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STABILITY OF INFINITESIMAL MOTIONS OF
RATE-TYPLE SEMILINEAR VISCOELASTIC SOLIDS.
A NON-ISOLATED BODY PROBLEM

CRISTIAN FACIU

We establish the uniqueness and continuous dependence in total energy upon
initial-state, supply term and boundary data of smooth solutions of a non-isolated
body problem with prescribed boundary motion for the 3-D case of small defor-
mations in semilinear rate-type viscoelasticity with convex or non-convex free

energy function.

1. INTRODUCTION

In the last years the energetic investigation of rate-type viscoclastic constitutive
equations has lead to a better description of phase transition phenomena as well as of
plastic flow localization phenomena in metallic materials (see for example [4] and the
references therein). This energetic study was initiated by Suliciu in 7] and extended
in [1-3]. [6] and [8]. The starting point in these studies was the existence of a free
energy function for such constitutive equations. which is a requirement of the second
law of thermodynamics. Morcover, when the free energy function is non-negative the
total energy may be used as a global measure in estimating the solutions of certain
initial and boundary value problems. Thus bounds in energy of these solutions as
well as the continuous dependence on the input data can be derived.

For the 1-D case the stability in total energy was considered in {7] when the
equilibrium curve is monotone and in [2], [8] when it is nonsmonotone.

For the 3-D case of small deformations in rate-type semilinear viscoelasticity
with smooth monotone equilibrium hypersurface (convex free encrgy function). Suli-
ciu [7] has discussed the stability in total energy and the uniqueness of smooth solutions
when the boundary conditions correspond to an isolated body (i.c.. a body which does

not exchange encrgy with the external world through its boundary). In the present
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work we extend these results for a non-wsolaied body problem with prescribed boundary
motion when the equilibriun hipersurface may be only continuous and non-monotone
(i.e.. non-convex free energy function).

The results in this paper are obtained with minimal restrictions on the consti-
tutive functions since the free energy propertics we use were established in [3] under
necessary and sufficient conditions. Therefore they may apply to materials for which
the stress-strain curve presents softening. Concerning the relaxation function G(e, o).
as in [7], the essential assumption on it is the global Lipschitz continuity condition.

We remind that in [1] we have shown that a smooth houndary data in velocity
V=V(x.t), x €, t>0, where ¥ is the body boundary, seeins to be not sufficient
to obtain a bounded total energy of the body. We have therefore to impose additional
restrictions on the boundary data, namely: V(-.1) has to belong to the Sobolev space
Mx';,l/?(S), for any time { > 0. Morcover, in [1] we have given minimal and explicit
conditions on the boundary data to obtain energetic bounds of the solutions. Here

we prove that these conditions ensure the stability of the infinitesimal motions too.

2. STATEMENT OF THE PROBLEM

We consider a body which is identified with a bounded domain D ¢ R? and we
denote by ¥ = 9D its boundary, D = DUY and [ = [0,5) a time interval.
In this paper we consider a rale-type semilinear viscoelastic material subjected

to small strains and small rotations. The system of PDEqs. describing such a motion
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where v = v(x,1) is the particle velocity, u = u(x,t) is the displacement vector,
€ = g(x,t) is the infinitesimal deformation tensor, ¢ = o(x,t) denotes the Cauchy
stress tensor, b = b(x,t) is the body force and p = p(x) is the mass density, for
(x,t)e Dx I.

This partial differential equations system, containing the balance law of mo-
mentum (la) the constitutive equation (1b) and the kinematic relations (l¢), must

be thought as a semilinear system in the unknowns u, v and o.
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We consider for this svstem as initial-boundary value problem the following

non-isolated body problem with prescribed boundary motion, i.e.,

(2) u(x.0) = up(x}), v(x.0) = vp(x), o(x,0)=o0p(x), forxe D,

(3) v(x,t) = V(x,t), for (x.t)€ ¥ x 1,

where the input data (ug, vo, 0q) and V are prescribed functions.

Since we use energetic properties of smooth solutions of problem (1)-(3) we
require that the boundary ¥ be smooth and the initial data fit with the boundary
data such that shock and acceleration waves are not introduced into the body. Thus
we require at least ug € C*(D)N CG(D—), ve € CH(DYNC(D), oy € CHD)N (D,
be ™ (DxI), pe D) and

(1) V.— e C%E x 1)

3. CONSTITUTIVE ASSUMPTIONS

In the following we denote by £ the set of all 3 x 3 tensors, § the set of all 3 x 3
syminetric tensors and Lin(&8, §) the set of all linear mapping from § to §. For A.
Be L. A B=tr(ABT), is the scalar product in £ of A and B, |A] = (A A)"/? 15
the norm of A € £ and x -y = r;%. x, y € R% is the scalar product in R®.

