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The structure of shock and interphase layers for a heat
conducting Maxwellian rate-type approach to solid-solid
phase transitions

Part Il: Numerical study for a SMA model.

Abstract One continues the qualitative analysis started in Part t¢hicerning the thermomechanical char-
acteristics of a steady, structured moving phase boundagyshape memory alloy (SMA) by a quantitative
investigation. The internal structure of these interpHagers is governed by a Maxwellian rate-type consti-
tutive equation coupled or not with the Fourier heat condndaw. We consider as equilibrium stress-strain-
temperature response function for the Maxwellian modelxli@t piecewise linear thermoelastic relation
for a SMA bar which can exist in the austenite phasand in two variants of martensitd*. Its thermal
properties are built in agreement with experimental resurtNiTi. This equilibrium relation has the atypical
property that not only the derivative of the stress respémsetion with respect to the strain changes its sign,
but also the derivative with respect to the temperature s@enable temperature variation is generated by
impact-induced phase transformations due to the large anafuatent heat released (absorbed) inside the
transition layer. One gets strong heating (cooling) acacssmpressivd — M~ (expansiveM~ — A) propa-
gating interphase layer. A significant lower (larger) tenapere than that at the front and Hugoniot back state
is obtained inside an impact-induckt — M~ (M~ — M) interphase layer. The experimental finding of
this phenomenon of temperature undershoot (overshoolj bewa valuable indication for the existence of an
interphase layer.
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1 Introduction

While the discontinuous shock wave theory in condensedemattextremely useful in many applications
involving impact loading conditions, the use of shock lalyesory, characterized by a small interval of rapid
transition induced by viscosity, heat conduction or ottwrcturing parameter, can have important theoretical
and experimental consequences. For example, steadycpgasttk waves have been observed in the 1960s,
but their definitive experimental evidence is due to Bark¢mfho, by using a new technique of laser velocity
interferometry, has brought an important contributiorndevelopment of constitutive theory of viscoplastic
materials by the discovery of the "fourth power law”. Abohistlaw and the role of viscosity in the structuring
of shock waves in metals an overview can be found in Molinadi Ravichandran [3] and Grady [4].
Steady-propagating plastic shock waves have been andlyragblate-impact experiments by measuring
the rear surface velocity history at the free surface of #get specimen using laser interferometry. Prop-
agating phase boundaries cannot be directly observed gyrtbihod. That is due to their low propagation
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speed with respect to the sound speed and to the wave inteiand reflections following the impact which
hinder the generated phase boundary to reach the moniteuifigce. The presence of a propagating phase
boundary and its speed can be deduced only in an indirectnayrheasurements of the elastic waves at the
rear end of the target specimen (see Escobar and Cliftomfbilee theoretical study [6]).

Other experiments in which a flyer plate or projectile stiketarget specimen and induces a propagating
phase boundary have been also carried out. Shock-induagtitg-to-diamond martensitic phase transitions
are described in Erskine and Nellis [7], while in SMAs theydaeen investigated for instance by Lagoudas
et al [8], Niemczura and Ravi-Chandar [9]. These dynamic expenits use different methods to identify
mechanical characteristics of the transformation froat,neglect the large temperature variation generated
after the passage of the wave front which can be an extreraghable manifestation of a phase transforming
process. That is obviously due to the fact that such measmsmequire adequate temperature diagnostic
tools to record short-lived transient phenomena.

The incorporation of thermal effects into the continuum elbdg of impact-induced solid-solid phase
transitions has been considered, for example, by Abeyaiaid Knowles [10], [11], [12] in the framework
of a driving force theory, by Chen and Lagoudas [13], [14] &adoudas eé&l [8] using a theory based on
a volume fraction as internal variable. Solutions vattarp discontinuitiebave been obtained for the corre-
sponding impact problems. Another way to model the respofiglease transforming materials is to introduce
an internal dissipation by augmenting the thermoelastidtesuch a way that the stress depends additionally
on strain-rate (the Kelvin-Voigt approach used in Vainaih{é&5], [16]) and on spatial strain-gradients (the
"viscosity-capillarity” model used in Slemrod [17], Abeydne and Knowles [18]Turteltaub [19], Ngan and
Truskinovsky [20], [21], or the so-called Maxwellian rate-type approach for whieh stress depends addi-
tionally on strain-rate and stress-rate used in Faciu aifdiMscu-Suliciu[22], Faciu and Molinari[6] and in
Part | [1]. These augmented theories replace the sharprdisadies bytransition layers of finite thickness

The Maxwellian model, which we consider in the followinggclndes as a limit case the Kelvin-\oigt
model. It introduces dime of relaxationrelated to a "viscosity” parameter in the Maxwelliaate-type
relation which characterizes the kinetics of phase tremmsiindeed, in quasistatic loading conditions, this
rate-type approach allows to capture automatically theerratinstability phenomena which lead to the nu-
cleation and growth of phases in the unstable regions witadditional nucleation criterion (see Faciu and
Mihailescu-Suliciu[22]). Thus, the transition processagarticle from one stable phase to another does not
occur instantaneously, but it requires a finite phase ttiansiime. The rate of growth of the instability is
inverse proportional with this time of relaxation (see i&@nd Molinari [6]). In the case of dynamic loading
conditions the time of relaxation is a structuring paramfetea moving interphase layer. Another structuring
parameter is the heat conduction which even alone has tleitafo structure shock waves as it was shown
in the comprehensive study on thermoelastic materials bynl2und Fosdick [23].

In the first part [1] we have developed a detailed treatmemstedidy, structured shock waves in a gen-
eral framework for a thermoelastic SMA bar. The newness igfgtudy consist in the fact that the internal
structure of these traveling waves is governed by a cotiggtapproach which has not been considered until
now, namely the Maxwellian rate-type constitutive equatoupled or not with the Fourier heat conduction

law. Moreover, we have considered a thermoelastic stteasrdemperature relation = oeq(€, 6) with the

properties that both derivativ@é’g—q and%]I change their sign in the constitutive domain. The first priype

is usual for a phase transforming material, but the secoedatypical for thermoelastic materials and its
outcomes have not been investigated systematically wowil his second property is based on laboratory ex-
periments and expresses the fact that in traction testérfmsplateaus of the hysteresis loop increase, while
in compression tests the stress plateaus of the hystevepisiecrease as the temperature grows. In addition,
this property has important consequences on thermal fsatifithe internal structure of the interphase layers
which could be exploited from experimental point of view.

The goal of this paper is to complete this qualitative arialysth a quantitative description. To do this,
we introduce in Sect. 2 an explicit piecewise linear theriastec modelo = 0eq(€, 8) with non-monotone
stress-strain relation for a certain range of temperafur&his model is appropriate to characterize phe-
nomenological aspects of the thermomechanical respors&bfA bar in tension and compression tests. It
corresponds to a material capable of existing in threerdissiolid phases: the austeri@nd two variants of
martensiteVl*. The numerical parameters of the proposed thermoelastiehaoe chosen in such a way that
the evolution of the non-monotone stress-strain relatiith the temperature is quantitatively consistent with
the rate of increase of the hysteresis plateau with temperabtained by Shaw [24] in traction tests for NiTi
strips in the range of temperatures betweetCland 55C. In this approach the free energy of the thermoe-
lastic model is not prescribed a priori, but on the contrargdetermined once the stress-strain-temperature
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relation has been established. The thermodynamic pokepfithe thermoelastic model are characterized in
Appendix A. We also introduce in Sect. 2 the mixed hyperbelliptic system of field equations and the jump
relations for the three phase thermoelastic material. Mitegnial energy allows us to explicitly determine the
Hugoniot locus in the temperature-strain space and in teesistrain space. In Sect. 3 we use this thermoe-
lastic model as an equilibrium relation for a Maxwellianerype constitutive equation. The thermodynamic
potentials of the Maxwellian model are explicitly detereirfor this equilibrium relation in Appendix B. The
procedure for finding traveling wave solutions structurgddte-type effects ("viscosity”) and heat conduc-
tion is outlined in Sect. 4. In Sect. 5 we describe the préshatf our constitutive approach for impact-induced

phase transformations from the austenite ptfasethe martensitic variaritl — and for the reverse situation.

In this case th ;gq has a constant negative sign inside the profile layer. Wetititie how after the passage of

the moving interface separating the two phases of the nahthg temperature increases in the compressive
case and decreases in the expansive case. The considebkese or decrease of temperature is due to the
large amount of latent heat released or absorbed duringhtfigeptransformation inside the transition layer.
We also consider the case of an impact-induced compressasegransformation from the martensite vari-

antM* to the martensite variaM~ when 2% changes its sign inside the interphase layer. This is the mos
interesting case through its theoretical and practicatequences. Indeed, in this case the material is heated
by the passage of the compressive moving phase boundarthe.eemperature of the Hugoniot back state
is significantly higher than the temperature of the frontesthut there are places inside the transition layer
where the temperature is considerably lower than the frodtbeck state temperature. This phenomenon of
temperature undershoot in a steady structured wave is geaggnt with the endothermic character of the
M~ — Atransformation and the exothermic character ofAhe M™ transformation. This behavior cannot
be predicted by a sharp interface theory where only the Btaie and the admissible Hugoniot back state are
relevant. On the other side the existence of this spikerlimym of the temperature profile gives the possibility
to an interphase layer to be detected experimentally. lyjr&éct. 6 contains conclusions and discussions.
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Fig. 1 a) Schematic description of the phase diagram iretheéd plane for the piecewise linear thermoelastic model (1)4§3)
Evolution of the non-monotone stress-strain relatios geq(€, 6) with respect to temperature for the input data in Tabel 1.

