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Abstract: This paper investigates dynamic aspects of solid-solid phase transitions when
thermal effects are taken into account. We consider an explicit one-dimensional non-
monotone thermo-elastic model able to describe some aspects of the thermomechanical
response of a shape memory alloy. This model is embedded in a Maxwellian rate-type
constitutive equation which removes the deficiencies of the classical thermo-elastic ap-
proach. Impact problems that gives rise to both adiabatic shock waves and propagating
phase boundaries are analyzed.
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1. Introduction

In a recent paper (see Făciu and Molinari, 2006) we have proposed longitudinal impact
experiments of thin bars as an effective mean for understanding the kinetics of stress-
induced phase transformations in shape memory alloys (SMA). This problem has been
investigated in a one-dimensional and isothermal setting and has provided important
insight into the wave structure. Since the influence of thermal effects on the rate of
phase transformation, size and shape of pseudoelastic hysteresis at higher strain rates is
very important we extend, in a forthcoming paper, this analysis to take into account their
influence on the wave propagation. The present paper is a simplified version and describes
only some aspects of this study.

In the next section, we set out the balance laws, the dissipation inequality, and the
corresponding jump conditions governing the dynamic response of a one-dimensional bar
in the adiabatic case. In Section 3, based on experimental facts for SMA, we describe
the thermo-elastic constitutive assumptions for a solid which can exist in three phases.
Some aspects related to the non-unicity of weak solutions for the thermo-elastic system
are reminded. We consider a Maxwellian rate-type constitutive equation as a convenient
alternative for the description of dynamic phase transitions. In Section 4, we formulate
the problem of a semi-infinite bar in the austenite phase impacted at one end and discuss
some general features of its solution. Section 5 is concerned with the numerical predictions
of the rate-type model for the longitudinal impact of two phase transforming bars. One
focuses on the results which can be measured in laboratory experiments like the time of
separation of the bars after impact, the profile of the particle velocity at the rear end of
the target and the stress-history at the contact point.
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2. Adiabatic thermomechanical bar theory

We consider here the longitudinal adiabatic motions of thin cylindrical bars by taking
into account simultaneously inertia and heat release. The bar is supposed to be thermally
isolated and moreover, the shocks and phase boundaries are treated as adiabatic. The
balance laws of momentum, mass and energy in a 1-D Lagrangian description are

̺
∂v

∂t
−
∂σ

∂X
= 0,

∂ε

∂t
−

∂v

∂X
= 0, ̺

∂e

∂t
− σ

∂ε

∂t
= 0. (1)

where v, σ, ε, e and ̺ are the particle velocity, the stress, the strain, the specific internal
energy and constant mass density at a reference point X and time t, respectively.

Across the discontinuities, the system (1) must be supplemented by the Rankine-
Hugoniot jump conditions and the dissipation inequality

̺Ṡ[v] + [σ] = 0, Ṡ[ε] + [v] = 0, ̺Ṡ[e+
1

2
v2] + [σv] = 0, −̺Ṡ[η] ≥ 0, (2)

where η = η(X, t) is the specific entropy and Ṡ is the Lagrangian velocity of the disconti-
nuity. Here for the jump we use the standard notation [ ] = ()+−()− and ”+” corresponds
to the state at the right of the discontinuity. From (2) we have, either a propagating strain
discontinuity Ṡ 6= 0 across which

[σ] = ̺Ṡ2[ε] and ̺[e] =
1

2
(σ+ + σ−)[ε] (3)

or, a contact discontinuity Ṡ = 0 across which the strain and the temperature may have
jump, but

[σ] = 0 and [v] = 0. (4)

3. Constitutive assumptions - three phase materials

a) The thermo-elastic approach.
It is now a common use to model materials undergoing solid-solid phase transitions by us-
ing non-monotone, up-down-up stress-strain relations. We consider here such an explicit
simple stress-strain-temperature relation σ = σeq(ε, θ) derived from physical considera-
tions on the behavior of shape memory alloys in quasi-static tests. It is inspired by the
model proposed by Abeyaratne et al. (1994) and has been used by Făciu and Mihăilescu-
Suliciu (2002) as an equilibrium relation for a Maxwellian rate-type approach to the
thermo-elasticity. Moreover, the predictions of this rate-type approach for quasi-static
strain controlled tests have shown a quite good agreement with the full-field measure-
ments of strain and temperature fields performed by Shaw and Kyriakides (1997) and
with the experimental results obtained by Pieczyska et al. (2004) (see also the references
therein).

