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The structure of shock and interphase layers for a heat
conducting Maxwellian rate-type approach to solid-solid
phase transitions
Part II: Numerical study for a SMA model.

Abstract One continues the qualitative analysis started in Part I [1]concerning the thermomechanical char-
acteristics of a steady, structured moving phase boundary in a shape memory alloy (SMA) by a quantitative
investigation. The internal structure of these interphaselayers is governed by a Maxwellian rate-type consti-
tutive equation coupled or not with the Fourier heat conduction law. We consider as equilibrium stress-strain-
temperature response function for the Maxwellian model an explicit piecewise linear thermoelastic relation
for a SMA bar which can exist in the austenite phaseA and in two variants of martensiteM±. Its thermal
properties are built in agreement with experimental results on NiTi. This equilibrium relation has the atypical
property that not only the derivative of the stress responsefunction with respect to the strain changes its sign,
but also the derivative with respect to the temperature. Considerable temperature variation is generated by
impact-induced phase transformations due to the large amount of latent heat released (absorbed) inside the
transition layer. One gets strong heating (cooling) acrossa compressiveA→ M− (expansiveM− → A) propa-
gating interphase layer. A significant lower (larger) temperature than that at the front and Hugoniot back state
is obtained inside an impact-inducedM+ → M− (M− → M+) interphase layer. The experimental finding of
this phenomenon of temperature undershoot (overshoot) could be a valuable indication for the existence of an
interphase layer.

Keywords Phase transitions· Thermoelasticity· Impact· Entropy· Traveling waves· Admissibility

1 Introduction

While the discontinuous shock wave theory in condensed matter is extremely useful in many applications
involving impact loading conditions, the use of shock layertheory, characterized by a small interval of rapid
transition induced by viscosity, heat conduction or other structuring parameter, can have important theoretical
and experimental consequences. For example, steady plastic shock waves have been observed in the 1960s,
but their definitive experimental evidence is due to Barker [2] who, by using a new technique of laser velocity
interferometry, has brought an important contribution to the development of constitutive theory of viscoplastic
materials by the discovery of the ”fourth power law”. About this law and the role of viscosity in the structuring
of shock waves in metals an overview can be found in Molinari and Ravichandran [3] and Grady [4].

Steady-propagating plastic shock waves have been analyzedfrom plate-impact experiments by measuring
the rear surface velocity history at the free surface of the target specimen using laser interferometry. Prop-
agating phase boundaries cannot be directly observed by this method. That is due to their low propagation
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speed with respect to the sound speed and to the wave interactions and reflections following the impact which
hinder the generated phase boundary to reach the monitoringsurface. The presence of a propagating phase
boundary and its speed can be deduced only in an indirect way from measurements of the elastic waves at the
rear end of the target specimen (see Escobar and Clifton [5] and the theoretical study [6]).

Other experiments in which a flyer plate or projectile strikes a target specimen and induces a propagating
phase boundary have been also carried out. Shock-induced graphite-to-diamond martensitic phase transitions
are described in Erskine and Nellis [7], while in SMAs they have been investigated for instance by Lagoudas
et al [8], Niemczura and Ravi-Chandar [9]. These dynamic experiments use different methods to identify
mechanical characteristics of the transformation front, but neglect the large temperature variation generated
after the passage of the wave front which can be an extremely valuable manifestation of a phase transforming
process. That is obviously due to the fact that such measurements require adequate temperature diagnostic
tools to record short-lived transient phenomena.

The incorporation of thermal effects into the continuum modelling of impact-induced solid-solid phase
transitions has been considered, for example, by Abeyaratne and Knowles [10], [11], [12] in the framework
of a driving force theory, by Chen and Lagoudas [13], [14] andLagoudas etal [8] using a theory based on
a volume fraction as internal variable. Solutions withsharp discontinuitieshave been obtained for the corre-
sponding impact problems. Another way to model the responseof phase transforming materials is to introduce
an internal dissipation by augmenting the thermoelastic law in such a way that the stress depends additionally
on strain-rate (the Kelvin-Voigt approach used in Vainchtein [15], [16]) and on spatial strain-gradients (the
”viscosity-capillarity” model used in Slemrod [17], Abeyaratne and Knowles [18],Turteltaub [19], Ngan and
Truskinovsky [20], [21]), or the so-called Maxwellian rate-type approach for whichthe stress depends addi-
tionally on strain-rate and stress-rate used in Făciu and Mihăilescu-Suliciu[22], Făciu and Molinari[6] and in
Part I [1]. These augmented theories replace the sharp discontinuities bytransition layers of finite thickness.

The Maxwellian model, which we consider in the following, includes as a limit case the Kelvin-Voigt
model. It introduces atime of relaxationrelated to a ”viscosity” parameter in the Maxwellianrate-type
relation which characterizes the kinetics of phase transition. Indeed, in quasistatic loading conditions, this
rate-type approach allows to capture automatically the material instability phenomena which lead to the nu-
cleation and growth of phases in the unstable regions without additional nucleation criterion (see Făciu and
Mihăilescu-Suliciu[22]). Thus, the transition process of a particle from one stable phase to another does not
occur instantaneously, but it requires a finite phase transition time. The rate of growth of the instability is
inverse proportional with this time of relaxation (see Făciu and Molinari [6]). In the case of dynamic loading
conditions the time of relaxation is a structuring parameter for a moving interphase layer. Another structuring
parameter is the heat conduction which even alone has the capacity to structure shock waves as it was shown
in the comprehensive study on thermoelastic materials by Dunn and Fosdick [23].

In the first part [1] we have developed a detailed treatment ofsteady, structured shock waves in a gen-
eral framework for a thermoelastic SMA bar. The newness of this study consist in the fact that the internal
structure of these traveling waves is governed by a constitutive approach which has not been considered until
now, namely the Maxwellian rate-type constitutive equation coupled or not with the Fourier heat conduction
law. Moreover, we have considered a thermoelastic stress-strain-temperature relationσ = σeq(ε,θ ) with the

properties that both derivatives∂ σeq
∂ ε and ∂ σeq

∂ θ change their sign in the constitutive domain. The first property
is usual for a phase transforming material, but the second one is atypical for thermoelastic materials and its
outcomes have not been investigated systematically until now. This second property is based on laboratory ex-
periments and expresses the fact that in traction tests the stress plateaus of the hysteresis loop increase, while
in compression tests the stress plateaus of the hysteresis loop decrease as the temperature grows. In addition,
this property has important consequences on thermal features of the internal structure of the interphase layers
which could be exploited from experimental point of view.

The goal of this paper is to complete this qualitative analysis with a quantitative description. To do this,
we introduce in Sect. 2 an explicit piecewise linear thermoelastic modelσ = σeq(ε,θ ) with non-monotone
stress-strain relation for a certain range of temperatureθ . This model is appropriate to characterize phe-
nomenological aspects of the thermomechanical response ofa SMA bar in tension and compression tests. It
corresponds to a material capable of existing in three distinct solid phases: the austeniteA and two variants of
martensiteM±. The numerical parameters of the proposed thermoelastic model are chosen in such a way that
the evolution of the non-monotone stress-strain relation with the temperature is quantitatively consistent with
the rate of increase of the hysteresis plateau with temperature obtained by Shaw [24] in traction tests for NiTi
strips in the range of temperatures between 15◦C and 55◦C. In this approach the free energy of the thermoe-
lastic model is not prescribed a priori, but on the contrary is determined once the stress-strain-temperature
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relation has been established. The thermodynamic potentials of the thermoelastic model are characterized in
Appendix A. We also introduce in Sect. 2 the mixed hyperbolic-elliptic system of field equations and the jump
relations for the three phase thermoelastic material. The internal energy allows us to explicitly determine the
Hugoniot locus in the temperature-strain space and in the stress-strain space. In Sect. 3 we use this thermoe-
lastic model as an equilibrium relation for a Maxwellian rate-type constitutive equation. The thermodynamic
potentials of the Maxwellian model are explicitly determined for this equilibrium relation in Appendix B. The
procedure for finding traveling wave solutions structured by rate-type effects (”viscosity”) and heat conduc-
tion is outlined in Sect. 4. In Sect. 5 we describe the prediction of our constitutive approach for impact-induced
phase transformations from the austenite phaseA to the martensitic variantM− and for the reverse situation.

In this case the∂ σeq
∂ θ has a constant negative sign inside the profile layer. We illustrate how after the passage of

the moving interface separating the two phases of the material the temperature increases in the compressive
case and decreases in the expansive case. The considerable increase or decrease of temperature is due to the
large amount of latent heat released or absorbed during the phase transformation inside the transition layer.
We also consider the case of an impact-induced compressive phase transformation from the martensite vari-

antM+ to the martensite variantM− when ∂ σeq
∂ θ changes its sign inside the interphase layer. This is the most

interesting case through its theoretical and practical consequences. Indeed, in this case the material is heated
by the passage of the compressive moving phase boundary, i.e. the temperature of the Hugoniot back state
is significantly higher than the temperature of the front state, but there are places inside the transition layer
where the temperature is considerably lower than the front and back state temperature. This phenomenon of
temperature undershoot in a steady structured wave is in agreement with the endothermic character of the
M− → A transformation and the exothermic character of theA→ M+ transformation. This behavior cannot
be predicted by a sharp interface theory where only the frontstate and the admissible Hugoniot back state are
relevant. On the other side the existence of this spike-layer form of the temperature profile gives the possibility
to an interphase layer to be detected experimentally. Finally, Sect. 6 contains conclusions and discussions.
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Fig. 1 a) Schematic description of the phase diagram in theε −θ plane for the piecewise linear thermoelastic model (1)-(3); b)
Evolution of the non-monotone stress-strain relationσ = σeq(ε ,θ) with respect to temperature for the input data in Tabel 1.

2 A piecewise linear thermoelastic model for a three phase SMA

It is now unanimously accepted that the main features of solid-solid phase transitions, like in shape memory
alloys, are predicted by using thermoelastic constitutivelaws with non-monotone stress-strain relations for
certain intervals of temperature. We consider here an explicit and simple relationσ = σeq(ε,θ ), called equi-
librium stress-strain-temperature relation, which fulfills the thermomechanical assumptionsH1-H3 described
in Part I [1]. It characterizes the response of a SMA bar whichcan exist in three phases: the (low strain)
austenite phaseA and two variants of martensiteM± (large strain) obtained in tension or compression tests.