2 A piecewise linear thermoelastic model for a three phase SM

It is now unanimously accepted that the main features oflssiid phase transitions, like in shape memory
alloys, are predicted by using thermoelastic constitutives with non-monotone stress-strain relations for
certain intervals of temperature. We consider here an@kpind simple relatiow = geq(€, 8), called equi-
librium stress-strain-temperature relation, which fldfihe thermomechanical assumptititsH3 described
in Part | [1]. It characterizes the response of a SMA bar wiiah exist in three phases: the (low strain)
austenite phas& and two variants of martensil* (large strain) obtained in tension or compression tests.
Starting from isothermal stress-strain curves obtainddboratory experiments at very low strain-rates
we can associate the strain intervals on which the streasrselation has positive slope, both in loading and
unloading tests, with the stable phases of the materiah 8und of experiments are illustrated in Shaw [24,
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Fig. 3] for the pseudoelastic response of a nearly equiatpolicrystalline NiTi alloy under uniaxial traction
tests for temperatures betweerrCsmnd 55C.

We consider there exist two critical temperatuégsand 6y with the property that fof € [0y, Ou] all
three phases are available to the material. This meansftidixed 6, on the intervalse < ¢,(0), € €
[6(6),&7(8)] ande > &1,(8) the functiona = geq(€, 8) is @ monotonicallyincreasingfunction of strain
(Fig. 1). The pairs(e = & (0),0 = 054 (0) = Teq(£4(0), 0)) are associated with the change of sign of
the slope of the equilibrium stress-strain relation at tamistemperature and correspond to the strain-stress
states where the instabilities accompanyingAhe M* phase transformation start to manifest in quasistatic
isothermal uniaxial tensile or compressive loading experits. In fact, they are related to the beginning of
the loading stress plateau of the hysteresis loop, whicl f§iTi alloy manifest in the form of a first stress
drop followed by slight stress oscillations (Shaw [24, BY. In a similar way, the pairée =£5(0),0 =
0 (0) = 0eq(£75(6),0)) are associated with the strain-stress states where ttabilitiés accompanying the
reverseM® — A phase transformation start to develop along the unloadiegsplateau.

For fixed 8 > By the material only exists in its austenitic form and the stressponse functioor =
Oeq(€, 0) is a monotonicallyincreasingfunction of strain. For fixed < 6, the material only exists in its
martensitic variantM* ando = geq(€, 8) is @ monotonicallyncreasingfunction of strain fore < &, (6) and
£ > &;,(6), while on the remaining strain intervale (&,(0),&;(8)) itis monotonicallydecreasing

Piecewise linear stress-strain relations have been afteressfully employed to characterize analytically
and numerically different aspects concerning phase toamsition in solid bars in the isothermal setting
(Abeyaratne and Knowles [18], Truskinovsky [25], Facidavolinari [6]) and also in the non-isothermal
setting(see Turteltaub [19], Abeyaratne and Knowles [10], [11]epdratne eal [26], Faciu and Mihailescu-
Suliciu [22], Vainchtein [16])

We consider in this paper only temperatufesinging in an interval included if®y, Bv]. The equilibrium
stress response function is given by the continuous aneé\wise smooth relation

Es(e—£y(0))+0,(0), for £<éen(0)
—Ex(e—€n(0))+0n(0), for £,(0) < € < £,(0)
0 = Oeq(€,0) = E1(e—&y(0)) + 0y (0), for ,(0) < & < &,(0) 1)
—Ex(e—£€3,(0))+ 0,1 (0), for gy(0) < € < £;(0)
Es(e—&4(0))+ 04, (0), for ,(6) < ¢

whereE; > 0 andEs > 0 represent the constant elastic moduli of the austenitegghand martensite variants
M*, respectively, while-E; < 0 is the elastic modulus of the unstable (spinodal) regions.

The choice of this simple piecewise linear model is in agremmwith the linear thermoelastic behavior
observed experimentally for a SMA in uniaxial tensile anthpoessive tests when the material is in a pure
phase: austenit&, or in one of the two martensite variai¥s® (Shaw [24]). While the monotone increasing
parts of the stress-strain relation can be chosen in sucly sofid known gquasi-static isothermal experiments,
the monotone decreasing part, which induces instabilignpmena and influences the kinetics of phase
transformation, cannot be determined in a direct way froomsests. For simplicity, we choose here a straight
line with constant slope E, connecting the local maxima and minima of the equilibriuress-strain relation.

To get a linear thermoelastic behavior of the material imgleiphase we require that functions- s,\ﬁ(e),
€ =&5(0) as well asu = 05 (0), 0 = 074(8) be linear functions 08. We derive the following expressions
(see also [22])

£3(8) = a(8—Or) £M(0—6r),  &(6) = (60— 6r) F (M —m)(8 — ) =M(6— B, ()
031 (8) = — 0y (6) = E—M(8 — Br),  01(8) = — 0 (8) = EsM(8 — Br) + E2(M—m)(8 — ), (3)

satisfying conditiongy, (6m) = & (6m), & (M) = €4 (6m), &y (Om) = €n(6w) (see Fig. 1a). For simplicity
reasons we have assumed in (3) that the deformation behavemsion and compression tests is symmetric
although, in general, for SMASs that is not true.
The other material parameters entering (2) have the faligwmeaning. According to (22y=const> 0
is thethermal expansion coefficienf the material in the austenite pha&ewhile the temperaturér €
(6m, B\) is a reference temperature with the property that the umdiefd material in phasa& is stress free,
Because in traction tests the hysteresis loop moves upwahde in compression tests it moves down-

n ~
wards as the temperature grows, it follows that necess%ﬁ@éﬂg—) and% are positive, Whiledag'# and
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dagb(e) are negative. Moreover, these quantities can be determimetimentally and it is found that,in gen-
eral, they are constant (see Shaw and Kyriakides [27], SB4}y.[Therefore, the two material constants

andM can be determined from reIauons% Ei;M > 0 and damw) = EiM + E2(M —m) > 0 once the
elastic moduli are known.

In order to study the qualitative, as well as quantitatiedhdvior of steady, structured shock and interphase
layers in a phase transforming bar we choose material paeasfer the thermoelastic model that ensure a
good agreement with the pseudoelastic response of a Nifiistiraction tests, in the range of temperatures
between 15C-55°C, considered and illustrated in Shaw [24, Fig. Bjble 1 shows the chosen thermal and
mechanical constants which, together with the remainimgrpatersvl = 1.78571x 10~ °K 1, m= 1.746x
104 °K~1, 6, = 24115°K, 6y = 10000 °K, 6y = 29315 °K, lead to the isothermal stress-strain curves
0 = Ocq(€, 0) illustrated in Fig. 1b.

Table 1 Mechanical and thermal parameters for the thermoelastdeino

Elastic modulus of the austenite phase E; (GPa) 42,
Elastic modulus of the martensite variaMs E; (GPa) 20.
Elastic modulus of the spinodal regiokis —E, (GPa) -6.55
Thermal expansion coefficient in the austenite pfasea (°K~1) 10°°
Mass density p (kg/md) 8000.
Specific heat in the austenite phase C (J/IKgPC)  500.

The thermoelastic relation (1) is similar to that deriveahfrphysical considerations on the behavior of
shape memory alloys by Abeyaratnea{26]. It has been used in Faciu and Mihailescu-SuliciJ @2 an
equilibrium relation for a Maxwellian rate-type approaolttie thermoelasticity and for numerical simulations
of quasi-static strain-controlled tests. These simutegtiof the evolution of the strain and temperature distri-
bution in a specimen have shown a good agreement with théididltemperature measurements performed
by Shaw and Kyriakides [27] in quasi-static laboratory ekpents.

Let us note that for the numerical parameters used we‘iag%{e—) = —dag"ég) = 7.49MPa’K, which is a
value appropriate to that obtained experimentally in ShH2dy Fig. 3] for the rate of increase with respect to
the temperature of the stress plateauwfer M transformation, whiled"%e) =— dagée) =7.52MPa’K.

Moreover, the conditiotd3 in Part | [1], which assumes the existence of a monotone dartlee € — 6
plane across Whiclg‘;f—gq changes its sign, is satisfied. For the numerical entried, ubés curve is just =
& (0) (see Fig. 1a). This property is an essential particulaufeaof the proposed thermoelastic model,
in agreement with the experimental observations, and altowcharacterize the thermal dependence of the
hysteresis loop in traction or compression tests.