We consider a material which exists in a high-temperature phase austenite A and
has two variants M− and M+ of a low-temperature martensite. That means, there
are two critical temperature θm and θM such as for θ > θM the material only exists in
its austenite form no matter what the stress level is, whereas for θ < θm the mater-
ial only exists in its martensitic forms. For θ ∈ [θm, θM ] all three phases are available
to the material. The stress response function σeq(ε, θ) must therefore be a monotoni-
cally increasing function of ε for θ > θM . At each fixed temperature θ ∈ [θm, θM ] the
thermo-elastic curve σeq(ε, θ) is a continuous, monotonically increasing function of strain
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for ε ∈ [εI(θ), ε
−

m(θ)] ∪ [ε−M(θ), ε+
M(θ)] ∪ [ε+

m(θ), εII(θ)] and a monotonically decreasing
function of strain over the intervals (ε−m(θ), ε−M(θ)) and (ε+

M(θ), ε+
m(θ)). For θ < θm, the

isotherm σeq(ε, θ) is a monotonically increasing function of strain on two intervals, i.e.
(εI(θ), ε

−

m(θ)) ∪ (ε+
m(θ), εII(θ)), while on the remaining one (ε−m(θ), ε+

m(θ)) it is monotoni-
cally decreasing (see Fig. 1a).

Quasi-static experiments on SMAs have shown that we can approximate their behavior
in a pure phase by a linear thermo-elastic relation. Thus, we can assume that elastic
moduli of the austenite phase A and martensite variants M± are constant and equal to
E1 > 0 and E3 > 0, respectively. Moreover, for simplicity we consider that the elastic
softening moduli of the unstable (spinodal) regions I± are also constant and equal to
−E2 < 0. The magnitude of E2 is proportional with the size of the hysteresis loop (see
Fig. 1b).

For θ ∈ [θm, θM ], we consider the following continuous and piecewise linear stress-
strain-temperature relation

σ = σeq(ε, θ) =























E3(ε− ε−m(θ)) + σ−

m(θ) for εI(θ) < ε ≤ ε−m(θ)
−E2(ε− ε−m(θ)) + σ−

m(θ) for ε−m(θ) < ε < ε−M(θ)
E1(ε− ε−M(θ)) + σ−

M(θ) for ε−M(θ) ≤ ε ≤ ε+
M(θ)

−E2(ε− ε+
m(θ)) + σ+

m(θ) for ε+
M(θ) < ε < ε+

m(θ)
E3(ε− ε+

m(θ)) + σ+
m(θ) for ε+

m(θ) ≤ ε < εI(θ)

(5)

Here the functions σ±

M(θ) = σeq(ε
±

M(θ), θ) and σ±

m(θ) = σeq(ε
±

m(θ), θ) are the local maxima
and minima with respect to ε of the isothermal stress-strain curves. In our interpretation
σ±

M(θ) (ε±M(θ)) are the limit values of the stress (strain) required for the start of A → M±

transformation, whereas σ±

m(θ) (ε±m(θ)) are the limit values of the stress (strain) required
for the start of the reverse transformation M± → A and they can be determined from
quasi-static experiments. The boundary curves ε = ε±M(θ) and ε = ε±m(θ) fix the limits of
the regions of the (ε, θ)-plane on which the respective phases A and M± exist. According
to our previous assumption on linear thermoelastic behavior of the material in a single
phase these constitutive functions are linear with respect to θ, i.e.