Starting from isothermal stress-strain curves obtained inlaboratory experiments at very low strain-rates
we can associate the strain intervals on which the stress-strain relation has positive slope, both in loading and
unloading tests, with the stable phases of the material. Such kind of experiments are illustrated in Shaw [24,



4 Cristian Făciu, Alain Molinari

Fig. 3] for the pseudoelastic response of a nearly equiatomic polycrystalline NiTi alloy under uniaxial traction
tests for temperatures between 15◦C and 55◦C.

We consider there exist two critical temperaturesθm andθM with the property that forθ ∈ [θm,θM] all
three phases are available to the material. This means that,for fixed θ , on the intervals:ε ≤ ε−m(θ ), ε ∈
[

ε−M(θ ),ε+M(θ )
]

andε ≥ ε+m(θ ) the functionσ = σeq(ε,θ ) is a monotonicallyincreasingfunction of strain
(Fig. 1). The pairs

(

ε = ε±M(θ ),σ = σ±
M(θ ) = σeq(ε±M(θ ),θ )

)

are associated with the change of sign of
the slope of the equilibrium stress-strain relation at constant temperature and correspond to the strain-stress
states where the instabilities accompanying theA→ M± phase transformation start to manifest in quasistatic
isothermal uniaxial tensile or compressive loading experiments. In fact, they are related to the beginning of
the loading stress plateau of the hysteresis loop, which fora NiTi alloy manifest in the form of a first stress
drop followed by slight stress oscillations (Shaw [24, Fig.3]). In a similar way, the pairs

(

ε = ε±m(θ ),σ =

σ±
m(θ ) = σeq(ε±m(θ ),θ )

)

are associated with the strain-stress states where the instabilities accompanying the
reverseM± → A phase transformation start to develop along the unloading stress plateau.

For fixed θ > θM the material only exists in its austenitic form and the stress response functionσ =
σeq(ε,θ ) is a monotonicallyincreasingfunction of strain. For fixedθ < θm the material only exists in its
martensitic variantsM± andσ = σeq(ε,θ ) is a monotonicallyincreasingfunction of strain forε ≤ ε−m(θ ) and
ε ≥ ε+m(θ ), while on the remaining strain intervalε ∈

(

ε−m(θ ),ε+m(θ )
)

it is monotonicallydecreasing.
Piecewise linear stress-strain relations have been often successfully employed to characterize analytically

and numerically different aspects concerning phase transformation in solid bars in the isothermal setting
(Abeyaratne and Knowles [18], Truskinovsky [25], Făciu and Molinari [6]) and also in the non-isothermal
setting(see Turteltaub [19], Abeyaratne and Knowles [10], [11], Abeyaratne etal [26], Făciu and Mihăilescu-
Suliciu [22], Vainchtein [16]).

We consider in this paper only temperaturesθ ranging in an interval included in[θm,θM]. The equilibrium
stress response function is given by the continuous and piecewise smooth relation

σ = σeq(ε,θ ) =



















E3(ε − ε−m(θ ))+σ−
m(θ ), for ε ≤ ε−m(θ )

−E2(ε − ε−m(θ ))+σ−
m(θ ), for ε−m(θ )< ε < ε−M(θ )

E1(ε − ε−M(θ ))+σ−
M(θ ), for ε−M(θ )≤ ε ≤ ε+M(θ )

−E2(ε − ε+m(θ ))+σ+
m(θ ), for ε+M(θ )< ε < ε+m(θ )

E3(ε − ε+m(θ ))+σ+
m(θ ), for ε+m(θ )≤ ε

(1)

whereE1 > 0 andE3 > 0 represent the constant elastic moduli of the austenite phaseA and martensite variants
M±, respectively, while−E2 < 0 is the elastic modulus of the unstable (spinodal) regions.

The choice of this simple piecewise linear model is in agreement with the linear thermoelastic behavior
observed experimentally for a SMA in uniaxial tensile and compressive tests when the material is in a pure
phase: austeniteA, or in one of the two martensite variantsM± (Shaw [24]). While the monotone increasing
parts of the stress-strain relation can be chosen in such a way to fit known quasi-static isothermal experiments,
the monotone decreasing part, which induces instability phenomena and influences the kinetics of phase
transformation, cannot be determined in a direct way from such tests. For simplicity, we choose here a straight
line with constant slope−E2 connecting the local maxima and minima of the equilibrium stress-strain relation.

To get a linear thermoelastic behavior of the material in a single phase we require that functionsε = ε±M(θ ),
ε = ε±m(θ ) as well asσ = σ±

M(θ ), σ = σ±
m(θ ) be linear functions ofθ . We derive the following expressions

(see also [22])

ε±M(θ ) = α(θ −θT)±M(θ −θm), ε±m(θ ) = α(θ −θT)∓ (M−m)(θ −θM)±M(θ −θm), (2)

σ+
M(θ ) =−σ−

M(θ ) = E1M(θ −θm), σ+
m(θ ) =−σ−

m(θ ) = E1M(θ −θm)+E2(M−m)(θ −θM), (3)

satisfying conditionsε−M(θm) = ε+M(θm), ε+M(θM) = ε+m(θM), ε−M(θM) = ε−m(θM) (see Fig. 1a). For simplicity
reasons we have assumed in (3) that the deformation behaviorin tension and compression tests is symmetric
although, in general, for SMAs that is not true.

The other material parameters entering (2) have the following meaning. According to (22),α=const.> 0
is the thermal expansion coefficientof the material in the austenite phaseA, while the temperatureθT ∈
(θm,θM) is a reference temperature with the property that the undeformed material in phaseA is stress free,
i.e. σeq(0,θT) = 0.

Because in traction tests the hysteresis loop moves upwards, while in compression tests it moves down-

wards as the temperature grows, it follows that necessarilydσ+
M (θ )
dθ and dσ+

m (θ )
dθ are positive, whiledσ−

M (θ )
dθ and
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dσ−
m (θ )
dθ are negative. Moreover, these quantities can be determinedexperimentally and it is found that,in gen-

eral, they are constant (see Shaw and Kyriakides [27], Shaw [24]). Therefore, the two material constantsm

andM can be determined from relations
dσ+

M (θ )
dθ = E1M > 0 and dσ+

m (θ )
dθ = E1M+E2(M−m) > 0 once the

elastic moduli are known.
In order to study the qualitative, as well as quantitative, behavior of steady, structured shock and interphase

layers in a phase transforming bar we choose material parameters for the thermoelastic model that ensure a
good agreement with the pseudoelastic response of a NiTi strip in traction tests, in the range of temperatures
between 15◦C-55◦C, considered and illustrated in Shaw [24, Fig. 3].Table 1 shows the chosen thermal and
mechanical constants which, together with the remaining parametersM = 1.78571×10−4 ◦K−1, m= 1.746×
10−4 ◦K−1, θm = 241.15 ◦K, θM = 10000. ◦K, θT = 293.15 ◦K, lead to the isothermal stress-strain curves
σ = σeq(ε,θ ) illustrated in Fig. 1b.

Table 1 Mechanical and thermal parameters for the thermoelastic model

Elastic modulus of the austenite phaseA E1 (GPa) 42.
Elastic modulus of the martensite variantsM± E3 (GPa) 20.
Elastic modulus of the spinodal regionsI± −E2 (GPa) -6.55
Thermal expansion coefficient in the austenite phaseA α (◦K−1) 10−5

Mass density ρ (kg/m3) 8000.
Specific heat in the austenite phaseA C ( J/Kg/◦C) 500.

The thermoelastic relation (1) is similar to that derived from physical considerations on the behavior of
shape memory alloys by Abeyaratne etal [26]. It has been used in Făciu and Mihăilescu-Suliciu [22] as an
equilibrium relation for a Maxwellian rate-type approach to the thermoelasticity and for numerical simulations
of quasi-static strain-controlled tests. These simulations of the evolution of the strain and temperature distri-
bution in a specimen have shown a good agreement with the full-field temperature measurements performed
by Shaw and Kyriakides [27] in quasi-static laboratory experiments.

Let us note that for the numerical parameters used we get
dσ+

M (θ )
dθ = −

dσ−
M (θ )
dθ = 7.49MPa/◦K, which is a

value appropriate to that obtained experimentally in Shaw [24, Fig. 3] for the rate of increase with respect to

the temperature of the stress plateau forA→ M+ transformation, whiledσ+
m (θ )
dθ =−dσ−

m (θ )
dθ = 7.52MPa/◦K.

Moreover, the conditionH3 in Part I [1], which assumes the existence of a monotone curvein theε −θ
plane across which∂ σeq

∂ θ changes its sign, is satisfied. For the numerical entries used, this curve is justε =

ε+M(θ ) (see Fig. 1a). This property is an essential particular feature of the proposed thermoelastic model,
in agreement with the experimental observations, and allows to characterize the thermal dependence of the
hysteresis loop in traction or compression tests.

The PDE system describing the motion of a thermoelastic bar in the absence of heat conduction is given
by

∂ ε
∂ t

−
∂v
∂X

= 0, ρ
∂v
∂ t

−
∂ σeq(ε,θ )

∂X
= 0, ρCeq(ε,θ )

∂ θ
∂ t

−θ
∂ σeq(ε,θ )

∂ θ
∂v
∂X

= 0. (4)

wherev = v(X, t) is the velocity of a particleX at timet. Ceq(ε,θ ) is thespecific heat of the thermoelastic
materialand is defined in Appendix Aby relation (28).