The PDE system describing the motion of a thermoelasticrbtird absence of heat conduction is given
by

oe Ov OV 00eq(€,0) a0 00eq(€,0) v

ot X =% o ax 0 PGB0 050 ox
wherev = v(X,t) is the velocity of a particleX at timet. Ceq(€, 8) is thespecific heat of the thermoelastic
materialand is defined in Appendix Ay relation (28)

It is known (see for instance Part | [1]) that the adiabaterthoelastic system (4) is hyperbolic on those

—0. 4)

0Ueq

regions of thes — 6 plane where—=* daeq e+ pce > 0 and it is elliptic on the complementary part. For

the piecewise linear thermoelasnc model defmed by redati{d)-(3) and for the input data in Table 1 one
can verify by using relation (28) in Appendix A that the cus\ve= &;(0) ande = &1 (0) delimitate the
regions of hyperbolicity and ellipticity of the system. Wientify the domains of hyperbolicity with the so-
called stable phases of the material. These areatistéenite phase A {(&,0)|g,(6) < € < &;(6)} and
themartensite variants M = {(g,0)| € > (0)} andM~ = {(¢,0)| € < &,(0)} (see Fig. 1). The domains
It ={(£,0)| & (0) <e <&} (0)}andl~ ={(g,0)| £, (6) < € < &,(0)}, where phase transitions take place,
correspond to the elliptic regions of the adiabatic systech @e usually callednstable phases (spinodal
regions)of the material. In these regions the initial-boundary eatwoblems for the adiabatic system are
ill-posed and they are dismissed in a pure thermoelastimapp of phase transitions.
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A propagating discontinuity in a thermoelastic materighose position in the reference configuration is
X = §(t), separates the thermomechanical stateg™, 8+ andv—, e, 6~ and satisfies the following jump
conditions and entropy inequality

[Vl = —Sle], [o] =-pS[e], Sipleec]+(0)[e]) =0, pS[neq(e,6)] <O, (5)

where[f](t) = f(S(t) +0,t) — f(S(t) — 0,t) and(f) = 3(f(S(t) +0,t) + f(S(t) — 0,t)) denote the jump and
the average, respectively, of any field quanfifX,t) across the discontinuity. This discontinuity corresponds
to anadiabatic thermoelastic shock wawa aphase boundaryaccording to whether the particles separated
by the discontinuity are in the same phase, or in distincepba

Assume thatS > 0 and the thermomechanical state ahead of the shetk6™) is known. Then the
energy jump condition (3) known as the Rankine-Hugoniot equation, provides rdgiris on the back states
(¢7,07) which can be reached in a discontinuous process. The functio

H(e,8;6",0") = peeq(e,0) — pe’ — %(Ueq(ea 8)+0")(e—¢€") (6)

is called theHugoniot relation based ate™, 61) wheree™ = egq(€7,07) ando™ = 0gq(€™,07). For our
piecewise linear thermoelastic model it can be explicityedmined as a quadratic function &ffrom the
expression (30) of the internal energy- eeq(£, ) given in Appendix A.

The implicit equatiorH (g, 8;¢™,8™) = 0 has in this case a unique global solution with respeetdalled
the temperature-strain Hugoniot locus basedat,67), i.e

0=04(g;eT,07) < H(g,6u(g;e7,07)) =0 foranye. (7)
Its image through the stress response function
0=0n(ge",0") = 0cq(€,0n(g;",0™)) 8)

is calledthe stress-strain Hugoniot locus based at, o). Relations (7) and (8) describe all reachable back
statege~,07,0 = Oeq(€,67)) in a wave discontinuity which hgg™, 0%, 0% = geq(e*,07")) as a front
state.

3 Augmented theory - Maxwellian rate-type approach

We consider the following Maxwellian rate-type constitetequation as augmented model of the thermoe-
lastic material (see Part | [1])

Jo dJde E
FTon EZ—H(U—Ueq(&Q))» 9

whereE = const.> 0 is called thedynamic Young modulug = const.> 0 is a”viscosity” coefficient and
0 = Ogq(€, 0) is the piecewise linear thermoelastic relation describe@l-(3). Let us note that = é isa
relaxation timeof the model.

When we apply this constitutive model to SMAs it is improperspeak about the "viscosity” of the
material. It is better to speak about the relaxation timegaameter which allows to describe the fact that the
transition of a particle from one stable phase to anothes doeoccur instantaneously, but it requires always
a finite phase transition time. Due to certain tradition @ning the terminology related to this constitutive
relation and for simplicity reasons in the following we dladten use the term "viscosityihstead of time of
relaxation, or "viscosity effects” instead of "rate-typ#eets”. In the limit of vanishing relaxation time this
constitutive equation is seen as a rate-type approximafitime thermoelastic model.

The free energy of the constitutive equation (9) has beesnektely analyzed in Part | [1] (see also [22]).
It has been shown that the Maxwellian rate-type model adenftee energy functiow) = Ymxw(€, T, 0),
uniquely determined by the equilibrium stress-straingierature relatiomw = geq(€, 8) and by the instanta-

neous Young modulug (modulo an additive function of temperature) if and onlydjcfg14 < E, at the points
where the derivative makes sense. It has the form
02 ezq(§7 9) €

Pan(€,0,8) = o= =t Geq(s 0)ds+ p@i (), (10)
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whereg = £(¢g, 0, 0) is uniquely defined by the algebraic equation

The entropy and the specific heat of the Maxwellian rate-typdel are given byjuxw(€,0,0) = — mf’,%“

andCyixw(€,0,0) = 6‘7 I%szw respectively, at the points where the derivatives makses&or the piece-
wise linear equilibrium relation given by (1)-(3) the exgse®ns of the smooth free energy function, of the
discontinuous and piecewise smooth specific heat fundioththe continuous and piecewise smooth internal

energy function of the Maxwellian rate-type constitutizgiation are given in Appendix B.

Table 2 Mechanical parameters for the augmented theory

Dynamic Young modulus E (GPa) 43. or 50.
"Viscosity” coeffcient u (GPa) 0.0003 ... 3.
Heat conductivity coefficient k (W/m/°K) 0. or 20.

This rate-type constitutive approach induces an interisgighation. We also consider here a second dis-
sipative mechanism described by the the Fourier law of hemduction for the axial heat flug = —Kgf(,
wherek = const.> 0 is theheat conductivity coefficient

The material data used in this paper to characterize theaypéeeffects and the heat transfer effects in the
numerical investigation are given in Table 2. We note thatréguirement&; < E andE; < E, imposed by
the second law of thermodynamics, are satisfied and the vake@ for the heat conductivity coefficientis
an usual one for a SMA.

The PDEs system, in the unknowne, a, 8 describing the motion of a Maxwellian rate-type phase trans
forming bar is composed by the constitutive relation (9,¢bmpatibility equation, the balance of momentum
and the balance of energy

de oOv ov do
ot aX =0, PE—WZO, (12)
09 E (9!,[1wa E ‘9 U-’wa 029

One observes here that the variation of the temperatureeirdiffusion equation (13) is determined by
the competition between three additive terms in its rightchaide. The first one is related to thrgernal
dissipationwhich always contributes to the increase of the temperaturieg a thermomechanical process.
The second one, is related to tladent heatreleased or absorbed by the material and can be positive or
negative. The third term is related to ttieermal dissipatiorthrough axial heat conduction.

4 Traveling waves

To investigate the internal structure of a phase boundayjaw seek solution to the system composed by Egs.
(9), (12) and (13) in the form of traveling wave= (&), e = £(&), 0 = 6(&), 8 = (&) where& = X — St
andS=const. is the speed of the wave. By requiring that the trageliave connects two equilibrium states
behind and in front of the propagating interface, (&.6,8,9)(+o) = (¢¥,0% = Teq(e™, 0%),0%,vF,)
one gets the followingThe limit values of the traveling waves have to satisfy thegurelations (5) for the
associated thermoelastic material. The velocity-strairsgv(¢ ), £(&)) belong to a straight line in the— ¢
plane of slope-Sand the stress-strain paifé (&), &(&)) belong to a straight line of slopeS? in the & —

plane calledhe Rayleigh lineand denoted by = or(¢), i.e.

WE) =V —SEE)—¢"), 6(E)=0r(E(E)E ot +pS(E(E)—e). (14)
wherepS = (ot —07)/(et —&7).
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The pairs((&), 8(&)) satisfy the dynamical system

A/ E A A . ~ +
= —R(g,0), lim g(&)=¢",
HSE - pS) Eoron (15)
S A ~
0’ = — ~Huxw(£,0 lim 6(&)=6*
p: Mxw(€,8), ELT:OO () )
where, ifS> 0,
R(€,0;67,07,67) = OR(E) — Oeq(€,0) = 0 +pSP(e —£T) — Teq(&, 6), (16)
1
Hwxw(€, 0;€1,07,67) = pemw(€, or(€), 8) — pet — > (e—€*)(or(e)+07). (17)

The statege™, 6+) are fixed points for the dynamical system and they are thesettion points between the
curvesR(g, 8) = 0 and the Hugoniot locud (¢, 6) = 0 in thee — 6 plane. The pair¢s®, g*) represent the
intersection points of the Rayleigh lire= or(€) with the stress-strain Hugoniot curee= oy (g;¢*,0™)
inthee — o plane.

The topological properties of the curtuxw(e,0) = 0 andR(g, 8) = 0 characterize the main features
of the profile layers defined by the Maxwellian rate-type tibusve equation (9) and/or by the Fourier heat
conduction law, respectively. They have been qualitafiielestigated in Part | [1] where thermodynamical
aspects have been put into evidence. Thus, according to ttksSset{ (&, 6)|Hwuxw(€,0;€,07,67) = 0}
describes the trajectory in tlge- 8 plane of a traveling wave solution structured only by thestwhrelaxation
% (or, equivalently by the "viscosity}t) in the absence of heat conduction, i.e. wikes 0. Since% =

Cuxw(€, Or(€),0) > 0 this set can be uniquely represented as a curve-like famcthnnecting the front and
the back state&™, 6%), i.e.