ε±M(θ) = α(θ−θT )±M(θ−θm), ε±m(θ) = α(θ−θT )±(m−M)(θ−θM)±M(θ−θm) (6)

and, consequently

σ+
M(θ) = −σ−

M(θ) = E1M(θ−θm), σ+
m(θ) = −σ−

m(θ) = E1M(θ−θm)+E2(M−m)(θ−θM).
(7)

Here α > 0 is the thermal expansion coefficient of the material in phase A and θT is
a reference temperature which is precised when constructing the free energy function
of the thermo-elastic model. The positive constants M and m can be determined from

laboratory experiments. Indeed,
dσ+

M
(θ)

dθ
= E1M and dσ+

m(θ)
dθ

= E1M+E2(M−m) represent
the rates with respect to the temperature at which the stresses required for the direct
(A → M+) and inverse (M+ → A) transformation increase. These quantities are in
general constant and determined from laboratory experiments (see for instance Shaw and
Kyriakides, 1997).

Once we have established the stress-strain-temperature relation σ = σeq(ε, θ) the sec-
ond law of thermodynamics determines uniquely: the free energy function ψ = ψeq(ε, θ)
(modulo an additive function of temperature φ = φ(θ)), the entropy η = ηeq(ε, θ) and the
internal energy of the material e = eeq(ε, θ) as follows

̺ψeq(ε, θ) =

∫ ε

ε0

σeq(s, θ)ds+ ̺φ(θ), ηeq = −
∂ψeq
∂θ

, ̺eeq = ̺ψeq + ̺θηeq. (8)
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Figure 1: a) Phase diagram in the (ε, θ)-plane. b) Isotherm curves σ = σeq(ε, θ
+)

and Hugoniot stress-strain curves based at (ε+ = 0, σ+), σ = σH(ε; 0, σ+) for θ+ ∈
{310 ◦K, 330 ◦K, 350 ◦K}, σ+ = σeq(0, θ

+).

The function φ = φ(θ) is determined by supposing that the specific heat at constant strain

of the thermo-elastic material is constant in the austenitic phase i.e., −θ ∂
2ψeq(ε,θ)

∂θ2
= C =

const. > 0, for ε ∈ (ε−M(θ), ε+
M(θ)).

In order to investigate quantitative, as well as qualitative, the longitudinal impact of
two phase transforming bars we use the following material parameters which are appro-
priate for a Cu-Zn-Ni shape memory alloy:

E1 = 30.GPa, E2 = 2.GPa, E3 = 20.GPa, ̺ = 8000. kg/m3,
α = 1.6 × 10−6/◦K, M = 10.1371 × 10−5/◦K, m = 9.7253 × 10−5/◦K,
θm = 280 ◦K, θM = 10000 ◦K, θT = 283.3 ◦K, C = 500. J/Kg/◦K.

(9)

The PDE system composed by (1) and the constitutive relations for stress and internal
energy (5) and (8)3 is called the thermo-elastic phase transforming system.

Let Ṡ > 0 and denote by (ε+, θ+, v+) the state in the front of the discontinuity. For a
thermo-elastic material, the Rankine-Hugoniot equation (3)2 read

̺eeq(ε, θ) − ̺e+ −
1

2
(σeq(ε, θ) + σ+)(ε− ε+) = 0, (10)

where e+ = eeq(ε
+, θ+) and σ+ = σeq(ε

+, θ+). This equation provides only restrictions on
the back state (ε, θ) which can be reached in a shock process which has (ε+, θ+) as a front
state. We can show that, for our previous constitutive assumptions, the above equation
can be solved with respect to θ. Therefore, there exists a unique continuous and piecewise
smooth function called the Hugoniot temperature-strain curve based at (ε+, θ+)