It is known (see for instance Part I [1]) that the adiabatic thermoelastic system (4) is hyperbolic on those

regions of theε − θ plane where∂ σeq
∂ ε + θ

ρCeq

(

∂ σeq
∂ θ

)2
≥ 0 and it is elliptic on the complementary part. For

the piecewise linear thermoelastic model defined by relations (1)-(3) and for the input data in Table 1 one
can verify by using relation (28) in Appendix A that the curves ε = ε±M(θ ) andε = ε±m(θ ) delimitate the
regions of hyperbolicity and ellipticity of the system. We identify the domains of hyperbolicity with the so-
called stable phases of the material. These are, theaustenite phase A= {(ε,θ )|ε−M(θ ) ≤ ε ≤ ε+M(θ )} and
themartensite variants M+ = {(ε,θ )| ε ≥ ε+M(θ )} andM− = {(ε,θ )| ε ≤ ε−M(θ )} (see Fig. 1). The domains
I+ = {(ε,θ )| ε+M(θ )< ε < ε+m(θ )} andI− = {(ε,θ )| ε−m(θ )< ε < ε−M(θ )}, where phase transitions take place,
correspond to the elliptic regions of the adiabatic system and are usually calledunstable phases (spinodal
regions)of the material. In these regions the initial-boundary value problems for the adiabatic system are
ill-posed and they are dismissed in a pure thermoelastic approach of phase transitions.
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A propagating discontinuity in a thermoelastic material, whose position in the reference configuration is
X = S(t), separates the thermomechanical statesv+, ε+, θ+ andv−, ε−, θ− and satisfies the following jump
conditions and entropy inequality

JvK =−ṠJεK, JσK =−ρṠ2JεK, Ṡ(ρJeeqK+ 〈σ〉Jε K) = 0, ρṠJηeq(ε,θ )K ≤ 0, (5)

whereJ f K(t) = f (S(t)+0, t)− f (S(t)−0, t) and〈 f 〉= 1
2( f (S(t)+0, t)+ f (S(t)−0, t)) denote the jump and

the average, respectively, of any field quantityf (X, t) across the discontinuity. This discontinuity corresponds
to anadiabatic thermoelastic shock wave, or aphase boundary, according to whether the particles separated
by the discontinuity are in the same phase, or in distinct phases.

Assume thatṠ> 0 and the thermomechanical state ahead of the shock(ε+,θ+) is known. Then the
energy jump condition (5)3, known as the Rankine-Hugoniot equation, provides restrictions on the back states
(ε−,θ−) which can be reached in a discontinuous process. The function

H(ε,θ ;ε+,θ+) = ρeeq(ε,θ )−ρe+−
1
2
(σeq(ε,θ )+σ+)(ε − ε+) (6)

is called theHugoniot relation based at(ε+,θ+) wheree+ = eeq(ε+,θ+) andσ+ = σeq(ε+,θ+). For our
piecewise linear thermoelastic model it can be explicitly determined as a quadratic function ofθ from the
expression (30) of the internal energye= eeq(ε,θ ) given in Appendix A.

The implicit equationH(ε,θ ;ε+,θ+) = 0 has in this case a unique global solution with respect toε called
the temperature-strain Hugoniot locus based at(ε+,θ+), i.e.

θ = θH(ε;ε+,θ+) ⇔ H(ε,θH(ε;ε+,θ+)) = 0 for anyε. (7)

Its image through the stress response function

σ = σH(ε;ε+,θ+)≡ σeq(ε,ΘH(ε;ε+,θ+)) (8)

is calledthe stress-strain Hugoniot locus based at(ε+,σ+). Relations (7) and (8) describe all reachable back
states(ε−,θ−,σ− = σeq(ε−,θ−)) in a wave discontinuity which has(ε+,θ+,σ+ = σeq(ε+,θ+)) as a front
state.

3 Augmented theory - Maxwellian rate-type approach

We consider the following Maxwellian rate-type constitutive equation as augmented model of the thermoe-
lastic material (see Part I [1])

∂ σ
∂ t

−E
∂ ε
∂ t

=−
E
µ
(σ −σeq(ε,θ )), (9)

whereE = const.> 0 is called thedynamic Young modulus, µ = const.> 0 is a”viscosity” coefficient and
σ = σeq(ε,θ ) is the piecewise linear thermoelastic relation described by (1)-(3). Let us note thatτ = µ

E is a
relaxation timeof the model.

When we apply this constitutive model to SMAs it is improper to speak about the ”viscosity” of the
material. It is better to speak about the relaxation time as aparameter which allows to describe the fact that the
transition of a particle from one stable phase to another does not occur instantaneously, but it requires always
a finite phase transition time. Due to certain tradition concerning the terminology related to this constitutive
relation and for simplicity reasons in the following we shall often use the term ”viscosity”instead of time of
relaxation, or ”viscosity effects” instead of ”rate-type effects”. In the limit of vanishing relaxation time this
constitutive equation is seen as a rate-type approximationof the thermoelastic model.

The free energy of the constitutive equation (9) has been extensively analyzed in Part I [1] (see also [22]).
It has been shown that the Maxwellian rate-type model admitsa free energy functionψ = ψMxw(ε,σ ,θ ),
uniquely determined by the equilibrium stress-strain-temperature relationσ = σeq(ε,θ ) and by the instanta-

neous Young modulusE (modulo an additive function of temperature) if and only if∂ σeq
∂ ε < E, at the points

where the derivative makes sense. It has the form

ρψMxw(ε,σ ,θ ) =
σ2

2E
−

σ2
eq(ε̃,θ )

2E
+

∫ ε̃

ε0

σeq(s,θ )ds+ρφ1(θ ), (10)
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whereε̃ = ε̃(ε,σ ,θ ) is uniquely defined by the algebraic equation

σ −Eε = σeq(ε̃ ,θ )−Eε̃. (11)

The entropy and the specific heat of the Maxwellian rate-typemodel are given byηMxw(ε,σ ,θ ) =− ∂ ψMxw
∂ θ

andCMxw(ε,σ ,θ ) = −θ ∂ 2ψMxw
∂ θ2 , respectively, at the points where the derivatives make sense.For the piece-

wise linear equilibrium relation given by (1)-(3) the expressions of the smooth free energy function, of the
discontinuous and piecewise smooth specific heat function,and the continuous and piecewise smooth internal
energy function of the Maxwellian rate-type constitutive equation are given in Appendix B.

Table 2 Mechanical parameters for the augmented theory

Dynamic Young modulus E (GPa) 43. or 50.
”Viscosity” coeffcient µ (GPa) 0.0003 . . . 3.
Heat conductivity coefficient κ (W/m/◦K) 0. or 20.

This rate-type constitutive approach induces an internal dissipation. We also consider here a second dis-
sipative mechanism described by the the Fourier law of heat conduction for the axial heat fluxq = −κ ∂ θ

∂X ,
whereκ = const.> 0 is theheat conductivity coefficient.

The material data used in this paper to characterize the rate-type effects and the heat transfer effects in the
numerical investigation are given in Table 2. We note that the requirementsE1 < E andE2 < E, imposed by
the second law of thermodynamics, are satisfied and the valueused for the heat conductivity coefficientκ is
an usual one for a SMA.

The PDEs system, in the unknownv, ε, σ , θ describing the motion of a Maxwellian rate-type phase trans-
forming bar is composed by the constitutive relation (9), the compatibility equation, the balance of momentum
and the balance of energy

∂ ε
∂ t

−
∂v
∂X

= 0, ρ
∂v
∂ t

−
∂ σ
∂X

= 0, (12)

ρCMxw
∂ θ
∂ t

=
E
µ

ρ
∂ ψMxw

∂ σ
(σ −σeq(ε,θ ))−

E
µ

ρθ
∂ 2ψMxw

∂ θ∂ σ
(σ −σeq(ε,θ ))+κ

∂ 2θ
∂X2 . (13)

One observes here that the variation of the temperature in the diffusion equation (13) is determined by
the competition between three additive terms in its right hand side. The first one is related to theinternal
dissipationwhich always contributes to the increase of the temperatureduring a thermomechanical process.
The second one, is related to thelatent heatreleased or absorbed by the material and can be positive or
negative. The third term is related to thethermal dissipationthrough axial heat conduction.

4 Traveling waves

To investigate the internal structure of a phase boundary, we now seek solution to the system composed by Eqs.
(9), (12) and (13) in the form of traveling wave:v= v̂(ξ ), ε = ε̂(ξ ), σ = σ̂ (ξ ), θ = θ̂ (ξ ) whereξ = X− Ṡt
andṠ=const. is the speed of the wave. By requiring that the traveling wave connects two equilibrium states
behind and in front of the propagating interface, i.e.(ε̂, σ̂ , θ̂ , v̂)(±∞) = (ε±,σ± = σeq(ε±,θ±),θ±,v±,)
one gets the following.The limit values of the traveling waves have to satisfy the jump relations (5) for the
associated thermoelastic material. The velocity-strain pairs(v̂(ξ ), ε̂(ξ )) belong to a straight line in thev− ε
plane of slope−Ṡand the stress-strain pairs(σ̂(ξ ), ε̂(ξ )) belong to a straight line of slopeρṠ2 in theε −σ
plane calledthe Rayleigh lineand denoted byσ = σR(ε), i.e.

v̂(ξ ) = v+− Ṡ(ε̂(ξ )− ε+), σ̂(ξ ) = σR(ε̂(ξ ))
def
= σ++ρṠ2(ε̂(ξ )− ε+). (14)

whereρṠ2 = (σ+−σ−)/(ε+− ε−).
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The pairs(ε̂(ξ ), θ̂(ξ )) satisfy the dynamical system

ε̂ ′ =−
E

µṠ(E−ρṠ2)
R(ε̂, θ̂ ), lim

ξ→±∞
ε̂(ξ ) = ε±,

θ̂ ′ =−
Ṡ
κ

HMxw(ε̂, θ̂ ), lim
ξ→±∞

θ̂ (ξ ) = θ±,

(15)

where, ifṠ> 0,

R(ε,θ ;ε+,θ+,ε−)≡ σR(ε)−σeq(ε,θ ) = σ++ρṠ2(ε − ε+)−σeq(ε,θ ), (16)

HMxw(ε,θ ;ε+,θ+,ε−)≡ ρeMxw
(

ε,σR(ε),θ
)

−ρe+−
1
2

(

ε − ε+
)(

σR(ε)+σ+
)

. (17)

The states(ε±,θ±) are fixed points for the dynamical system and they are the intersection points between the
curvesR(ε,θ ) = 0 and the Hugoniot locusH(ε,θ ) = 0 in theε −θ plane. The pairs(ε±,σ±) represent the
intersection points of the Rayleigh lineσ = σR(ε) with the stress-strain Hugoniot curveσ = σH(ε;ε+,θ+)
in theε −σ plane.

The topological properties of the curveHMxw(ε,θ ) = 0 andR(ε,θ ) = 0 characterize the main features
of the profile layers defined by the Maxwellian rate-type constitutive equation (9) and/or by the Fourier heat
conduction law, respectively. They have been qualitatively investigated in Part I [1] where thermodynamical
aspects have been put into evidence. Thus, according to (15), the set{(ε,θ )|HMxw(ε,θ ;ε+,θ+,ε−) = 0}
describes the trajectory in theε−θ plane of a traveling wave solution structured only by the time of relaxation
µ
E (or, equivalently by the ”viscosity”µ) in the absence of heat conduction, i.e. whenκ = 0. Since∂HMxw

∂ θ =
CMxw(ε,σR(ε),θ ) > 0 this set can be uniquely represented as a curve-like function connecting the front and
the back states(ε±,θ±), i.e.