0=0ww(&;eT,07,67) <  Huw(€,Omw(e;€7,07,67)) =0 forebetweere™ ande™.  (18)
Moreover, the image of this curve through the equilibriutatien o = geq(€, 8) is given by the function
0 = Ovxw(&;€1,07,67) = Oeq(€, Ouxw(E; 7,07 ,67)), (19)

which connects the front and back states, 0*) in thee — o plane.
If we denote byT(€(&)) = (E(&),0r(E(E)), Ouxw(€())) the trajectory of dviscous”, heat non-conducting
traveling wave solutioin the e — g — 8 space one derives the following relation (see Part | [1,.Sett2])

dOvixw(€) E *P.Sz ~ EOwxw(€) 0 0eq(€, Omxw(€))
de  EpCum(I1(2)) <"R(£) 0o Oul )+ 5, OuE) a0 )
€

(20)
where & = £(¢) is the unique solution of equation (11) for= ogr(€) and 8 = Ouxw(€). The difference
OR(&) — Teq(€,Omxw(€)) is related with the internal dissipation, while the lastién the right paranthesis

is related the latent heat released or absorbed inside ybe dad depends essentially on the sign‘%ﬁ.
Therefore, the temperature variation insidé/iscous”, heat non-conducting profile laydras two additive
sources: the internal dissipation, which always contebub the increase of the temperature inside the layer,
and the latent heat which can act in both senses, i.e. tadserer decrease the temperature. Let also note that,
in order to establish from the above relations if the temipeednside the layer increases or decreases between
€~ ande™, we have to take into account if the forward propagatingeiiag wave &> 0) is compressive
(e~ < 1) or expansived™ > €™).

For our piecewise linear equilibrium relations (1)-(3) fhectionHyxw (€, 8; 1,61, €7) given by relation
(17) is quadratic ir6 ande and has been calculated using the internal energy (34) giveppendix B. From
here the functiord = Ouxw(&;€,87,67) has been explicitly obtained as a continuous and piece@fise
function.

In the absence of "viscosity”, i.e whgn= 0, a traveling wave solution structured only by heat coniduact
has to satisfy the reduced system

R(2,6)=0, and 6= 7§HMXW(5, 6), lim 6(¢)=6". (21)
K =+
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Thus, the sef(g,0)|R(¢g,0;e",0",e7) = 0}, calledthe Rayleigh sein the e — 6 plane, corresponds to the
trajectory in thee — 6 plane of &non-viscous”, heat conducting traveling wave solutidrhas been shown in
Part | [1] and itis illustrated in the numerical examplesdvethat there exists a major difference in the effect
of "viscosity” and heat conduction on the structure of thefite layers in the sense that a "non-viscous”, heat
conducting profile layer, solution of problem (21), in gealesweeps only some portions of the Rayleigh set
leading to the so called isothermal jumps in strain and stresde the profile layers.

Since‘?Réi*g) =— ‘?;gq it follows that the Rayleigh set, i.e the solution of the imjilequationR(¢, 8) = 0,

is uniquely representable as a funct®er- Or(g; e, 61, &7) connecting the front and back states, 6+) if

0;5‘4 has a constant sign in a domain containiag, 8+). Moreover, its image through the equilibrium stress
response functior = geq(€, 0) is the Rayleigh line, i.e0r(€) = Teq(€,Or(€;€T7,0T,£7)). For the piecewise
linear stress response function (1)-(3) the funcflon Or(g; ", 0", €7) is a continuous and piecewise linear
function. When‘?;gq changes its sign only once in a domain containiag, 6*) then the Rayleigh set is a
disconnected set representable by two functiors ohe8 = ©F (&) passing througlie ™, 6") and the other

0 = O (&) passing througlte—,67).

Admissibility condition.In Part | [1, Sect. 5.1] it has been shown thatteord criterion with respect to the
curve g = auxw(€;€7,01,¢7) defined by (19) is, in general, a necessary and sufficientitondor the
existence of a unique solution for the non-linear autona system (15). This is also an admissibility con-
dition for the selection of physical relevant jump discantties for the associated adiabatic thermoelastic
system (4). Moreover, it has been shown that this condisaguivalent with ahord condition with respect
to the stress-strain Hugoniot locus= oy (¢; €1, 61) defined by (8). Thus, the problem of the existence and
uniqueness of a solution for the problem (15) has been reldieca condition which only depends on the
energetic properties of the associated thermoelastic mode

This selection criterion claims: &> 0 and the front state i&s™,0") and the Hugoniot back state is
(¢7,067) then acompressive wave discontinuifye. e™ > ¢, is admissible if and only if the Rayleigh line
or(€) which joins(e*,0" = 0eq(e7,07)) to (67,0 = geq(e,07)) lies belowthe graph of the function
o=o0y(g;e",0%)fore € (e,e"), while anexpansive wave discontinujiye.e™ < £, is admissible if and
only if the Rayleigh lineor(¢) lies abovethe graph of the Hugoniot locus fere (¢*,e7). If S< 0, the front
state is(e~, 67) and the Hugoniot back state(is™, 6") then the above statement remains valid if one inverts
the superscripts- with —.

5 Numerical results and discussions

The heating or the cooling of a transformed zone in a highrstiate test is a main characteristic of a phase
transforming material like SMA. Therefore, in an impact esiment a phase boundary will start to prop-

agate and a large variation of the temperature should agmeass it. This could be detected by infrared
measurements providing a valuable hint concerning theggaton of a phase boundary. That is why, in the
following, we investigate, for a model built in agreementtwexperimental data, how large is the variation of
the temperature across such a phase boundary and how thlmissipation and the latent heat influences
the profile of the temperature inside the layer.

et ot

5.1 Compressiv& — M~ interphase Iayergi‘?aque ) < 0)

Let us investigate the internal structure of the traveliraysvsolutions for a compressi¥e— M~ impact-

induced interphase layer when at the front and back stataérsidk the profile layer we hav%eel < 0.
This condition corresponds to the classical case invesiiga the framework of thermoelastic fluids (see

for instance Gilbarg [28], Pego [29]) where the variatiorita# pressurg with respect to the temperature is

positive, i.e.% > 0.

We consider the front statg™,0") at the boundary between pha&eand the unstable regiar, i.e.
et = £,(0") (Fig. 3). That means, the strain-stress front state is éatat the poin{e™, 0" = g),(67))
where the slope with respect to the strain of the isotherm geq(g,0") changes its sign (Fig. 2). Any
back state(e—,07) has to lie on the temperature-strain Hugoniot locus basddatd ™), i.e it satisfies
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relation6 = 64 (g;e™,0") (Fig. 3), while the back stat&—, o) lies on the stress-strain Hugoniot loams-
on(g;e",0%) based ate™, 0™) (Fig. 2). We consider five different back states in the pisge~, 67 ),i =
1,...,5andin all cases the chord criterion with respect to thesststrain Hugoniot locus = gy (€;€",0™)
based afe™, o) is satisfied, i.e. the Rayleigh line lies always below the thigt locus fore € (g7,€™).
This condition ensures the existence and uniqueness ofitasobf the system (15), for any > 0 andk >0
(see Part 1 [1, Sect. 5.2].

0
6%=303.15 'K
-200r b
__ —400f OZOeq(€,9+) ........................ b
3 o -
o “(e,,0)) (e".0h
S -600- - ]
0 o=0_(g;c",0") = - .
& -soot H 60 €0 ]
% _1000} ot 1
(8': - Fig. 2 The stress-strain Hugoniot locus based at
~1200; 4 1 (et,07), 0 =oy(g;et,07) and the Rayleigh
o .,0,) lines corresponding to five admissible compres-
~1400——54 20.08 006 -004 20.02 o Sive jump dlscontlnume_s‘g_sf,Gi_*), i=1,..5
Strain from phaseA to martensitic varianvl .
360,
3507 .- A Wheresssnngannnnnnnnnnnndennnnnnnnnnn
19
o340
g
= _ ot ot o
© 330 / 6=0,, (e& 0 &) ]
< + At
6=0 (g;¢,0 . . .
2'320, w(Ee 0 Fig. 3 A— M~ interphase layers in the phase
2 M~ diagram; the temperature-strain Hugoniot locus
based at(e™,0"), 8 = 6y4(g;¢",0"); the ex-
s10r e=¢~ (6) | plicit solutions@ = Gr(&;e*,07, &) and B =
m Owxw(€; 7,07, &5) of the implicit equations
0051 008 006 _-004 -002 0 002 R=0andHw. =0 given by Eq. (16) and Eq.
Strain (17), respectively.

Let us denote b)(é(f;u,K),é(E;u,K)) such a traveling wave solution and By= ©(¢; u,K) its tra-
jectory in the temperature-strain plane. We consider in Bifpr the back state™ = & two extreme sit-
uations. First, the trajectory of a "viscousjl (> 0), heat non-conductingk(= 0) traveling wave solution
0 = O(g; u,0). This is just the curvé = Ouyw(€; €7, 07, & ) defined by relation (18). Second, we consider
the case when the "viscosity” effect is practically nediigiwith respect to the heat conductivity effect and
we plot the trajectory) = O(¢; 4 = 0.0003 GPas, k = 20 W/mFK).