θ = ΘH(ε; ε+, θ+) (11)

with the property that it satisfies equation (10) and θ+ = ΘH(ε+; ε+, θ+). This function
describes explicitly all those states in the (ε, θ) plane that are potentially attainable as
back states in a discontinuity process which has (ε+, θ+) as a front state. In the present
setting a strain discontinuity is called a phase boundary if the particles separated by the
discontinuity are in different phases and an elastic shock if they are in the same phase.
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We denote by
σ = σH(ε; ε+, σ+) = σeq(ε,ΘH(ε; ε+, θ+)), (12)

the Hugoniot stress-strain curve based at (σ+, ε+) in the space (σ, ε) where σ+ = σeq(ε
+, θ+).

This function describes all reachable (σ, ε) back states in a wave discontinuity which has
(σ+, ε+) as a front state. Moreover the back states (σ, ε) have to satisfy the Rayleigh line
construction

σ − σ+ = ̺Ṡ2(ε− ε+). (13)

The influence of thermal effects on the isothermal curves and on the Hugoniot stress-strain
curve is illustrated in Fig. 1b.

Let us note that not all the back state (ε, θ) satisfying the Rankine-Hugoniot equa-
tion (11) are compatible with the second law of thermodynamics when the front state is
(ε+, θ+). Indeed, the entropy inequality (2)4, which for η given by (8)2 and Ṡ > 0 read as

ηeq(ε, θ) ≥ ηeq(ε
+, θ+), (14)

will select these states. This condition expresses the fact that after the passage of the
discontinuity the entropy of the particle has not to decrease. This situation is illustrated
in Fig. 2.
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Figure 2: a) Hugoniot temperature-strain curve based at (ε+ = 0, θ+ = 310 ◦K). b)
Solid-line is the Hugoniot stress-strain curve based at (ε+ = 0, σ+ = −1.2 MPa); dashed-
line (− − −) is the isotherm curve σ = σeq(ε, 310 ◦K). In both figures the thickened
lines represents the states thermodynamically admissible, according to (14). A jump from
(ε+, σ+) to M+ or to M− is not physically admissible according to the viscosity criterion.

It is known that the use of non-monotone thermo-elastic constitutive equations leads to
non-unique solutions for dynamic initial-boundary value problems and thus these are ill-
posed. This situation reflects in fact a constitutive insufficiency in describing the behavior
of phase transforming materials. To overcome this difficulty two mechanisms have been
used in the literature. One approach consists in adding a nucleation criterion for the
initiation of phase transition and a kinetic relation between interface velocity and the
driving force of phase transformation. These two ingredients are sufficient to obtain unique
solution of the dynamic problem (see for instance Abeyaratne and Knowles, 1991). An
alternative approach is to incorporate in the thermo-elastic theory rate effects of Kelvin-
Voigt’s type, or Maxwell’s type , and/or effects due to the gradient of strain (see for
instance Ngan and Truskinovsky (2002) and the literature therein).
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b) The rate-type approach
In this paper we adopt the second approach and we use the following Maxwellian rate-type
constitutive equation

∂σ

∂t
− E

∂ε

∂t
= −

E

µ
(σ − σeq(ε, θ)), (15)

where E = const. > E1 > 0 is the dynamic Young modulus, µ = const. > 0 is a Newtonian
viscosity coefficient ( µ

E
is called a relaxation time) and σ = σeq(ε, θ) is the equilibrium state

equation for phase transforming materials (5). When µ → 0 this constitutive equation
is seen as a thermo-viscoelastic rate-type approach of the thermo-elastic model. From
physical point of view it introduces a mechanism of energy dissipation of kinetic origin
and an internal structure in shocks and phase boundaries replacing the sharp interfaces
by transition layers of finite thickness.

The rate-type constitutive equation (15) includes as a limiting case for E → ∞ the
Kelvin-Voigt model

σ = σeq(ε, θ) + µ
∂ε

∂t
. (16)

An additional advantage of this approach is that it does not require a separate nucle-
ation criterion. In this model instability automatically leads to formation of phases which
nucleates in the unstable regions I±. The new parameters E and µ influence in fact the
kinetics of the growth of phases and the thickness of the transition layers.