θ =ΘMxw(ε;ε+,θ+,ε−) ⇔ HMxw(ε,ΘMxw(ε;ε+,θ+,ε−)) = 0 for ε betweenε+ andε−. (18)

Moreover, the image of this curve through the equilibrium relationσ = σeq(ε,θ ) is given by the function

σ = σMxw(ε;ε+,θ+,ε−)≡ σeq(ε,ΘMxw(ε;ε+,θ+,ε−)), (19)

which connects the front and back states(ε±,σ±) in theε −σ plane.
If we denote byΠ(ε̂(ξ ))= (ε̂(ξ ),σR(ε̂(ξ )),ΘMxw(ε̂(ξ ))) the trajectory of a”viscous”, heat non-conducting

traveling wave solutionin theε −σ −θ space one derives the following relation (see Part I [1, Sect. 5.1.2])

dΘMxw(ε)
dε

=
E−ρṠ2

EρCMxw(Π(ε))

(

σR(ε)−σeq(ε̃,ΘMxw(ε))+
EΘMxw(ε)

E−
∂ σeq(ε̃,ΘMxw(ε))

∂ ε

∂ σeq(ε̃,ΘMxw(ε))
∂ θ

)

,

(20)
where ε̃ = ε̃(ε) is the unique solution of equation (11) forσ = σR(ε) and θ = ΘMxw(ε). The difference
σR(ε)−σeq(ε̃,ΘMxw(ε)) is related with the internal dissipation, while the last term in the right paranthesis

is related the latent heat released or absorbed inside the layer and depends essentially on the sign of∂ σeq
∂ θ .

Therefore, the temperature variation inside a”viscous”, heat non-conducting profile layerhas two additive
sources: the internal dissipation, which always contributes to the increase of the temperature inside the layer,
and the latent heat which can act in both senses, i.e. to increase or decrease the temperature. Let also note that,
in order to establish from the above relations if the temperature inside the layer increases or decreases between
ε− andε+, we have to take into account if the forward propagating traveling wave (̇S> 0) is compressive
(ε− < ε+) or expansive (ε− > ε+).

For our piecewise linear equilibrium relations (1)-(3) thefunctionHMxw(ε,θ ;ε+,θ+,ε−) given by relation
(17) is quadratic inθ andε and has been calculated using the internal energy (34) givenin Appendix B. From
here the functionθ = ΘMxw(ε;ε+,θ+,ε−) has been explicitly obtained as a continuous and piecewiseC1

function.
In the absence of ”viscosity”, i.e whenµ = 0, a traveling wave solution structured only by heat conduction

has to satisfy the reduced system

R(ε̂, θ̂ ) = 0, and θ̂ ′ =−
Ṡ
κ

HMxw(ε̂, θ̂), lim
ξ→±∞

θ̂ (ξ ) = θ±. (21)
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Thus, the set{(ε,θ )|R(ε,θ ;ε+,θ+,ε−) = 0}, calledthe Rayleigh setin theε −θ plane, corresponds to the
trajectory in theε−θ plane of a”non-viscous”, heat conducting traveling wave solution. It has been shown in
Part I [1] and it is illustrated in the numerical examples below that there exists a major difference in the effect
of ”viscosity” and heat conduction on the structure of the profile layers in the sense that a ”non-viscous”, heat
conducting profile layer, solution of problem (21), in general, sweeps only some portions of the Rayleigh set
leading to the so called isothermal jumps in strain and stress inside the profile layers.

Since∂R(ε ,θ )
∂ ε =−

∂ σeq
∂ θ it follows that the Rayleigh set, i.e the solution of the implicit equationR(ε,θ ) = 0,

is uniquely representable as a functionθ =ΘR(ε;ε+,θ+,ε−) connecting the front and back states(ε±,θ±) if
∂ σeq
∂ θ has a constant sign in a domain containing(ε±,θ±). Moreover, its image through the equilibrium stress

response functionσ =σeq(ε,θ ) is the Rayleigh line, i.e.σR(ε)=σeq(ε,ΘR(ε;ε+,θ+,ε−)). For the piecewise
linear stress response function (1)-(3) the functionθ =ΘR(ε;ε+,θ+,ε−) is a continuous and piecewise linear

function. When∂ σeq
∂ θ changes its sign only once in a domain containing(ε±,θ±) then the Rayleigh set is a

disconnected set representable by two functions ofε, oneθ =Θ+
R (ε) passing through(ε+,θ+) and the other

θ =Θ−
R (ε) passing through(ε−,θ−).

Admissibility condition.In Part I [1, Sect. 5.1] it has been shown that achord criterion with respect to the
curveσ = σMxw(ε;ε+,θ+,ε−) defined by (19) is, in general, a necessary and sufficient condition for the
existence of a unique solution for the non-linear autonomous system (15). This is also an admissibility con-
dition for the selection of physical relevant jump discontinuities for the associated adiabatic thermoelastic
system (4). Moreover, it has been shown that this condition is equivalent with achord condition with respect
to the stress-strain Hugoniot locusσ = σH(ε;ε+,θ+) defined by (8). Thus, the problem of the existence and
uniqueness of a solution for the problem (15) has been reduced to a condition which only depends on the
energetic properties of the associated thermoelastic model.

This selection criterion claims: iḟS> 0 and the front state is(ε+,θ+) and the Hugoniot back state is
(ε−,θ−) then acompressive wave discontinuity, i.e. ε+ > ε−, is admissible if and only if the Rayleigh line
σR(ε) which joins(ε+,σ+ = σeq(ε+,θ+)) to (ε−,σ− = σeq(ε−,θ−)) lies belowthe graph of the function
σ = σH(ε;ε+,θ+) for ε ∈ (ε−,ε+), while anexpansive wave discontinuity, i.e.ε+ < ε−, is admissible if and
only if the Rayleigh lineσR(ε) liesabovethe graph of the Hugoniot locus forε ∈ (ε+,ε−). If Ṡ< 0, the front
state is(ε−,θ−) and the Hugoniot back state is(ε+,θ+) then the above statement remains valid if one inverts
the superscripts+ with −.

5 Numerical results and discussions

The heating or the cooling of a transformed zone in a high strain-rate test is a main characteristic of a phase
transforming material like SMA. Therefore, in an impact experiment a phase boundary will start to prop-
agate and a large variation of the temperature should appearacross it. This could be detected by infrared
measurements providing a valuable hint concerning the propagation of a phase boundary. That is why, in the
following, we investigate, for a model built in agreement with experimental data, how large is the variation of
the temperature across such a phase boundary and how the internal dissipation and the latent heat influences
the profile of the temperature inside the layer.

5.1 CompressiveA→ M− interphase layers
( ∂ σeq(ε±,θ±)

∂ θ < 0
)

Let us investigate the internal structure of the traveling wave solutions for a compressiveA → M− impact-

induced interphase layer when at the front and back state andinside the profile layer we have∂ σeq
∂ θ < 0.

This condition corresponds to the classical case investigated in the framework of thermoelastic fluids (see
for instance Gilbarg [28], Pego [29]) where the variation ofthe pressurep with respect to the temperature is
positive, i.e.∂ p

∂ θ > 0.
We consider the front state(ε+,θ+) at the boundary between phaseA and the unstable regionI−, i.e.

ε+ = ε−M(θ+) (Fig. 3). That means, the strain-stress front state is located at the point(ε+,σ+ = σ−
M(θ+))

where the slope with respect to the strain of the isothermσ = σeq(ε,θ+) changes its sign (Fig. 2). Any
back state(ε−,θ−) has to lie on the temperature-strain Hugoniot locus based at(ε+,θ+), i.e it satisfies



10 Cristian Făciu, Alain Molinari

relationθ = θH(ε;ε+,θ+) (Fig. 3), while the back state(ε−,σ−) lies on the stress-strain Hugoniot locusσ =
σH(ε;ε+,θ+) based at(ε+,σ+) (Fig. 2). We consider five different back states in the phaseM− (ε−i ,θ−

i ), i =
1, . . . ,5 and in all cases the chord criterion with respect to the stress-strain Hugoniot locusσ = σH(ε;ε+,θ+)
based at(ε+,σ+) is satisfied, i.e. the Rayleigh line lies always below the Hugoniot locus forε ∈ (ε−i ,ε+).
This condition ensures the existence and uniqueness of a solution of the system (15), for anyµ > 0 andκ > 0
(see Part I [1, Sect. 5.2].
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plicit solutionsθ = ΘR(ε ;ε+,θ+,ε−

5 ) andθ =

ΘMxw(ε ;ε+,θ+,ε−
5 ) of the implicit equations

R= 0 andHMxw = 0 given by Eq. (16) and Eq.
(17), respectively.

Let us denote by
(

ε̂(ξ ; µ ,κ), θ̂(ξ ; µ ,κ)
)

such a traveling wave solution and byθ = Θ (ε; µ ,κ) its tra-
jectory in the temperature-strain plane. We consider in Fig. 3 for the back stateε− = ε−5 two extreme sit-
uations. First, the trajectory of a ”viscous” (µ > 0), heat non-conducting (κ = 0) traveling wave solution
θ =Θ (ε; µ ,0). This is just the curveθ =ΘMxw(ε;ε+,θ+,ε−5 ) defined by relation (18). Second, we consider
the case when the ”viscosity” effect is practically negligible with respect to the heat conductivity effect and
we plot the trajectoryθ =Θ (ε; µ = 0.0003 GPa·s,κ = 20 W/m/◦K).

The functionθ =ΘMxw(ε;ε+,θ+,ε−i ) has to be monotone decreasing forε ∈ (ε−i ,ε+), i = 1, . . . ,5. This
follows from relation (20) as a consequence of the fact that the chord conditionσR(ε) < σMxw(ε) implies
σR(ε) < σeq(ε̃(ε),ΘMxw(ε)), for ε ∈ (ε−i ,ε+), i = 1, . . . ,5 (see Part I [1, Sect. 5.2.1 Case C1]) and on the

other side, because∂ σeq
∂ θ < 0 in phaseM− and in the spinodal regionI−. According to the remarks following

relation (20), that means that both the internal dissipation and the latent heat lead to the increase of the
temperature inside a ”viscous”, heat non-conducting interphase layer. Thus, after the passage of a wave the
back state temperature is larger than the front state temperature, i.e.θ−

i > θ+, i = 1, . . . ,5. The structure of the
”viscous”, heat non-conducting interphase layers corresponding to the five compressive jumps is illustrated
in Figs. 4. The way in which the back state temperature increases as the absolute value of the back strain
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increases and the corresponding values of the propagation speed of the phase boundary is illustrated in Table
3.