The functionf = Guxw(€; €™, 67, &) has to be monotone decreasingof (¢ ,¢"),i=1,...,5. This
follows from relation (20) as a consequence of the fact thatahord conditioror(e) < omxw(€) implies
OR(€) < Oeq(E(€),Omxm(€)), for e € (g ,e1),i=1,...,5 (see Part | [1, Sect. 5.2.1 Case C1]) and on the

other side, becaus‘yg?‘gﬂq < 0in phaseM™ and in the spinodal regioin . According to the remarks following
relation (20), that means that both the internal dissipatiod the latent heat lead to the increase of the
temperature inside a "viscous”, heat non-conducting pitase layer. Thus, after the passage of a wave the
back state temperature is larger than the front state texhperi.e6” > 6",i =1,...,5. The structure of the
"viscous”, heat non-conducting interphase layers coording to the five compressive jumps is illustrated
in Figs. 4. The way in which the back state temperature isg®gas the absolute value of the back strain
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increases and the corresponding values of the propagatemdo©f the phase boundary is illustrated in Table
3.

Back state 1 2 3 4 5

£ —0.057 —0.067 —0.077 —0.087 —0.097

6~ 3308°K 335.3°K 339.9°K 344.5°K 349.1°K

0~ =0eg(e7,607) | —480MPa  —699 MPa —918 MPa —1138 MPa —1358 MPa
S= \/ % 206 m/s 724 mls 927 m/s 1052 m/s 1139 mis

Table 3 Back states and phase boundary sp@edhen the front state iss™ = —0.0110" = 30315°K,0" = —464 MPa).

.
€
-0.02
004
g
? _0.06
E=43 GPa
~0.08 p=3 GPals
k=0 W/m/ K
0% 0.5 1 15 2 2.5 3
a) Position (m) %1078
350 :
E=43 GPa
u=3 GPals
340 k=0 W/m/'’K
192
@ 330
2
o
8 320
S
0
310
300 ‘ ‘ ‘ ‘ ‘ Fig. 4 Structure of "viscous”, heat-nonconducting
0 0.5 1 15 2 25 3 interphase layers corresponding to the compressive
b) Position (m) x107° jumps in Figs. 2-3.

We say that these compressive waves arbezting type The significant rise of the temperature after
the passage of the moving phase boundary is due to the latahtdleased by the material in this dynamic
process and expresses thethermiacharacter oA — M~ phase transformation. In fact it is a consequence

of the large variation of the equilibrium stress responsection with respect to the temperature. Indeed,
00eq

5. = —8.6 MPafK in the unstable regioh™ and 0;5‘4 = —4.2 MPafK in the phaseM .

Let us consider the opposite case when the heat condudiiéyt is much more important than the "vis-
cosity” effect. First, we observe in the phase diagram in Bithat the Rayleigh sef = Or(g;e",07, & ),
solution of the implicit equation (21) is non-monotone. Second, wecall that in this case the trajectory
6 = O(¢; u, K) of a traveling wave solution of the problem (15) has to be ntome decreasing for any > 0
andk > 0fore € (¢7,&") in Fig. 3 (see Part | [1, Sect. 5.2.1]). Moreover, for a fixedtr@nductivityk = k
and u — 0 the trajectorie® = O(¢; u, k) are increasingly close to the monotone descending partseof t
curve 8 = Or(€) and approach the solution of the reduced system (21).

Fork =20 W/mPK and u = 0.0003 GPas the trajectory of the traveling wave solution is represeiiy
a dotted line in the phase diagram in Fig. 3. It is composedraaly horizontal line which starts at the back




12 Cristian Faciu, Alain Molinari

state(e; , 65 ), passes very close to a stété, 6*), wheref; = Og(£*), and is followed by a curve extremely
close to the curvé = Or(¢) and ends at the front state™, 61).

The corresponding structure of the strain, temperaturestneds interphase layer is represented in Fig.
5. This numerical example illustrates that when the onlycttring mechanism is the heat conduction the
internal structure of &on-viscous”, heat conductingterphase layer can contasothermal jumps in strain
and stressnside the layer. Indeed, one observes in Fig. 5a and Fidhd&idlte interphase layer approximates
ajump in strain frong; to £* and a jump in stress fromg to 0* = or(e*) = 0" + pS(e* — ™). Therefore,
in this case the trajectory of an interphase layer in thesstetrain plane sweeps the portion of the Rayleigh
line ranging frome™ to £* and is followed by a jump fronte*, o) to (&5, 65 ) (Fig. 2).

0 +
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; -=-pu=0.03 GPals
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-0.08
8_ --------
0Ly 0 1 P2 3 4 5 6
ition (M -8
a) osition (m) ¥ 10
3500 E=43 GPa_ ]
k=20 W/m/ K
—annl —p=0.0003 GPal3
05340 ---4=0.03 GPals
g
2 330r i
s
g
£ 320- 1
(O]
'_
310r .~
309 0 2 3 6
b) Position (m) w1078
-400
"""""""""" 0+
-600f .
E g {
-800f H 1
£ ; E=43 GPa
@ ; k=20 Wim/'K
2 -1000F : 1
&7 H -++1u=0.03 GPal3
: —p=0.0003 GPals
-1200t g .
o e : .
1400 Freenett ‘ ‘ ‘ ‘ ‘ Fig. 5 Structure of interphase layers when the con-
-1 0 1 2 3 4 5 6 ductivity effect dominates the "viscosity” effect for
C) Position (m) x10° the back strai~ = & in Figs. 2-3.

Let us note in Figs. 6 that the entropy of the Hugoniot bactesta , 6 ) is larger than the entropy of the
front statge ™, 81). Therefore, this jump discontinuity is compatible with #ezond law of thermodynamics.
On the other hand, if one investigates the influence of thechagity” and of the heat conductivity on the
behavior of the entropy inside an interphase layer one wbsean important difference on their structuring
role. Indeed, when the "viscosity” effect dominates thetloemductivity effect then the variation of entropy
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inside the profile layer is monotone (Fig. 6a). In the opgositse, when the heat conductivity effect dominates
the "viscosity” effect then the entropy variation is nonimatone and even more its values can become inside
the profile layer larger than the entropy of the Hugoniot bstelte (Fig. 6b). This phenomenon is known as
the "entropy overshoot”. It has been reported for instanckdndau and Lifschitz [30, Chap. IX87] in gas
dynamics and by Dunn and Fosdick [23] in thermoelastic nelter_et also note in Fig. 6b that when the
heat conduction is the only structuring parameter of therpitase layer the entropy can have a jump inside
the layer fromn~ to n* = nuxw(&*, 0™, 0%).
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w N Fig. 6 Entropy variation insid& — M~ interphase
layers. a) Monotone variation - the "viscosity” ef-
20r n* 1 fect dominates the conductivity effect. b) Non-
: w monotone variation and "overshoot” phenomenon
-1 0 1 P(z)sition ?n 4 5 S - the conductivity effect dominates the "viscosity”
b, (m) x10 " effect.
et o*

5.2 Expansive~ — Ainterphase Iayer@% <0)

We analyze now thermomechanical features of the intergdhgses in the expansive case, ig. < €, corre-
sponding to impact-induced — — A phase transformations. Inside the profile layer we havma?gagiiI < 0.
We consider the front state™,0™) located at the boundary between phée and the unstable regidm,
i.e.et =¢g,(067) (Fig. 8). That means, the strain-stress front state is éatat the poinfe*, 0" = g,,,;(61))
where the slope with respect to the strain of the isotherm oeq(€,0") changes its sign (Fig. 7). This
also corresponds to a local maxima of the Hugoniot stressagtlationo = gy (€;€*,01). Any back state
(¢,67) lies on the temperature-strain Hugoniot locus basddat6), 6 = 6 (g;e™,6™") (Fig. 8), while
the back statée—, 0 7) lies on the stress-strain Hugoniot loams- oy (¢;€",0") based ate*, o) (Fig. 7).
We consider four different back states in phage; ,68),i=1,...,4 and in all cases the chord criterion with
respect to the stress-strain Hugoniot locus- oy (€;€™,07") is satisfied, i.e. the Rayleigh line lies always
above the Hugoniot locus fare (¢7, ).

We consider here only "viscous”, heat non-conducting {sttase layers. Their trajectories in the phase di-
agram plane, corresponding to the four considered baassaiae given by the curvés= Ouuw(€; 7,07, &7),

i=1,...,4illustrated in Fig. 8. Their images = owxw(€;€7,07,&7),i =1,...,4 in the stress-strain plane
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500
6'=303.15 'K
2501
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(%]
g
4 a=0,, (c"0%¢)
-250+ a=c,, (:€7,6%€0) . . .
o' 7" 1 2 Fig. 7 The stress-strain Hugoniot locus based at
=0 (€€ -0 5) (*.0%), 0 = oy(g;€",0%) and the Rayleigh
o=0 (s£',6%¢) lines corresponding to four admissible expansive
=500 ‘ ‘ ‘ ‘ ‘ e Y jump discontinuitiege™,67),i =1,...,4 from
P06 -0.05 -0.04 -0.03 -0.02 -001 0 001 002 o003 JUMPISC _ i .67)i=1,..,
Strain martensitic variani~ to phaseA.

defined by relation (19) are illustrated in Fig. 7. One seasttie chord criterion with respect to these curves
is also satisfied. That is, the Rayleigh lines connectindrthvé state(e ™, o) and the back state;, g;") lie
always above the curve = owxw(€; 1,07, ), foree (e, ),i=1,....4.