In order to determine the wave structure of thermo-elastic solids different admissibility
criteria designed to select physically relevant solutions have been considered (see for
instance Slemrod, 1983). Since we propose the rate-type approach (15) as a way to
describe impact-induced propagating phase boundaries in phase transforming materials
we use it to derive a selection criterion for admissible waves. This viscosity criterion
asserts that a discontinuity for the thermo-elastic model is admissible if and only if the
strains ε− and ε+ and the temperature θ− and θ+ on either side of the discontinuity can be
smoothly connected by a traveling wave constructed within the rate-type theory. In fact
we identify as admissible those waves which arise in the frame of the augmented theory
in the limit of vanishing viscosity.

4. Semi-infinite bar in phase A impacted at one end

In order to illustrate our approach we consider the case of a semi-infinite bar in the
austenite phase A which is suddenly loaded at one end. That means we have to solve for
the adiabatic thermo-elastic system the problem of wave propagation generated by the
following initial-boundary value condition,

(ε, θ, v)(X, 0) = (εR, θR, vR), for X > 0, and σ(0, t) = σ∗ for t > 0, (17)

where (εR, θR, vR) and σ∗ are given values, εR ∈ (εM(θ)−, εM(θ)+). We denote by σR =
σeq(εR, θR) the initial stress. This problem is known as the right Goursat problem in
stress.

The solution is sought in the form of self-similar solutions, i.e. (ε, θ, v)(X, t) =
(ε, θ, v)(ξ), where ξ = X

t
and is build by using the jump relations (2) and the viscos-

ity criterion. Let us consider the compressive case when the impact stress σ∗ is less than
the initial stress σR. We determine critical values θ−ph, ε

−

ph, σ
−

ph which depend on (εR, θR)

such that if the applied stress σ∗ < σ−

ph(εR, θR) then a phase transformation is induced.
These values are given by

θ−ph ≈ θR +
εR − ε−M(θR)

α+M + ̺C/(αE1θR)
> θR, ε−ph = ε−M(θ±ph), σ−

ph = σ−

M(θ±ph). (18)
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We give a schematic representation of the solution in Fig. 3 and Fig. 4. If σ∗ ∈ [σ−

ph, σR]

the solution consists of a thermo-elastic adiabatic shock wave X
t

= Ṡa ≈
√

E1

̺
+

E2
1
α2

̺2C
θR,

which separates the initial state (εR, θR, σR, vR) and the impact state (ε∗, θ∗, σ∗, v∗). The
unknown quantities ε∗ and θ∗ have to satisfy the Hugoniot temperature-strain relation
based at (εR, θR) while the pair (ε∗, σ∗) has to belong to the Hugoniot stress-strain relation
based at (εR, σR). One observes that in this case the temperature only slightly increases
due to the thermo-elastic effect.
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Figure 3: a) Self-similar solution: adiabatic shock wave in phase A. b) Stress-strain states
ahead and behind the discontinuity.
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Figure 4: a) Self similar solution: adiabatic shock wave in phase A followed by a propa-
gating phase boundary transforming the material from A to M− b) Stress-strain states
ahead and behind the discontinuities.

If the impact stress σ∗ is less than the critical value σ−

ph an inverse transformation
from A-phase to M−-phase is induced. The solution consists of an adiabatic compres-

sive shock wave X
t

= Ṡa =
√

E1

̺
+

E2
1
α2

2̺2C
(θR + θ−ph), which separates the constant states

(εR, θR, σR, vR) and (ε−ph, θ
−

ph, σ
−

ph, v
−

ph), followed by a phase boundary propagating with

the speed Ṡp =

√

σ∗−σ−

ph

̺(ε∗−ε−
ph

)
, which relates the intermediate state (ε−ph, θ

−

ph, σ
−

ph, v
−

ph) and the

impact state (ε∗, θ∗, σ∗, v∗). The solution is built by using the Hugoniot curves and the
viscosity criterion. Thus, the pair (ε−ph, θ