Back state 1 2 3 4 5
ε− −0.057 −0.067 −0.077 −0.087 −0.097
θ− 330.8◦K 335.3◦K 339.9◦K 344.5◦K 349.1◦K
σ− = σeq(ε−,θ−) −480 MPa −699 MPa −918 MPa −1138 MPa −1358 MPa

Ṡ=
√

σ+−σ−

ρ(ε+−ε−) 206 m/s 724 m/s 927 m/s 1052 m/s 1139 m/s

Table 3 Back states and phase boundary speedṠwhen the front state is(ε+ =−0.011,θ+ = 303.15◦K,σ+ =−464 MPa).
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jumps in Figs. 2-3.

We say that these compressive waves are ofheating type. The significant rise of the temperature after
the passage of the moving phase boundary is due to the latent heat released by the material in this dynamic
process and expresses theexothermiccharacter ofA→ M− phase transformation. In fact it is a consequence
of the large variation of the equilibrium stress response function with respect to the temperature. Indeed,
∂ σeq
∂ θ =−8.6 MPa/◦K in the unstable regionI− and ∂ σeq

∂ θ =−4.2 MPa/◦K in the phaseM−.
Let us consider the opposite case when the heat conductivityeffect is much more important than the ”vis-

cosity” effect. First, we observe in the phase diagram in Fig. 3 that the Rayleigh set,θ = ΘR(ε;ε+,θ+,ε−5 ),
solution of the implicit equation (21)1, is non-monotone. Second, werecall that in this case the trajectory
θ =Θ (ε; µ ,κ) of a traveling wave solution of the problem (15) has to be monotone decreasing for anyµ > 0
andκ > 0 for ε ∈ (ε−,ε+) in Fig. 3 (see Part I [1, Sect. 5.2.1]). Moreover, for a fixed heat conductivityκ = κ̄
and µ → 0 the trajectoriesθ = Θ (ε; µ ,κ) are increasingly close to the monotone descending parts of the
curveθ =ΘR(ε) and approach the solution of the reduced system (21).

For κ = 20 W/m/◦K andµ = 0.0003 GPa·s the trajectory of the traveling wave solution is represented by
a dotted line in the phase diagram in Fig. 3. It is composed by anearly horizontal line which starts at the back
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state(ε−5 ,θ−
5 ), passes very close to a state(ε∗,θ ∗), whereθ−

5 =ΘR(ε∗), and is followed by a curve extremely
close to the curveθ =ΘR(ε) and ends at the front state(ε+,θ+).

The corresponding structure of the strain, temperature andstress interphase layer is represented in Fig.
5. This numerical example illustrates that when the only structuring mechanism is the heat conduction the
internal structure of a”non-viscous”, heat conductinginterphase layer can containisothermal jumps in strain
and stressinside the layer. Indeed, one observes in Fig. 5a and Fig. 5c that the interphase layer approximates
a jump in strain fromε−5 to ε∗ and a jump in stress fromσ−

5 to σ∗ = σR(ε∗) = σ++ρṠ2(ε∗−ε+). Therefore,
in this case the trajectory of an interphase layer in the stress-strain plane sweeps the portion of the Rayleigh
line ranging fromε+ to ε∗ and is followed by a jump from(ε∗,σ∗) to (ε−5 ,θ−

5 ) (Fig. 2).
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the back strainε− = ε−

5 in Figs. 2-3.

Let us note in Figs. 6 that the entropy of the Hugoniot back state(ε−,θ−) is larger than the entropy of the
front state(ε+,θ+). Therefore, this jump discontinuity is compatible with thesecond law of thermodynamics.
On the other hand, if one investigates the influence of the ”viscosity” and of the heat conductivity on the
behavior of the entropy inside an interphase layer one observes an important difference on their structuring
role. Indeed, when the ”viscosity” effect dominates the heat conductivity effect then the variation of entropy
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inside the profile layer is monotone (Fig. 6a). In the opposite case, when the heat conductivity effect dominates
the ”viscosity” effect then the entropy variation is non-monotone and even more its values can become inside
the profile layer larger than the entropy of the Hugoniot backstate (Fig. 6b). This phenomenon is known as
the ”entropy overshoot”. It has been reported for instance by Landau and Lifschitz [30, Chap. IX,§87] in gas
dynamics and by Dunn and Fosdick [23] in thermoelastic materials. Let also note in Fig. 6b that when the
heat conduction is the only structuring parameter of the interphase layer the entropy can have a jump inside
the layer fromη− to η∗ = ηMxw(ε∗,σ∗,θ ∗).
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5.2 ExpansiveM− → A interphase layers
(∂ σeq(ε±,θ±)

∂ θ < 0
)

We analyze now thermomechanical features of the interphaselayers in the expansive case, i.e.ε+ < ε−, corre-

sponding to impact-inducedM− → A phase transformations. Inside the profile layer we have again ∂ σeq
∂ θ < 0.

We consider the front state(ε+,θ+) located at the boundary between phaseM− and the unstable regionI−,
i.e.ε+ = ε−m(θ+) (Fig. 8). That means, the strain-stress front state is located at the point(ε+,σ+ = σ−

m(θ+))
where the slope with respect to the strain of the isothermσ = σeq(ε,θ+) changes its sign (Fig. 7). This
also corresponds to a local maxima of the Hugoniot stress-strain relationσ = σH(ε;ε+,θ+). Any back state
(ε−,θ−) lies on the temperature-strain Hugoniot locus based at(ε+,θ+), θ = θH(ε;ε+,θ+) (Fig. 8), while
the back state(ε−,σ−) lies on the stress-strain Hugoniot locusσ = σH(ε;ε+,θ+) based at(ε+,σ+) (Fig. 7).
We consider four different back states in phaseA (ε−i ,θ−

i ), i = 1, . . . ,4 and in all cases the chord criterion with
respect to the stress-strain Hugoniot locusσ = σH(ε;ε+,θ+) is satisfied, i.e. the Rayleigh line lies always
above the Hugoniot locus forε ∈ (ε+,ε−i ).

We consider here only ”viscous”, heat non-conducting interphase layers. Their trajectories in the phase di-
agram plane, corresponding to the four considered back states are given by the curvesθ =ΘMxw(ε;ε+,θ+,ε−i ),
i = 1, . . . ,4 illustrated in Fig. 8. Their imagesσ = σMxw(ε;ε+,θ+,ε−i ), i = 1, . . . ,4 in the stress-strain plane
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defined by relation (19) are illustrated in Fig. 7. One sees that the chord criterion with respect to these curves
is also satisfied. That is, the Rayleigh lines connecting thefront state(ε+,σ+) and the back state(ε−i ,σ−

i ) lie
always above the curveσ = σMxw(ε;ε+,θ+,ε−i ), for ε ∈ (ε+,ε−i ), i = 1, . . . ,4.
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jectories of the ”viscous” (µ > 0), heat non-
conducting (κ = 0) traveling wave solutionsθ =
ΘMxw(ε ;ε+,θ+,ε−

i ), i=1,. . . ,4.

Back state 0 1 2 3 4
ε− -0.0054 −0.002 0.001 0.004 0.007
θ− 278.9◦K 279.7◦K 280.3◦K 280.9◦K 281.5◦K
σ− = σeq(ε−,θ−) −222.9 MPa −78.4 MPa 47.3 MPa 173.0 MPa 298.8 MPa

Ṡ=
√

σ+−σ−

ρ(ε+−ε−) 28 m/s 614 m/s 814 m/s 957 m/s 1070 m/s

Table 4 Back states and phase boundary speedṠwhen the front state is(ε+ =−0.05,θ+ = 303.15◦K,σ+ =−223.2 MPa).

In this case the internal dissipation and the latent heat actin opposite sense. Thus, while the internal
dissipation is a source of heating, the latent heat is a source of cooling inside the interphase layer. Indeed,
the first term in relation (20) is positive because the chord condition σR(ε) > σMxw(ε;ε+,θ+,ε−i ), for ε ∈

(ε−i ,ε+), i = 1, . . . ,4 is fulfilled, but the second term is negative because∂ σeq
∂ θ < 0 along the traveling wave

solution. Since the calculated functionsθ = ΘMxw(ε;ε+,θ+,ε−i ) in Fig. 8 are strictly decreasing forε ∈
(ε+,ε−i ), i = 1, . . . ,4 it results that the cooling due to the latent heat absorbed by the material inside the
interphase layer dominates the heating due to the internal dissipation. Therefore, after the passage of the wave
the back state temperature decreases considerably, i.e.θ−

i < θ+, i = 1, . . . ,4. We say that these expansive
waves are of cooling type.

The structure of the strain and temperature interphase layers when the only structuring mechanism is the
”viscosity” corresponding to the four expansive jumps is illustrated in Figs. 9. The way in which the back



Numerical study of the structure of profile layers for a heat conducting Maxwellian approach to phase transitions 15

a)
0 0.5 1 1.5 2

x 10
−6

−0.05

−0.04

−0.03

−0.02

−0.01

0.01

Position (m)

S
tr

ai
n

 

 

ε
4
−

ε
3
−

ε
2
−

ε
1
−

E=43 GPa
µ=3 GPa⋅s
κ=0 W/m/°K

ε+

b)
0 0.5 1 1.5 2

x 10
−6

280

285

290

295

300

305

Position (m)

T
em

pe
ra

tu
re

 (°
K

)

 

 

θ−
4

θ−
3

θ−
2

θ−
1

θ+

E=43 GPa
µ=3 GPa⋅s
κ=0 W/m/°K

Fig. 9 Structure of ”viscous”, heat non-conducting
interphase layers corresponding to the four expan-
sive jumps in Figs. 7-8.

state temperature changes as the back strain increases and the corresponding values of the propagation speed
of the phase boundary is illustrated in Table 4.

The decrease of the back state temperature after the passageof the wave is obviously due to the latent
heat absorbed by the material inside the interphase layer. Even in the case ofa phase boundary propagating
with a small speed (28m/s(see for instance case 0 in Table 4) the temperature drops by more than 24◦K. This
behavior is natural and in agreement with the fact that theM− → A phase transformation isendothermic.