305/, 1
Bzewa(a;f,e*,s;)
2 3001 Bzewa(e;sJ',e*,s;) 1
"0 295¢ 6=0,, (e"6"¢))
3
® -—
5 290r M
Q.
5
P 285 Fig. 8 M~ — A interphase layers in the phase
diagram; the temperature-strain Hugoniot locus
280r based atet,0%), 6 = B4(g;e",0™); the tra-
e=e (6)>! jectories of the "viscous” i > 0), heat non-
_0_65 _0_‘04 _0_63 _0_62 _0_61 0 0.61 conducting § = 0) traveling wave solution8 =
Strain Omxw(€;€7,07,67),i=1,... 4.
Back state 0 1 2 3 4
£ -0.0054 —0.002 Q001 Q004 Q007
Ch 2789°K 279.7°K 280.3°K 280.9°K 2815°K
0 =0 ,07) | —2229MPa —784MPa 473MPa 1730 MPa 2988 MPa
S= \/ TS 28 m/s 614m/s  8l4m/s  957m/s 1070 mfs

Table 4 Back states and phase boundary sp@adhen the front state iss* = —0.05,0+ = 30315°K,0+ = —2232 MPa).

In this case the internal dissipation and the latent heatnaopposite sense. Thus, while the internal
dissipation is a source of heating, the latent heat is a soofrcooling inside the interphase layer. Indeed,
the first term in relation (20) is positive because the chanddition or(€) > ouxw(€;€",07,&7), for € €

(&7,€7),i=1,...,4is fulfilled, but the second term is negative becaﬁﬁ < 0 along the traveling wave
solution. Since the calculated functiois= Guyw(€;€™,07, ) in Fig. 8 are strictly decreasing far ¢
(e*,g7),i=1,...,4 it results that the cooling due to the latent heat absorlyethé material inside the
interphase layer dominates the heating due to the inteisspdtion. Therefore, after the passage of the wave
the back state temperature decreases considerablgi.e. 6", i = 1,...,4. We say that these expansive
waves are of cooling type.

The structure of the strain and temperature interphasedayleen the only structuring mechanism is the
"viscosity” corresponding to the four expansive jumps Igstrated in Figs. 9. The way in which the back
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state temperature changes as the back strain increasdsearmttesponding values of the propagation speed
of the phase boundary is illustrated in Table 4.

The decrease of the back state temperature after the pasistgewave is obviously due to the latent
heat absorbed by the material inside the interphase layen i the case od phase boundary propagating
with a small speed (28m(see for instance case 0 in Table 4) the temperature dropsby tman 24K. This
behavior is natural and in agreement with the fact thaMhe— A phase transformation endothermic

On the other side, one notes that the back state temper@tuiacreases as the back state strgin
increases. This is because the internal dissipation isoptiopal with the area between the Rayleigh line and
the curveo = owyw(€;€7,07,67) for e € (¢1,g7), i =1,...,4. As the strain increases the corresponding
area also increases and consequently the contributioneointernal dissipation to the heating inside the
interphase layer becomes larger.

5.3 Compressivié/* — M~ interphase layer62d(e*,6+) > 0 and22d(~,67) < 0)

We investigate now the internal structure of traveling wsetaitions for a compressive impact-induced trans-
formation from martensitic variatl ™ to martensitic variank . In this atypical casg%4 changes its sign

inside the interphase layer. We consider the front state6") at the border between phab&"™ and the
unstable region™, i.e.e™ = & (6) (Fig. 11). Therefore, the strain-stress front state, o™ = g, (6™)) is
located at the point where the isotheom= geq(€, ) and the Hugoniot locus = a4 (€;€™,0") has alocal
minima (Fig. 10).

Let us first consider the case of a "viscoug™$ 0), heat non-conducting traveling wave solutiarn 0).
Its trajectory in the temperature-strain plane is desdrtipethe functiord = Ouxw(€;€*,07,67). The image
of this curve in the stress-strain plane, defined by relatl®), iso = owxw(&;€",07,¢7) and it is plotted
in Fig. 10. One can see that the chord criterion with resgettted Hugoniot locusr = oy (g;€™,0") and the
chord criterion with respect to the curge= ouxw(€; €T, 07, €7) are both satisfied. That is, the Rayleigh line
connecting the front statg™, o) and the back state ™, o) lies below both curves fag € (¢7,¢™). This
condition ensures the existence and uniquenesdof a+ M~ interphase layer for any > 0 andk > 0.
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Let us analyze thermomechanical aspects of the interphgsesistructured only by the "viscosity”. The

trajectory® = Ouxw(€;€1,01,€7) in the phase diagram plane crosses the domislins|~ and A where

ng < 0, and the domaih™ where dggq > 0 (Fig. 11). The domains representing the phases are segédmat

dotted lines. As we have shown, in the general case in PayiSddtion 5.2.1, Case C3], this function has to
be non-monotone.

Indeed, the first term in (20) is always negative since thedhoaterion is fulfilled, while the second term
changes its sign fag € (¢7,¢™). Indeed, it is negative when the paiiE¢), Ouxw(€)) belong to phas&l—,
to the unstable regiolT and to phasé and it is positive when it belongs to the unstable redion

340 ‘E=50 Gpa
{ k=20 W/m/'K
A330 —p=0.0003 GPals|
X snanp=
Z 320 p_0.00S GPals ||
o --1=0.03 GPals
2 p=0.3 GPals
e 310 H i H
+
g (°.8)
£ 300 =
= 1'rz Fig. 11 Trajectories ofM™ — M~ interphase
290 i 1 layers in the phase diagram; the explicit solu-
i 4 tions @ = O (¢) of the implicit equationR =
M 0 given by Eg. (16); the explicit solutiofi =

280 pa : o
0. 0.05  Ouxw(g;e",07,e7) of the implicit Hyxw = 0

given by Eq. (17).

The numerical result shows that the cu/e= Oy (€;€",0",€7) is monotone decreasing M~ and
I~ due to the combined heating action of the internal dissipasind latent heat. Therefore, on the corre-
sponding part of the interphase layer the temperature haxtease for decreasing On the other side,
the curved = Ouxw(&;€T,07,€7) is monotone increasing when crossing the phase dondeamsl| . That
means, according to relation (20), that the contributionthef latent heat to the cooling is larger than the
contribution of the internal dissipation to the heatingdieshis part of the interphase layer. This implies that
on the corresponding interval of the interphase layer thgpezature has to decrease for decreasinghe

fact that the curvéd = Ouixw(&;€™,0, ) is monotone increasing when it passes through phaseere

?gq(e,@,wxw(s)) < 0 is due to the fact that the pai&(g), Ouxw(€)) defined in relation (20) belongs td,

i.e. 2259(Z (), Oan(€)) > 0.
This non-monotone behavior of the functin= Oyxw(&;€",0",€7) is an expression of the fact that a
continuous transformation from the variaWit™ to the variantM~ has to pass through the austenite phase

and that the transformatidl ™ — A is endothermic while the transformatidn— M~ is exothermic. These
circumstances lead to a specific structure of the temperatofile layers.
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The strain, temperature and entropy variation inside Wiscous”, heat non-conducting interphase layer
is illustrated in Figs. 12. One sees that the front state &zatpre is 3035°K, the back state temperature
increases to 33@°K, but inside the layer there is a significant temperature drelow these two values,
namely to 2824°K. Thus the non-monotone variation of the temperature etie interphase layer shows a
"spike-layer” form whose width depends on the sizeuofFigs. 12a-b also illustrates what it happens when
we consider the "viscosity” going to zero. For the strain gats a sharp discontinuity, but for the temperature
one gets a sharp spike-layer form with two successive juthjs obvious that a sharp interface theory for
which only the front and back states are relevant will loge #éxtreme value of the temperature profile. In
other words, an important physical aspect related to andtipauced phase transformation from martensitic
variantM™ to martensitic varianM~ will be disregarded, that is, the passage of the particlesigh the
austenite phasa.

Concerning the entropy variation inside the interphaserkgtructured only by "viscosity” we get, as
expected (see Part | [1, Sect. 5.2.3], a monotone variafion {2c¢).

Let us analyze the case when both the "viscosity” and the dwatuction are structuring mechanisms of
the interphase layer. When the heat conductivity has thd fraéuek = 20 W/m/FK and the "viscosity” has
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values increasingly smaller, then the graphic of the fumc@ = O(¢; u, k), for € € (¢7,&™), is illustrated

in Fig. 11. For eachu this function is non-monotone and has a minimum below thatfemd back state
temperature®*. This minimum value of the temperature increasegiafecreases, i.e. as the role of the
"viscosity” becomes more an more insignificant with respgedhe heat conductivity effect.

