Fosdick [13] in thermoelastic materials.

We recall that for fixed κ = κ̄ and μ → 0 the pair ε̂(ξ ; μ , κ̄) and θ̂ (ξ ; μ , κ̄) approach the solution of
the reduced system (90), which describes a ”non-viscous”, heat conducting profile layer, and its trajectory
in the ε −θ plane, θ = θ̂ (ε; μ̄,κ) is increasingly close to the curve θ = Θ̄R(ε) defined by (91), or by (95),
depending on the monotonicity of the function θ =ΘR(ε). Therefore, by making μ → 0 in relation (98) and

taking into account that limμ→0 θ̂ (ε; μ , κ̄) = Θ̄R(ε), and limμ→0
dθ̂ (ε ;μ,κ̄)

dε = dΘ̄R(ε)
dε , at the points where the

derivative makes sense, we obtain

ρ
dη̂(ε;0, κ̄)

dε
=

ρCMxw(ε,σR(ε),Θ̄R(ε))
Θ̄R(ε)

dΘ̄R(ε)
dε

−
(E −ρ Ṡ2)

∂ σeq
∂ θ (ε̃,Θ̄R(ε))(

E − ∂ σeq
∂ ε (ε̃ ,Θ̄R(ε))

) (100)

where ε̃(ε) is the unique solution of equation (35) for σ = σR(ε) and θ = Θ̄R(ε).
Let us note that, according to the definition (91), or (95) of function θ = Θ̄R(ε), the expression of dΘ̄R(ε)

dε

is given by relation (87) on the open intervals on which Θ̄R(ε) ≡ ΘR(ε), or dΘ̄R(ε)
dε = 0 on the open intervals

on which Θ̄R(ε) �=ΘR(ε), i.e. on the intervals on which Θ̄R(ε) is constant.
We are interested to calculate the expression of (100) at ε = ε±. By using relation (87) at the critical points

(ε±,θ±) one gets

ρ
dη̂(ε±;0, κ̄)

dε
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ2Ceq(ε±,θ±)
(
Ṡ2 −λ 2(ε±,θ±)

)
θ± ∂ σeq

∂ θ
(ε±,θ±)

, if dΘ̄R(ε±)
dε �= 0,

− (E −ρ Ṡ2)(
E − ∂ σeq

∂ ε
(ε±,θ±)

) ∂ σeq
∂ θ (ε±,θ±), if dΘ̄R(ε±)

dε = 0.
(101)

where λ(ε,θ ) is according to (18) the sound speed of the adiabatic thermoelastic system.

Let us consider for illustration the case C3, when ∂ σeq
∂ θ (ε+,θ+) > 0, ∂ σeq

∂ θ (ε−,θ−) < 0 and the phase

portrait is illustrated in Fig. 7. We have already established that in this case dΘR(ε+)
dε < 0 and Ṡ2−λ 2(ε+,θ+)≥

0, since (ε+,θ+) is an attractive node. One gets from (101)1 that η̂ ′(ε+;0, κ̄) > 0. At the critical point

(ε−,θ−) where S2 − λ 2(ε−,θ−) ≤ 0 we have two possibilities concerning the value of dΘR(ε−)
dε . First, if

dΘR(ε−)
dε > 0, like in Fig. 7, then dΘ̄R(ε−)

dε = 0 and according to (101)2 it results that η̂ ′(ε−;0, κ̄) > 0. Second,

if dΘR(ε−)
dε = dΘ̄R(ε−)

dε < 0, then according to (101)1 it follows that η̂ ′(ε−;0, κ̄)> 0.
Therefore, the entropy η = η̂(ε;0,κ), ε ∈ (ε−,ε+), is an increasing function of ε in the neighborhoods of

ε− and ε+, ε− < ε+. Since η− = η̂(ε−;0,κ)>η+ = η̂(ε+;0,κ) it results that the entropy in a neighborhood
of ε−, for ε > ε− is larger than the back state entropy η− and its value in the neighborhood of ε+, for ε < ε+
is lower than the front state entropy η+. As a result, the entropy has inside the profile layer an interior absolute
maxima which overshoots the Hugoniot back state entropy η− and an absolute minima which undershoots
the front state entropy η+.

In a similar way one shows that in case C1 the entropy inside a ”non-viscous”, heat conducting profile
layer overshoots the back state entropy η−>η+ and in case C2 the entropy undershoots the front state entropy
η+.

By using continuity arguments one gets that the non-monotonous variation of the entropy and the phenom-
ena of entropy overshoot and entropy undershoot always occur when the heat conductivity effect dominates
the ”viscosity” effect.
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6 Summary

We consider that knowledge of temperature variation is critical in studies of phase transition phenomena
and that the transition from one stable phase to another does not occur instantaneously. For that reason we
introduce a dissipative mechanism governed by a Maxwellian rate-type constitutive equation and by heat
conduction. The equilibrium of this model is described by a thermoelastic relation with the typical feature
that the Grüneisen coefficient changes its sign. The thermodynamic properties of the Maxwellian model are
systematically used in investigating the existence, uniqueness and the structure of shock and interphase layers.

We show how steady wave profiles reflect, on one side, the exothermic or endothermic character of phase
transitions, and on the other side, the effect of internal dissipative mechanism. It is emphasized that the
variation of the temperature inside a ”viscous”, heat non-conducting profile layers results from the competition
between the cooling/heating effect due to the latent heat, and the heating effect due to the intrinsic dissipation.
Based on this observation additional constitutive assumptions are discussed for phase transforming materials.

For a M+→M− impact induced phase transformation, when the sign of the Grüneisen coefficient changes
inside the layer, the temperature variation has a spike-layer form. Therefore, the experimental detection that a
particle, during the passage of a wave, can experience lower or larger temperatures than that at its front state
and back state could provide valuable information on the presence of an interphase layer and on the time of
transition between phases.

We also discuss when the chord criterion with respect to the Hugoniot locus in the strain-stress space is
a necessary and sufficient condition for the existence of a profile layer and its role as admissibility condition
for discontinuous solutions of the adiabatic thermoelastic system.

The profound difference in the effect of ”viscosity” and of heat conduction on the structure of the profile
layers (possible existence of isothermal jumps inside a profile layer) and on the behavior of the entropy inside
the profile layer (the phenomenon of entropy overshoot, or undershoot) have been discussed.
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