On the other side, one notes that the back state temperatureθ−
i increases as the back state strainε−i

increases. This is because the internal dissipation is proportional with the area between the Rayleigh line and
the curveσ = σMxw(ε;ε+,θ+,ε−i ) for ε ∈ (ε+,ε−i ), i = 1, . . . ,4. As the strain increases the corresponding
area also increases and consequently the contribution of the internal dissipation to the heating inside the
interphase layer becomes larger.

5.3 CompressiveM+ → M− interphase layers
( ∂ σeq

∂ θ (ε+,θ+)> 0 and∂ σeq
∂ θ (ε−,θ−)< 0

)

We investigate now the internal structure of traveling wavesolutions for a compressive impact-induced trans-

formation from martensitic variantM+ to martensitic variantM−. In this atypical case∂ σeq
∂ θ changes its sign

inside the interphase layer. We consider the front state(ε+,θ+) at the border between phaseM+ and the
unstable regionI+, i.e.ε+ = ε+m(θ+) (Fig. 11). Therefore, the strain-stress front state(ε+,σ+ = σ+

m(θ+)) is
located at the point where the isothermσ = σeq(ε,θ+) and the Hugoniot locusσ = σH(ε;ε+,θ+) has a local
minima (Fig. 10).

Let us first consider the case of a ”viscous” (µ > 0), heat non-conducting traveling wave solution (κ = 0).
Its trajectory in the temperature-strain plane is described by the functionθ =ΘMxw(ε;ε+,θ+,ε−). The image
of this curve in the stress-strain plane, defined by relation(19), isσ = σMxw(ε;ε+,θ+,ε−) and it is plotted
in Fig. 10. One can see that the chord criterion with respect to the Hugoniot locusσ = σH(ε;ε+,θ+) and the
chord criterion with respect to the curveσ = σMxw(ε;ε+,θ+,ε−) are both satisfied. That is, the Rayleigh line
connecting the front state(ε+,σ+) and the back state(ε−,σ−) lies below both curves forε ∈ (ε−,ε+). This
condition ensures the existence and uniqueness of aM+ → M− interphase layer for anyµ > 0 andκ > 0.
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Let us analyze thermomechanical aspects of the interphase layers structured only by the ”viscosity”. The
trajectoryθ = ΘMxw(ε;ε+,θ+,ε−) in the phase diagram plane crosses the domainsM−, I− andA where
∂ σeq
∂ θ < 0, and the domainI+ where∂ σeq

∂ θ > 0 (Fig. 11). The domains representing the phases are separated by
dotted lines. As we have shown, in the general case in Part I [1, Section 5.2.1, Case C3], this function has to
be non-monotone.

Indeed, the first term in (20) is always negative since the chord criterion is fulfilled, while the second term
changes its sign forε ∈ (ε−,ε+). Indeed, it is negative when the pairs(ε̃(ε),ΘMxw(ε)) belong to phaseM−,
to the unstable regionI− and to phaseA and it is positive when it belongs to the unstable regionI+.
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Fig. 11 Trajectories ofM+ → M− interphase
layers in the phase diagram; the explicit solu-
tions θ = Θ±

R (ε) of the implicit equationR=
0 given by Eq. (16); the explicit solutionθ =
ΘMxw(ε ;ε+,θ+,ε−) of the implicit HMxw = 0
given by Eq. (17).

The numerical result shows that the curveθ = ΘMxw(ε;ε+,θ+,ε−) is monotone decreasing inM− and
I− due to the combined heating action of the internal dissipation and latent heat. Therefore, on the corre-
sponding part of the interphase layer the temperature has toincrease for decreasingε. On the other side,
the curveθ =ΘMxw(ε;ε+,θ+,ε−) is monotone increasing when crossing the phase domainsA andI+. That
means, according to relation (20), that the contribution ofthe latent heat to the cooling is larger than the
contribution of the internal dissipation to the heating inside this part of the interphase layer. This implies that
on the corresponding interval of the interphase layer the temperature has to decrease for decreasingε. The
fact that the curveθ = ΘMxw(ε;ε+,θ+,ε−) is monotone increasing when it passes through phaseA where
∂ σeq
∂ θ (ε,ΘMxw(ε)) < 0 is due to the fact that the pair(ε̃(ε),ΘMxw(ε)) defined in relation (20) belongs toI+,

i.e. ∂ σeq
∂ θ (ε̃(ε),ΘMxw(ε))> 0.

This non-monotone behavior of the functionθ = ΘMxw(ε;ε+,θ+,ε−) is an expression of the fact that a
continuous transformation from the variantM+ to the variantM− has to pass through the austenite phaseA
and that the transformationM+ → A is endothermic while the transformationA→ M− is exothermic. These
circumstances lead to a specific structure of the temperature profile layers.



Numerical study of the structure of profile layers for a heat conducting Maxwellian approach to phase transitions 17

a)
−0.5 0 0.5 1 1.5 2 2.5 3

x 10
−6

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Position (m)

S
tr

ai
n

 

 

µ=0.03 GPa⋅ s
µ=0.3 GPa⋅ s
µ=3. GPa⋅ sε−

ε+

E=50 GPa 

κ=0 W/m/°K

b)
−0.5 0 0.5 1 1.5 2 2.5 3

x 10
−6

280

290

300

310

320

330

Position (m)

T
em

pe
ra

tu
re

 (° K
)

 

 

µ=0.03 GPa⋅ s
µ=0.3 GPa⋅ s
µ=3. GPa⋅ s

θ+

θ−
E=50 GPa

κ=0 W/m/°K

c)
−0.5 0 0.5 1 1.5 2 2.5 3

x 10
−6

−25

−20

−15

−10

−5

Position (m)

E
nt

ro
py

 (
J/

K
g/

° K
)

 

 

µ=0.03 GPa⋅s
µ=0.3 GPa⋅s
µ=3. GPa⋅s

η−

η+

E=50 GPa

κ=0. W/m/°K

Fig. 12 a) strain and b) temperature interphase
layers structured only by the ”viscosity” corre-
sponding to the compressive jump in Figs. 10-11.
c) Monotone entropy variation inside the profile
layers.

The strain, temperature and entropy variation inside this ”viscous”, heat non-conducting interphase layer
is illustrated in Figs. 12. One sees that the front state temperature is 303.15◦K, the back state temperature
increases to 330.2◦K, but inside the layer there is a significant temperature drop below these two values,
namely to 282.4◦K. Thus the non-monotone variation of the temperature inside the interphase layer shows a
”spike-layer” form whose width depends on the size ofµ . Figs. 12a-b also illustrates what it happens when
we consider the ”viscosity” going to zero. For the strain onegets a sharp discontinuity, but for the temperature
one gets a sharp spike-layer form with two successive jumps.It is obvious that a sharp interface theory for
which only the front and back states are relevant will lose this extreme value of the temperature profile. In
other words, an important physical aspect related to an impact-induced phase transformation from martensitic
variantM+ to martensitic variantM− will be disregarded, that is, the passage of the particles through the
austenite phaseA.

Concerning the entropy variation inside the interphase layers structured only by ”viscosity” we get, as
expected (see Part I [1, Sect. 5.2.3], a monotone variation (Fig. 12c).

Let us analyze the case when both the ”viscosity” and the heatconduction are structuring mechanisms of
the interphase layer. When the heat conductivity has the fixed valueκ = 20 W/m/◦K and the ”viscosity” has
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Fig. 13 Evolution of the a) strain and b) temper-
ature profile layers corresponding to the compres-
sive jump in Figs. 10-11 when the ”viscosity” struc-
turing effect diminishes at the expense of the heat
conductivity structuring effect. c) Transition from
monotone to non-monotone entropy variation in-
side the profile layers.

values increasingly smaller, then the graphic of the function θ = Θ (ε; µ ,κ), for ε ∈ (ε−,ε+), is illustrated
in Fig. 11. For eachµ this function is non-monotone and has a minimum below the front and back state
temperaturesθ±. This minimum value of the temperature increases asµ decreases, i.e. as the role of the
”viscosity” becomes more an more insignificant with respectto the heat conductivity effect.

The structure of strain and temperature interphase layer for ”viscosities” ranging fromµ = 3 GPa·s (”vis-
cosity” structuring effect is dominant with respect to the heat conductivity effect) toµ = 0.0003 GPa·s (”vis-
cosity” structuring effect is completely negligible with respect to the heat conductivity effect) is illustrated
in Fig. 13 and Fig. 14. The temperature variation inside the interphase layer is again non-monotone and has
a spike-layer formreflecting the manifestation of theendothermiccharacter of theM+ → A transformation
and theexothermiccharacter of theA → M− phase transformation. The minimum value of the temperature
reached inside the layer varies from 282.3 ◦K for µ = 3 GPa·s to 294.3 ◦K (temperature corresponding to YZ
line in Fig. 11) forµ = 0.0003 GPa·s. This latter case can be practically assimilated with the case when the
only structuring mechanism of the profile layer is the heat conduction.

Fig. 11 also illustrates that the Rayleigh set{(ε,θ )|R(ε,θ ) = 0} in theε −θ phase diagram is composed
by two disconnected piecewise linear curvesθ = Θ±

R (ε), one passing trough(ε+,θ+) and the other trough
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Fig. 14 Evolution of the a) strain and b) tempera-
ture profile layers corresponding to the compres-
sive jump in Figs. 10-11 when the conductivity
structuring effect largely dominates the ”viscosity”
structuring effect. c) Non-monotone entropy varia-
tion inside the profile layers - entropy ”overshoot”
and entropy ”undershoot” phenomena.

(ε−,θ−), as a consequence of the fact that∂ σeq
∂ θ has different signs at the front and back state. On the other

side, Fig. 11 shows how for fixedκ andµ → 0 the trajectoriesθ =Θ (ε; µ ,κ) are increasingly close to some
parts of the Rayleigh set in theε −θ plane and how the solution of the reduced system (24) is approached.