The structure of strain and temperature interphase layévifecosities” ranging fronu = 3 GPas ("vis-
cosity” structuring effect is dominant with respect to treahconductivity effect) tu = 0.0003 GPas ("vis-
cosity” structuring effect is completely negligible witespect to the heat conductivity effect) is illustrated
in Fig. 13 and Fig. 14. The temperature variation inside thierphase layer is again non-monotone and has
a spike-layer fornreflecting the manifestation of thendothermiccharacter of theév™ — A transformation
and theexothermiccharacter of thé — M~ phase transformation. The minimum value of the temperature
reached inside the layer varies from 2B2K for u = 3 GPas to 2943 °K (temperature corresponding to YZ
line in Fig. 11) foru = 0.0003 GPes. This latter case can be practically assimilated with #eeavhen the
only structuring mechanism of the profile layer is the heatdmtion.

Fig. 11 also illustrates that the Rayleigh $ét, 0)|R(g, 0) = 0} in thee — 6 phase diagram is composed
by two disconnected piecewise linear cunées- O3 (&), one passing trougfe™, 6+) and the other trough
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(¢7,07), as a consequence of the fact tﬁ%ﬂ has different signs at the front and back state. On the other
side, Fig. 11 shows how for fixed andu — O the trajectorie® = ©(¢; U, k) are increasingly close to some
parts of the Rayleigh set in ttee— 6 plane and how the solution of the reduced system (24) is appsal.

For u = 0.0003 GPas the trajectory is composed by a nearly horizontal linetisigrat the back state
(¢7,67), passing very close to a poiKkt= (&, 6¢) which belongs to the brandh= O (¢) of the Rayleigh
set, i.e.Og (&) = 67, is followed by a curve that matches the cure- © (€) until near its minimum point
Y = (&, 6 = Oy (&)), next is followed by another nearly horizontal line whichnoects the poinY with the
pointZ = (&, 6, = O3 (&,)), belonging to the branch = ©F (¢) of the Rayleigh set, and finally is followed
by a curve which matche8 = ©5 (&) and ends at the poirie™, 61). This behavior is justified in Part | [1,
Section 5.2.1 Case C3].

This limit case shows that when the only structuring mecddraris the heat conduction the strain profile
contains isothermal jumps in strain froam to & and fromey to & as it is illustrated in Fig. 14a. One
observes that we have a smooth variation of the strain prafile when the trajectory of the "non-viscous”,
heat conducting traveling wave solution sweeps parts oRéndeigh set in the — 8 plane. The temperature
profile is continuous and has a minimum corresponding togivgperature at the poit= (&, 8,) in Fig. 11.



20 Cristian Faciu, Alain Molinari

Fig. 13c and Fig. 14c show how the entropy variation inside ftofile layer turns from a monotone
behavior to a non-monotone behavior as the role of the hemtumtion increases at the expense of the role
of the "viscosity” as structuring mechanisms. Moreoveg #ntropy inside the profile layer can become
considerably smaller than its value at the front stateand considerably larger than its value at the Hugoniot
back statey— > n*. This behavior is known as the phenomenon of entropy undetsind entropy overshoot,
respectively. The limiting casg = 0.0003 GPas in Fig. 14c also illustrates that in a "non-viscous”, heat
conducting profile layer, i.e., when the only structuringctmanism is the heat conduction, the entropy profile
contains isothermal jumps in entropy.

This example clearly illustrates the profound differencehe effect of "viscosity” (time of relaxation)
and the effect of heat conduction on the structure of trenmsliayers.

Our numerical investigation also offers some insight onvidith of the interphase layers. A correspon-
dence between the time of relaxation ("viscosity”) and thiekness of the transition layers is illustrated in
Table 5. As expected one observes that the width of the pilefiler increases as the time of relaxation in-
creases. Indeed, when the dominant structuring mechasigime iheat conductiornu(= 0.0003 GPsas) then
the width of the transition layer is of the order of hundrexdtii micrometers (or, tens of nanometers) while
when the "viscosity” effect is dominanti(= 30 GPas) the width is of the order of hundreds of micrometers.

Since the heat conduction can be determined independentiy&boratory experiments, the identification
of the time of relaxation remains an open problem.

It is useful torecallthat the value of the time of relaxation which has been useatlimerical simula-
tions of quasistatic strain-controlled experiments icifand Mihailescu-Sulciu [22] and which showed a
good agreement with laboratory tests performed by Shaw gmdides [27] wag = 10~*s. The numerical
experiments have put into evidence the capability of thewdkan rate-type approach to describe the mech-
anism of phase transformation that occur via nucleationgro@th of phases as a consequence of instability
phenomena. Moreover, we found that for valueg édwer than 10°s, which enhances the mechanisms of
thermo-mechanical instability in the spinodal region,@nfalues oft larger than 10%s, which weakens the
instability phenomena, one gets inaccurate predictiohsréfore, if we consider the proper values for the
time of relaxatiorr in the range of 10%s and 103s one gets that the width of a propagating interphase layer,
structured by the time of relaxation and an usual value ohtreet conduction for a SMA, is also of the order
of hundredths of micrometers.

"viscosity” u 0.0003GP&s 0.003GPa 0.03GPa& 0.3GPas 3 GPas 30 GPas
time of relaxationr = £ 6x10 5s 6x10 s 6x10 % 6x10° 6x10°%s 6x10Ts
interphase width ~0.02um ~0.04um =~ 0.05um =~0.25um ~2Um ~30um

Table 5 Order of magnitude of the width of a profile layer for diffetealues of the "viscosity” parametgrwhenkE = 50 GPa
andk =20 W/mFK.

6 Conclusions

The transition across a propagating interface separatingphases of a material cannot be instantaneous.
Therefore, a transition layer should exist. We have modethe internal structure of this interphase layer
by introducing dissipative mechanisms in the form of Maxiael rate-type effects and heat conduction.
The main aspects of the response of a SMA have been descrhesirty the thermoelasticity theory with
non-monotone stress-strain relation. A piecewise lineamhoelastic relation has been fitted with laboratory
experiments in such a way that the variation with respediedemperature of the local maxima and minima
of the stress-strain relations matches the rate of increfidee hysteresis stress plateau with respect to the
temperature in traction tests. This approach allowed ugpduce in an accurate way the effect of the latent
heat in phase transformation processes.

In studying impact-induced phase transition phenomenasboald focus both from theoretical and ex-
perimental point of view on the investigation of thermaless. Indeed, our quantitative analysis has put into
evidence that in a SMA there are large temperature vareBonoss a propagating interphase separating two
phase of the material (more than°R) even if its speed is very low. Therefore, such significemperature
changes should be exploited from experimental point of \iewause they are an extremely valuable indi-
cation of a dynamic phase transformation process. We erngatbthe influence of the internal dissipation
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and of the latent heat on the structure of the interphasedayéus, we showed how compressive moving
phase boundaries — M~ are of heating type and how the reverse expansive movinggi@amdaries from
M~ — Aare of cooling type, capturing in this way the influence ofelkethermic and endothermic character
of phase transitions. We pointed out that across a propapatterphase layer separating the two variants
of martensiteM™ andM ™, the temperature suffers large variation (abotitkd3but the most striking as-
pect revealed is that there are places inside the profiledaykere some particles experience temperatures
considerable lower than that at its front state and its bé&ate s\We also note that a sharp interface theory
can not predict this spike-layer form of the temperaturds fhenomenon of temperature undershoot, if it
could be detected experimentally, can be a direct proofeéttistence of an internal structure of a propagat-
ing phase boundary. The experimental detection throughried radiation of a moving interface separating
different phases of a material, and even more of a phenomehtemperature undershoot/overshoot is a
challenge which depends on the development of highly ateteaperature measurement instruments with
high acquisition data.

Onthe other side, itis reasonable to interpret a propagatterphase layer as a sharp phase boundary if its
thickness is small compared to other dimensions of intefé&refore, in many practical impact experiments
the solutions can be constructed by using the adiabatiotbelastic system endowed with an admissibility
criterion to select physical relevant jump discontinti€he chord criterion with respect to the Hugoniot
locus can be considered by some authors, who have used ¢otsedf both "viscosity” and strain-gradient
effects (Slemrod [17], Ngan and Truskinovsky [20], [21]3, tao restrictive since it rules out propagating
phase boundaries near the equilibrium co-existence lemagad also subsonic phase boundaries or kinks. On
the other side, according to Vainchtein [16] (see also Mfaieio and Rosakis [31] and Vainchtein [32]) models
which include strain-gradient effects cannot captureisgalhysteresis loops under quasistatic (isothermal)
strain-rate controlled loading conditions. Since diffdérselection criteria may furnish different solutions to
a Riemann problem, only systematic impact experiments msXample those performed by Escobar and
Clifton (1995), could decide which is the physical relevangé.