−

ph), which lies on the boundary between phase A
and I−, belongs to the Hugoniot temperature-strain curve based at (εR, θR) and the final
state (ε∗, θ∗) belongs to the Hugoniot temperature-strain curve based at (ε−ph, θ

−

ph) (see

Fig. 5a). The pair (ε−ph, σ
−

ph) has to belong to the Hugoniot stress-strain curve based at
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(εR, θR) and (ε∗, σ∗) has to belong to the Hugoniot stress-strain relation based at (ε−ph, σ
−

ph)
(see Fig. 5). Let us note that since the Hugoniot stress-strain curve is non-monotone the
final state (ε∗, θ∗) can not lie in the unstable phase I−.
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−
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Finally we can build three functions

v∗ = vR + V A
R (σ∗; εR, θR), ε∗ = GA

R(σ∗; εR, θR), θ∗ = TAR (σ∗; εR, θR), (19)

with the property that for given initial data (εR, θR, vR), where (εR, θR) ∈ A-phase, asso-
ciate to the impact stress σ∗ the impact velocity v∗ = v(0, t), the impact strain ε∗ = ε(0, t)
and the impact temperature θ∗ = θ(0, t), solution of the Goursat problem (17) at the
boundary (X = 0, t > 0).

The behavior of these functions is illustrated in Fig. 6a), Fig. 6b) and Fig. 6c),
respectively, for both compressive and expansive case. Let us note that function V A

R is
continuous and strictly decreasing function on σ∗, thus being inversible. Therefore, if
we consider the right Goursat problem in velocity, that is when instead of giving σ∗ at
X = 0 for t > 0 in (17) we prescribe a constant velocity v∗ we obtain immediately a
unique solution due the one-to-one correspondence between v∗ and σ∗. Let us note that
functions GA

R and TAR which prescribe the strain and temperature at the impacted end are
discontinuous functions at σ∗ = σ±

ph ≈ ±91MPa. This property reflects just the sudden
phase transformation which can appear at the impacted end. Indeed, for impact stress
σ∗ ∈ [σ−

ph, σ
+
ph] the material remains in phase A and its behavior is thermo-elastic linear.

In this case we only have a slight variation of the temperature and of the strain. The
temperature increases in compression and decreases in tension. Once the critical values
of the stress σ±

ph = σ±

ph(εR, θR) are overcome then a phase transformation appears which
materializes by a strong localization of the strain and by an important increase of the
temperature in the transformed zone due to the latent heat of transformation.

5. Application: longitudinal impact experiment of SMA bars

We consider at the initial moment a bar called ”target ” impacted at one end by another
bar called ”flyer” which is moving with a constant velocity V0 (see Fig. 7). After impact
the two bars remains in contact and move together until a time tS called time of separation
This time corresponds to the moment when the first tensile wave arrives at the point of
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Figure 6: Velocity v∗, temperature θ∗ and strain ε∗ at the impacted end of a semi-infinite
bar for sudden load σ∗. Predictions of the thermo-elastic three-phase material endowed
with the viscosity criterion.

contact. In this simple dynamic laboratory test one can measure: the time of separation
between the bars after the impact by optical methods, the particle velocity at the rear end
of the target by a VISAR interferometry system, the stress history at the impacted end
by piezoelectric wafers, the variation in time of the strain at various cross section by using
diffraction gratings. The correlation of such measurements allow a better understanding
of the kinetics of phase transformation. For instance, one can determine in an indirect way
the influence of the impact velocity on the speed of propagation of the phase boundary.
Such kind of experiments have been done by Escobar and Clifton (1995) on SMA foils.
Although the heating of the transformed zone is very important due to the latent heat of
transformation the possibility of measuring its temperature variation in a time interval
of only tenth µs is unknown for us. Nevertheless, the use of an explicit temperature-
dependent constitutive approach to simulate the longitudinal impact of bars can provide
useful information on the dynamic of interfaces.