For µ = 0.0003 GPa·s the trajectory is composed by a nearly horizontal line starting at the back state
(ε−,θ−), passing very close to a pointX = (εx,θx) which belongs to the branchθ =Θ−

R (ε) of the Rayleigh
set, i.e.Θ−

R (εx) = θ−, is followed by a curve that matches the curveθ =Θ−
R (ε) until near its minimum point

Y = (εy,θy =Θ−
R (εy)), next is followed by another nearly horizontal line which connects the pointY with the

point Z = (εz,θz =Θ+
R (εz)), belonging to the branchθ = Θ+

R (ε) of the Rayleigh set, and finally is followed
by a curve which matchesθ = Θ+

R (ε) and ends at the point(ε+,θ+). This behavior is justified in Part I [1,
Section 5.2.1 Case C3].

This limit case shows that when the only structuring mechanism is the heat conduction the strain profile
contains isothermal jumps in strain fromε− to εx and from εy to εz as it is illustrated in Fig. 14a. One
observes that we have a smooth variation of the strain profileonly when the trajectory of the ”non-viscous”,
heat conducting traveling wave solution sweeps parts of theRayleigh set in theε −θ plane. The temperature
profile is continuous and has a minimum corresponding to the temperature at the pointY = (εy,θy) in Fig. 11.
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Fig. 13c and Fig. 14c show how the entropy variation inside the profile layer turns from a monotone
behavior to a non-monotone behavior as the role of the heat conduction increases at the expense of the role
of the ”viscosity” as structuring mechanisms. Moreover, the entropy inside the profile layer can become
considerably smaller than its value at the front stateη+ and considerably larger than its value at the Hugoniot
back stateη− >η+. This behavior is known as the phenomenon of entropy undershoot and entropy overshoot,
respectively. The limiting caseµ = 0.0003 GPa·s in Fig. 14c also illustrates that in a ”non-viscous”, heat
conducting profile layer, i.e., when the only structuring mechanism is the heat conduction, the entropy profile
contains isothermal jumps in entropy.

This example clearly illustrates the profound difference in the effect of ”viscosity” (time of relaxation)
and the effect of heat conduction on the structure of transition layers.

Our numerical investigation also offers some insight on thewidth of the interphase layers. A correspon-
dence between the time of relaxation (”viscosity”) and the thickness of the transition layers is illustrated in
Table 5. As expected one observes that the width of the profilelayer increases as the time of relaxation in-
creases. Indeed, when the dominant structuring mechanism is the heat conduction (µ = 0.0003 GPa·s) then
the width of the transition layer is of the order of hundredths of micrometers (or, tens of nanometers) while
when the ”viscosity” effect is dominant (µ = 30 GPa·s) the width is of the order of hundreds of micrometers.

Since the heat conduction can be determined independently from laboratory experiments, the identification
of the time of relaxation remains an open problem.

It is useful torecall that the value of the time of relaxation which has been used innumerical simula-
tions of quasistatic strain-controlled experiments in Făciu and Mihăilescu-Sulciu [22] and which showed a
good agreement with laboratory tests performed by Shaw and Kyriakides [27] wasτ = 10−4s. The numerical
experiments have put into evidence the capability of the Maxwellian rate-type approach to describe the mech-
anism of phase transformation that occur via nucleation andgrowth of phases as a consequence of instability
phenomena. Moreover, we found that for values ofτ lower than 10−5s, which enhances the mechanisms of
thermo-mechanical instability in the spinodal region, or for values ofτ larger than 10−2s, which weakens the
instability phenomena, one gets inaccurate predictions. Therefore, if we consider the proper values for the
time of relaxationτ in the range of 10−4s and 10−3s one gets that the width of a propagating interphase layer,
structured by the time of relaxation and an usual value of theheat conduction for a SMA, is also of the order
of hundredths of micrometers.

”viscosity” µ 0.0003 GPa·s 0.003 GPa·s 0.03 GPa·s 0.3 GPa·s 3 GPa·s 30 GPa·s
time of relaxationτ = µ

E 6×10−6s 6×10−5s 6×10−4s 6×10−3s 6×10−2s 6×10−1s
interphase width ≈ 0.02µm ≈ 0.04µm ≈ 0.05µm ≈ 0.25µm ≈ 2µm ≈ 30µm

Table 5 Order of magnitude of the width of a profile layer for different values of the ”viscosity” parameterµ whenE = 50 GPa
andκ = 20 W/m/◦K.

6 Conclusions

The transition across a propagating interface separating two phases of a material cannot be instantaneous.
Therefore, a transition layer should exist. We have modelled the internal structure of this interphase layer
by introducing dissipative mechanisms in the form of Maxwellian rate-type effects and heat conduction.
The main aspects of the response of a SMA have been described by using the thermoelasticity theory with
non-monotone stress-strain relation. A piecewise linear thermoelastic relation has been fitted with laboratory
experiments in such a way that the variation with respect to the temperature of the local maxima and minima
of the stress-strain relations matches the rate of increaseof the hysteresis stress plateau with respect to the
temperature in traction tests. This approach allowed us to capture in an accurate way the effect of the latent
heat in phase transformation processes.

In studying impact-induced phase transition phenomena oneshould focus both from theoretical and ex-
perimental point of view on the investigation of thermal aspects. Indeed, our quantitative analysis has put into
evidence that in a SMA there are large temperature variations across a propagating interphase separating two
phase of the material (more than 20◦K) even if its speed is very low. Therefore, such significant temperature
changes should be exploited from experimental point of viewbecause they are an extremely valuable indi-
cation of a dynamic phase transformation process. We emphasized the influence of the internal dissipation
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and of the latent heat on the structure of the interphase layers. Thus, we showed how compressive moving
phase boundariesA→ M− are of heating type and how the reverse expansive moving phase boundaries from
M− → A are of cooling type, capturing in this way the influence of theexothermic and endothermic character
of phase transitions. We pointed out that across a propagating interphase layer separating the two variants
of martensite,M+ andM−, the temperature suffers large variation (about 23◦K), but the most striking as-
pect revealed is that there are places inside the profile layers where some particles experience temperatures
considerable lower than that at its front state and its back state. We also note that a sharp interface theory
can not predict this spike-layer form of the temperature. This phenomenon of temperature undershoot, if it
could be detected experimentally, can be a direct proof of the existence of an internal structure of a propagat-
ing phase boundary. The experimental detection through infrared radiation of a moving interface separating
different phases of a material, and even more of a phenomenonof temperature undershoot/overshoot is a
challenge which depends on the development of highly accurate temperature measurement instruments with
high acquisition data.

On the other side, it is reasonable to interpret a propagating interphase layer as a sharp phase boundary if its
thickness is small compared to other dimensions of interest. Therefore, in many practical impact experiments
the solutions can be constructed by using the adiabatic thermoelastic system endowed with an admissibility
criterion to select physical relevant jump discontinuities. The chord criterion with respect to the Hugoniot
locus can be considered by some authors, who have used the effects of both ”viscosity” and strain-gradient
effects (Slemrod [17], Ngan and Truskinovsky [20], [21]), as too restrictive since it rules out propagating
phase boundaries near the equilibrium co-existence line, named also subsonic phase boundaries or kinks. On
the other side, according to Vainchtein [16] (see also Vainchtein and Rosakis [31] and Vainchtein [32]) models
which include strain-gradient effects cannot capture realistic hysteresis loops under quasistatic (isothermal)
strain-rate controlled loading conditions. Since different selection criteria may furnish different solutions to
a Riemann problem, only systematic impact experiments as for example those performed by Escobar and
Clifton (1995), could decide which is the physical relevantone.

7 Appendix A: The thermodynamic potentials for the thermoelastic model

The stress-response function defined by relations (1)-(3) becomes

σ = σeq(ε,θ ) =



















E3ε − (αE3+a)θ +αE3θT +b, for ε ≤ ε−m(θ )
−E2ε +(αE2−d)θ −αE2θT +dθm, for ε−m(θ )< ε < ε−M(θ )

E1ε −αE1(θ −θT), for ε−M(θ )≤ ε ≤ ε+M(θ )
−E2ε +(αE2+d)θ −αE2θT −dθm, for ε+M(θ )< ε < ε+m(θ )

E3ε − (αE3−a)θ +αE3θT −b, for ε+m(θ )≤ ε

(22)

where

a= M(E1+E2)−m(E2+E3), b= (E1−E3)Mθm+(E2+E3)(M−m)θM, d = M(E1+E2). (23)

The free energyψ = ψeq(ε,θ ), the entropyη = ηeq(ε,θ ) and the specific heat at constant strainCeq(ε,θ )
of the thermoelastic model are uniquely determined by the stress response function (modulo an additive func-

tion of temperature) according to relationsσeq(ε,θ ) = ρ ∂ ψeq(ε ,θ )
∂ ε , ηeq(ε,θ ) =−

∂ ψeq
∂ θ (ε,θ ), andCeq(ε,θ ) =

−θ ∂ 2ψeq(ε ,θ )
∂ θ2 at the points where the derivatives make sense.

If σ = σeq(ε,θ ) is only continuous and piecewise smooth like in (1)-(3) thenthe free energyρψeq(ε,θ ) =
ρφ(θ ) +

∫ ε
ε0

σeq(s,θ )ds is of classC1, the entropyρηeq(ε,θ ) = −ρφ ′(θ )−
∫ ε

ε0

∂ σeq(s,θ )
∂ θ ds as well as the

internal energye= eeq(ε,θ ) = ψeq+θηeq are of classC0. Here prime denotes the derivative.
The specific heatC=Ceq(ε,θ ) is a discontinuous function on its domain of definition. Indeed, let usrecall

the following result. If f = f (ε,θ ) is continuous and continuously differentiable with respect to θ except for
a single discontinuity whose position is given by a differentiable functionε = ε∗(θ ) ∈ (ε1,ε2) then we have

d
dθ

∫ ε2

ε1

f (ε,θ )dε =
∫ ε2

ε1

∂ f (ε,θ )
∂ θ

dε −
dε∗(θ )

dθ
q

f
y
(ε∗(θ ),θ ) (24)

whereJ f K(ε∗(θ ),θ ) = f (ε∗(θ )+0,θ )− f (ε∗(θ )−0,θ ) and f (ε∗(θ )±0,θ ) denote the one sided limits of
f (ε,θ ) asε approachesε∗(θ ) from the right and from the left.
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Let us takeε0 = ε±M(θm) = α(θm−θT) the only strain which always lies betweenε−M(θ ) andε+M(θ ). Then,
when ∂ σ

∂ θ is discontinuous across the curvesε = ε±M(θ ) andε = ε±m(θ ) by using (24) one derives the specific
heat as

Ceq(ε,θ ) =−θ
∫ ε

ε0

1
ρ

∂ 2σeq(s,θ )
∂ θ 2 ds−θφ ′′(θ )

+
θ
ρ















































−
dε−M(θ )

dθ

r∂ σeq

∂ θ

z
(ε−M(θ ),θ )−

dε−m(θ )
dθ

r∂ σeq

∂ θ

z
(ε−m(θ ),θ ), for ε < ε+m(θ )

−
dε−M(θ )

dθ
r∂ σeq

∂ θ
z
(ε−M(θ ),θ ), for ε−m(θ )< ε < ε−M(θ )

0 for ε−M(θ )< ε < ε+M(θ )
dε+M(θ )

dθ
r∂ σeq

∂ θ

z
(ε+M(θ ),θ ), for ε+M(θ )< ε < ε+m(θ )

dε+M(θ )
dθ

r∂ σeq
∂ θ

z
(ε+M(θ ),θ )+ dε+m(θ )

dθ
r∂ σeq

∂ θ

z
(ε+m(θ ),θ ), for ε+m(θ )< ε

(25)

whereφ(θ ) is determined according to relation

−θφ ′′(θ ) =Ceq(ε0,θ ). (26)

Relation (26) expresses the fact that it is sufficient to knowexperimentally the specific heat at the constant
strainε0 for an interval of temperature in order to determine function φ = φ(θ ).