7 Appendix A: The thermodynamic potentials for the thermoehstic model

The stress-response function defined by relations (1)€8dimes

Esze— (aEz+a)0+aEszbr +b, for £<egn(0)
—Ezxe+ (aEx2—d)0 — aEx6r +d6ny, for £, (0) < € < &,(0)
0 =0(€,0) =4 Ei16—aEi(6—6r), for g,(0) <& < g,y (0) (22)
—Eze+ (aEz+d)0 — aE26r — db, for £ (6) < € < &,(0)
Ese — (aEz—a)6+aEzbr —b, foreg,,(0)<e

where
a=M(E1+Ez) —~m(E2+Es), b= (E1—E3)Mbn+ (E2+E3)(M-—m)by, d=M(E1+E). (23)

The free energy = Yeq(€, 0), the entropy) = neq(€, 8) and the specific heat at constant sti@dg(€, 8)
of the thermoelastic model are uniquely determined by tlesstresponse function (modulo an additive func-

tion of temperature) according to relationg(€,0) = paw%(s,e)' Neq(€,0) = —ddigq(e, 0), andCeq(£,0) =

&
—GMZ@ at the points where the derivatives make sense.
If 0= Oeq(€, 0) is only continuous and piecewise smooth like in (1)-(3) ttrenfree energp eq(€, 8) =

po(0) + f;o Oeq(s, 0)ds is of classCl, the entropypneq(€,0) = —p@' (0) — Qst as well as the

internal energye = €eq(€,0) = Yeq+ Bneq are of clas€?. Here prime denotes the derivative.

The specific hedl = Ceq(€, 0) is a discontinuous function on its domain of definition. ledglet ugecall
the following result. Iff = (&, 8) is continuous and continuously differentiable with regpe® except for
a single discontinuity whose position is given by a différalole functione = £*(0) € (&1, &) then we have

d (e 2 3f(e,0) de(6 .
@) f(e,e)de:/£1 ((;9 Jde — ‘gdé ) [1](¢*(0). ) (24)

where[f](*(0),0) = f(e*(0)+0,0) — f(¢*(0) —0,0) and f (¢"(8) £ 0, 6) denote the one sided limits of
f(g,0) ase approaches*(8) from the right and from the left.
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Let us takego = & (6m) = A (6m— O7) the onIy strain which always lies betwegp(6) andey, (6). Then,
when 42 g Is discontinuous across the cunes- &4 (0) ande = £7(6) by using (24) one derives the specific
heat as
€ 1 920eq(S, 0)

Ceq(fae) =-06 . E 002 ds— e(d,(e)
dfgém ;%4; (64(6),6) — dggée) [[6:69‘*]] (£::(8),8), for )
] 7d_s,é,?§@ 0003(4 (£7(6),0), for e(0) < € < ,(0)
t59 00 I for £,(0) < € < &(0) (25)
+ _ .
dey (6) aaagq (4(6),6), for & (0) < € < &(0)
dey (6) :‘700;1: (s,\j(e),G)er%@t—éﬂ Hﬁaaeeq]] (€4(6),0), for ,(6) < €

whereq(0) is determined according to relation

—0¢/"(6) = Ceq€0. 0). (26)

Relation (26) expresses the fact that it is sufficient to kreywerimentally the specific heat at the constant
straingg for an interval of temperature in order to determine funcgo= ¢(0).

Assuming that the specific heat in the austenitic phase istant) i.e C(&,68) = C > 0, one gets from
relation (26) that

¢(6)—C9In%+C(96T), @27)

where we have assumed thjady(&o, Br) = 0 andneq(&o, 8r) = 0.
The specific heat for the thermoelastic model (1)-(3) is tigan by

(E1+E2)(CX*M)27(E2+E3)(CX ) if ESEn;(Q)
(E1+Ep)(a —M)?, if £1(0) <& < &y(0)
PCeq(€,0) =pC+ 61 0, if &(0) <e<gy(H) (28)
(E1+Ep)(a +M)?, if e (0) <& <&h(0)
(E1+Ep)(a+M)?— (Ex+Ez)(a+m)? if ,(0) <€ .
The free energy and the internal energy are, respectiveindy
E
PUe(€,6) = p(6) + aEre0(6 — Or) — & (29)
2
%eﬂ(rw) — Esgn(0))e+ 52552 (61,(0))% — B3R (g(9))2, if £ < &n(0)
~ %82+ (03 (6) + Exi(8))2 — E15%2(54(6))2, i £7(6) < £ < £7(6)
+9 SHe2—aE(6-6r)e, if £4(0) <e<g)(0)
—Z2e24 (071(0) + Eagy (6))e — B2 (£ (0))2, if £ (0) < &< &h(0)
S E2 1 (01(0) — Eseh (0))e + E5%2 (6:1(0))2 — ErfB (5(0))% if £(6) <&
Peeq(€,8) = pC(6 — Or) — aEr806r — —-& (30)
?52+(0E39T+b)£+A‘62+B‘, if £<en(0)
— 22— (aE0r —dOm)e +D 02+ F~, if £,(0) < € < £y(0)
+<  Ze? 4+ aE;bre, if sM(9)<s§s,\+,,(9)
— 2262 (aBx0r +dBm)e +DTO? +FH . if )(0) < € < £5(0)
Je?+ (aEsbr —b)e +ATO?+ BT,  if g(6) <¢
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where
Ei1+E> 2 n Ei+Eo 2
DY = 21 2(g+M)?, Ff=_—"2"2(a6; +M§
(a+M)? -2 (aBr = M8y, o
+ + Bxt+Es 2 + £ E>+Es
AT =D - 2 (axm)?, B =FF 4+ =22 (b F (M- m)By £ M),

8 Appendix B: The thermodynamic potentials for the Maxwellian rate-type model

We consider the Maxwellian rate-type constitutive equaf2) having the equilibrium described by the piece-
wise linear stress-strain-temperature relation (1)A8kording to (10) the free energy function is given by

1
PYvixw(€,0,0) = EUZJF‘PI( )+ (32)
e (0 —Ee)?+ (320 - TB02) (0 —Ee) + 94 (6), if o—Ee<14(8),
—oelgy (0 — )2 — (10 — (5290 (0 —Ee) + 95 (0), if T1(0) < 0 —Ee < 1 (6),
+1 gy (0 —Ee)?+ £ (6 — 6r)(0 —Ee), if 7,7(0) < 0 —Ee < 1y(6),
—2E<EE3E2)(U Ee)2— (GEEsz 06— “Eﬁg%’gm)(a—lze)m;( ), if T4(8) < 0 —Ee < 1,(6),
e (0 —Ee)?+ (20— T8 (0 —Ee) + 95 (6), if 15(6) < 0 —Eg,
where
E2a? 6 E
$1(0) = 5 ===~ (8 — 6r)2— pCOIN - + (pC+ aEy£0) (0 — Or) — — 3.
2(E—Ea) 6r 2 (33)
+ o (ElJrEZ) + 2 + o (E3+E2) + 2

and, by using notatioh(e, 8) = geq(€, 0) — Ek¢,

T (6) = h(gy(6),0) = —Ea (6 — 6r) F M(E — E1)(6 — 6,
T (6) = h(gy(6),8) = —Ea (6 — 6r) + (M —m)(E+E) (6 — 6u) F M(E — E1)(6 — 6m).

Assuming that the additive function of temperatgre- ¢(6) in the definition of the free energy func-
tion of the Maxwellian model (10) is the same with the additfunction of temperature in the defini-
tion of the free energy of the associated thermoelastic inedehave shown in Part | [1], that at equi-
librium the following relationpCuxw(€, Teq(€, 6),0) = pCeq(€,0) — B(daeq) /(E— @') holds. There-
fore, according to relations (26-27) we hag€uvixw(£o, Oeq(£0,60),0) = pC — O(E1Q) 2/(E — E1), where
& = e,ﬁ(em) = o(6n— Br). Moreover, the free energy and the entropy at the referequéitmium state
are zero, i.eYvixw(£€o, Teq( &0, B1), B1) = Weq(&0, Br) = 0 andnmxw(&o, Teq(€0, Br), Br) = Neq(&0,6r) = 0.

Thus, the specific heat of the Maxwellian model is given by

ZAMXW, if o—Ee <T1(9),
E242 2Dy, if T (0) < 0 —Eg < 1,3(0),
pCMXW(e,o,G):pC—EliE9+6 0, if 1y(0) <o —Ee <1y,(0),
(E—E) 2Dy if T (0) < 0 —E€ < 1,(6),

Ay 1F T (0) < 0 —Eg,
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and the internal energy by

E2q? 1

pemxw(€,0,0) = pC(0 — 6r) — aE1£06r — 2 g_ﬁ(ez_eg)+E02 (34)

72E(EE§E3)(0 Ee)2— “E39T3b(0 E€) + Ah 82+ Bl I o—Ee<T14(0),
*zaEEiEz)(U Ee)2+ %gj"m(o E€) + D182+ Fopaw i T () < 0 —Ee < 15(6),

+ 72E(EE£E1)(0 Ee)?— 292 (0 - Ee), if 7,:(6) < 0 —Ee < 1,,(8),
2E(EE§-E2)(0- Ee)?+ %(0— E€) 4+ Dyy8% + s If Ty (0) < 0 —E€ < 14(6),
ZE(EE§E3)(0 Ee)2— “E39T+b(a E€) + A8+ By if Tm(8) < 0 —Eg,

where
- (E1+E2) (Ea £ M(E — Ey))? . _7(E1+E2)(E019TiM(E7E1)6m)2
Mxw = 2(E+E)(E—Eyp) © M 2(E+E2)(E—Ey) ’
U (Es+E2) (Ed +M(E—E1) F (M—m)(E+Ey))° (35)
Mxw — “Mxw 2(E+E2)(E—E3) 5
N (E3+E2)(E09TiM(E—E1)9m$(M—m)(E+E2)9M)2
Mxw wa 2(E+E2)(E7E3) .
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