σ(t) ε (t)Vo

Target

v(t)

light
Flyer

Figure 7: Longitudinal impact of thin bars
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Figure 8: a) Velocity and stress distribution in the bars after a moderate impact; tS
denotes the time of separation of the bars. b) Particle velocity history at the target free-
end. c) Impact-stress history. The horizontal lines denote the stress level predicted by
the thermo-elastic model.

We can construct an analytical solution of the above impact problem for a short time
interval which includes the first wave interactions. The building blocks in solving this
problem are the simplest initial-boundary value problems for the thermo-elastic system,
i.e the Goursat and Riemann problems. Thus, by using Riemann solvers we can construct
solutions for a variety of impact conditions. For example, interactions of the unloading
elastic wave reflected at the free end of the target with the propagating phase boundary
can be explored and exact critical values of the impact velocity can be determined such
that this phase boundary propagates backward, remains stationary or propagates forward.

One aim of our study is to compare the exact solution obtained using the thermo-elastic
model, endowed with the viscosity criterion, with the numerical solution obtained using
the Maxwellian rate-type model (15). We present in the following some numerical results
which describe the evolution in time of the stress, strain, particle velocity and temperature
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in the flyer and target for an impact velocity V0 = 17 m/s when the dynamic Young’s
modulus E = 30.5 GPa and the Newtonian viscosity coefficient µ = 1.016×10−3 MPa× s.
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Figure 9: Strain and temperature distribution in the bars after a moderate impact

One observes (see Fig. 9) near the impact point a transformed zone (high strain) which
is bounded by two phase boundaries propagating left and right with a small velocity. Since
the A → M− transformation is exothermic the temperature increases with about 10 ◦K in
this region. The adiabatic compressive shock wave propagating in the target is reflected by
the free end as an unloading wave which interacts successively with the phase boundaries
being reflected and transmitted across them. The propagation of both phase boundaries
is stopped becoming contact discontinuities.

The presence of a transformation can be detected by recording the changes in the
velocity profile at the rear end of the target (see Fig. 8b). Indeed, the adiabatic shock wave
reflected by the phase boundary induces a significant step-like increase of the velocity. No
increase in particle velocity would be expected at this moment if no phase transformation
would occur. Moreover, as long as the transformed material exists in the target any round
trip propagation of the adiabatic shock wave between the phase boundary and the free-end
of the target will lead to a new significant increase of the particle velocity. One can also
observe small fluctuations of the particle velocity in Fig. 8b as well as small fluctuations
of the impact stress in Fig. 8c . These are due to the adiabatic shock waves propagating
inside the transformed zone and which are transmitted across the phase boundaries. The
interaction of the two phase boundaries and their disappearance generates two tensile
waves propagating left and right. The last one leads to the separation of the two bars.
A manifestation of this tensile wave can be also detected on the profile of the particle
velocity (Fig. 8b) and is associated with a significant velocity drop.

These numerical experiments for the Maxwell’s rate-type system illustrate the poten-
tiality of the adopted model to describe specific phenomena accompanying stress-induced
phase transformations during impact tests. Other features related with the impact-
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induced propagating phase boundaries will be presented elsewhere.
The results predicted by the rate-type model and by the thermo-elastic model endowed

with the viscosity criterion have to be compared with experimental results which for the
moment are missing from the literature. Since different selection criteria (Slemrod, 1983)
and different approaches (Abeyaratne and Knowles, 1991) may furnish different solutions
to the same impact problem, only a systematic experimental investigation could decide
which is the physical relevant one.
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Făciu, C., Mihăilescu-Suliciu, M., 2002. On modelling phase propagation in SMAs by a
Maxwellian thermo-viscoelastic approach. Int. J. Solids Structures, 39, 3811-3830.
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