Assuming that the specific heat in the austenitic phase is constant, i.e.C(ε0,θ ) = C > 0, one gets from
relation (26) that

φ(θ ) =−Cθ ln
θ
θT

+C(θ −θT), (27)

where we have assumed thatψeq(ε0,θT) = 0 andηeq(ε0,θT) = 0.
The specific heat for the thermoelastic model (1)-(3) is thengiven by

ρCeq(ε,θ ) = ρC+θ























(E1+E2)(α −M)2− (E2+E3)(α −m)2, if ε ≤ ε−m(θ )
(E1+E2)(α −M)2, if ε−m(θ )< ε < ε−M(θ )
0, if ε−M(θ )≤ ε ≤ ε+M(θ )
(E1+E2)(α +M)2, if ε+M(θ )< ε < ε+m(θ )
(E1+E2)(α +M)2− (E2+E3)(α +m)2, if ε+m(θ )≤ ε .

(28)

The free energy and the internal energy are, respectively given by

ρψeq(ε,θ ) = ρφ(θ )+αE1ε0(θ −θT)−
E1

2
ε2

0 (29)

+



































E2
3
2 ε2+(σ−

m(θ )−E3ε−m(θ ))ε + E2+E3
2 (ε−m(θ ))2− E1+E2

2 (ε−M(θ ))2, if ε ≤ ε−m(θ )
−

E2
2

2 ε2+(σ−
M(θ )+E2ε−M(θ ))ε − E1+E2

2 (ε−M(θ ))2, if ε−m(θ )< ε < ε−M(θ )
E2

1
2 ε2−αE1(θ −θT)ε, if ε−M(θ )≤ ε ≤ ε+M(θ )

−
E2

2
2 ε2+(σ+

M(θ )+E2ε+M(θ ))ε − E1+E2
2 (ε+M(θ ))2, if ε+M(θ )< ε < ε+m(θ )

E2
3
2 ε2+(σ+

m(θ )−E3ε+m(θ ))ε + E2+E3
2 (ε+m(θ ))2− E1+E2

2 (ε+M(θ ))2, if ε+m(θ )≤ ε .

ρeeq(ε,θ ) = ρC(θ −θT)−αE1ε0θT −
E1

2
ε2

0 (30)

+























E3
2 ε2+(αE3θT +b)ε +A−θ 2+B−, if ε ≤ ε−m(θ )

−E2
2 ε2− (αE2θT −dθm)ε +D−θ 2+F−, if ε−m(θ )< ε < ε−M(θ )

E1
2 ε2+αE1θTε, if ε−M(θ )≤ ε ≤ ε+M(θ )

−E2
2 ε2− (αE2θT +dθm)ε +D+θ 2+F+, if ε+M(θ )< ε < ε+m(θ )

E3
2 ε2+(αE3θT −b)ε +A+θ 2+B+, if ε+m(θ )≤ ε .
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where

D± =
E1+E2

2
(α ±M)2, F± =−

E1+E2

2
(αθT ±Mθm)

2,

A± = D±−
E2+E3

2
(α ±m)2, B± = F±+

E2+E3

2
(αθT ∓ (M−m)θM ±Mθm)

2.

(31)

8 Appendix B: The thermodynamic potentials for the Maxwellian rate-type model

We consider the Maxwellian rate-type constitutive equation (9) having the equilibrium described by the piece-
wise linear stress-strain-temperature relation (1)-(3).According to (10) the free energy function is given by

ρψMxw(ε,σ ,θ ) =
1

2E
σ2+ϕ1(θ )+ (32)

+































E3
2E(E−E3)

(σ −Eε)2+
(αE3−a

E−E3
θ − αE3θT−b

E−E3

)

(σ −Eε)+ϕ+
3 (θ ), if σ −Eε ≤ τ+m(θ ),

− E2
2E(E+E2)

(σ −Eε)2−
(αE2+d

E+E2
θ − αE2θT+dθm

E+E2

)

(σ −Eε)+ϕ+
2 (θ ), if τ+m(θ )< σ −Eε < τ+M(θ ),

E1
2E(E−E1)

(σ −Eε)2+ E1α
E−E1

(θ −θT)(σ −Eε), if τ+M(θ )≤ σ −Eε ≤ τ−M(θ ),
− E2

2E(E+E2)
(σ −Eε)2−

(αE2−d
E+E2

θ − αE2θT−dθm
E+E2

)

(σ −Eε)+ϕ−
2 (θ ), if τ−M(θ )< σ −Eε < τ−m(θ ),

E3
2E(E−E3)

(σ −Eε)2+
(αE3+a

E−E3
θ − αE3θT+b

E−E3

)

(σ −Eε)+ϕ−
3 (θ ), if τ−m(θ )≤ σ −Eε,

where

ϕ1(θ ) =
E2

1α2

2(E−E1)
(θ −θT)

2−ρCθ ln
θ
θT

+(ρC+αE1ε0)(θ −θT)−
E1

2
ε2

0 ,

ϕ±
2 (θ ) =−

(E1+E2)

2(E+E2)(E−E1)

(

τ±M(θ )
)2
, ϕ±

3 (θ ) = ϕ±
2 (θ )+

(E3+E2)

2(E+E2)(E−E3)

(

τ±m(θ )
)2
,

(33)

and, by using notationh(ε,θ ) = σeq(ε,θ )−Eε,

τ±M(θ ) = h(ε±M(θ ),θ ) =−Eα(θ −θT)∓M(E−E1)(θ −θm),

τ±m(θ ) = h(ε±m(θ ),θ ) =−Eα(θ −θT)± (M−m)(E+E2)(θ −θM)∓M(E−E1)(θ −θm).

Assuming that the additive function of temperatureφ = φ(θ ) in the definition of the free energy func-
tion of the Maxwellian model (10) is the same with the additive function of temperature in the defini-
tion of the free energy of the associated thermoelastic model we have shown in Part I [1], that at equi-

librium the following relationρCMxw(ε,σeq(ε,θ ),θ ) = ρCeq(ε,θ )− θ
(∂ σeq

∂ θ
)2/(

E −
∂ σeq
∂ ε

)

holds. There-
fore, according to relations (26-27) we haveρCMxw(ε0,σeq(ε0,θ ),θ ) = ρC− θ (E1α)2/(E −E1), where
ε0 = ε±M(θm) = α(θm− θT). Moreover, the free energy and the entropy at the reference equilibrium state
are zero, i.e.ψMxw(ε0,σeq(ε0,θT),θT) = ψeq(ε0,θT) = 0 andηMxw(ε0,σeq(ε0,θT),θT) = ηeq(ε0,θT) = 0.

Thus, the specific heat of the Maxwellian model is given by

ρCMxw(ε,σ ,θ ) = ρC−
E2

1α2

(E−E1)
θ +θ



















2A+
Mxw, if σ −Eε ≤ τ+m(θ ),

2D+
Mxw, if τ+m(θ )< σ −Eε < τ+M(θ ),

0, if τ+M(θ )≤ σ −Eε ≤ τ−M(θ ),
2D−

Mxw, if τ−M(θ )< σ −Eε < τ−m(θ ),
2A−

Mxw, if τ−m(θ )≤ σ −Eε,
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and the internal energy by

ρeMxw(ε,σ ,θ ) = ρC(θ −θT)−αE1ε0θT −
E1

2
ε2

0 −
E2

1α2

2(E−E1)
(θ 2−θ 2

T)+
1

2E
σ2 (34)

+































E3
2E(E−E3)

(σ −Eε)2− αE3θT−b
E−E3

(σ −Eε)+A+
Mxwθ 2+B+

Mxw, if σ −Eε ≤ τ+m(θ ),
− E2

2E(E+E2)
(σ −Eε)2+ αE2θT+dθm

E+E2
(σ −Eε)+D+

Mxwθ 2+F+
Mxw, if τ+m(θ )< σ −Eε < τ+M(θ ),

E1
2E(E−E1)

(σ −Eε)2− E1αθT
E−E1

(σ −Eε), if τ+M(θ )≤ σ −Eε ≤ τ−M(θ ),
− E2

2E(E+E2)
(σ −Eε)2+ αE2θT−dθm

E+E2
(σ −Eε)+D−

Mxwθ 2+F−
Mxw, if τ−M(θ )< σ −Eε < τ−m(θ ),

E3
2E(E−E3)

(σ −Eε)2− αE3θT+b
E−E3

(σ −Eε)+A−
Mxwθ 2+B−

Mxw, if τ−m(θ )≤ σ −Eε,

where

D±
Mxw =

(E1+E2)
(

Eα ±M(E−E1)
)2

2(E+E2)(E−E1)
, F±

Mxw =−
(E1+E2)

(

EαθT ±M(E−E1)θm
)2

2(E+E2)(E−E1)
,

A±
Mxw = D±

Mxw−
(E3+E2)

(

Eα ±M(E−E1)∓ (M−m)(E+E2)
)2

2(E+E2)(E−E3)
,

B±
Mxw = F±

Mxw+
(E3+E2)

(

EαθT ±M(E−E1)θm∓ (M−m)(E+E2)θM
)2

2(E+E2)(E−E3)
.

(35)
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