In this paper we consider materials defined by rate-type semilincar viscoclastic
constitutive equations of the form (Ib) with the properties:

(h1) £ € Lin(S.8), & = const., & = ET e e>0forany e €S, € #0.

(hz) There is a hypersurface og : Dg C S — S, 0 € CDg) where Dg is a

sitmply connected open set, such that 0 € Dg, ar(0) = 0 and

(5)  (op(e)—or(€)) (€ —€)< E(e —€) (€ —E), forany € € € Dg. € £ E,

(6) /rrR(e) - de 1s path independent for any curve C C Dg.
c

h3) G DCSxS—8. GeCD), D= {(e.E(e —€)+on(€)| €& €De}

(7) G(e.o)=0ilandonly if c = op(€). € € De.

(8) G(e,E(e —€)+op(€))- (e —€) <0, forany €. € € De.
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(hyg) The hypersurface 0 = oz (€) is stable with respect 1o any relaxation process
in D, i.e., for a solution of the ( ”(Luclly problem ¢(t) = G(gg,a(t)). (0} = oy where
(€g,00) € D, we have (€g,0(t)) € D, for any t € [0,00) and hm lo{t) — op(€0)] = 0.

These assumptions allow us to consider a very large clais of models, including
those with non-monotone and only continuous equilibrium hypersurfaces or{€), (i.c.,
with non-convex free energy functions). A detailed discussion concerning their physi-
cal meaning can be found in [3]. Morcover, hypotheses (hy)-(lig), ensure the existence
and uniqueness of a free encrgy function for our mechanical model (1h) (see [3]). This
means, there is a function v = (g, o), ¢ D—R.ve C"('f’). such that for any pair
(e{t).o(t)) € D. 1 € I, which satisfies Eqg. (1b), we have p(,il(e(f)‘a(t)) < oft) - E(t),
for any t € 1. According to [3], this function is the unique solution of the following
overdetermined systenm and imequality

dvo Loy ay

(9 S=4E&===-0, =— -G <O, forany (€,0) € D. with *(0.0) = 0.
Je do  p do

Morcover, in [7] (see also [3]) the free energy is shown to have the form
(10) pU(E. o) = - {' lo. o+ elo— &), ¢(0) =10

and the properties of the smooth function p are also studied.

4. A CHANGE OF DEPENDENT VARIABLE

In order to investigate the non-isolated body problem (1)-(3) we make the fol-
lowing change of dependent variable

(11) v(x, t) = V(x.t)+ w(x.1), (x.t)e D x I,

where the function V(x.t) has at least the propertics that V and AV /ot e CY(Dx 1)
and satisfies the boundary condition (3), i.c., Vix, 1) = V(x.{) for any (x,1) € ¥ x
L. Morcover, such a prolongation of the boundary data (3) should possess certain
continuous dependence properties with respect to the boundary values.

Thus we reduce the mmitial-boundary value problemn (1)-(3) o

pivi—dlva..pb
ot
da LJ€
(12) FTT = G(g,0),

Hua N ()u ou &
at ()x Ix
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(13)  u(x,0) = up{x). v(x,0) = vo(x) — V(x,0), o(x,0) = ao(x), for x € D,

{14) w(x, 1) =0, for (x,t)€ ¥ x I,
where
_ A%
(15) b(x‘z):b(x,r,p%,-(x,ty for (x,t) € D x 1.
ot

Such a smooth prolongation of the boundary condition was proposed in [1} as
the solution of the Dirichlet problem for the homogeneous Laplace equation with
prescribed boundary values (3) depending on a parameter (time) { € I.

The following Lemma characterizes the continuous dependence properties of this
harmonic function V = V(x, 1), (x,1) € D x I with respect to a norm of the boundary
data (see for instance [5], Chap. 5, Sect. 3.5). In fact it requires that the boundary

data V(-,t) must belong to the Sobolev space WQUQ(E) for any time t € [.

LEMMa | (The prolongation of the boundary condition). If ¥ s of ("' class
and V(x,t). (x.1) € ¥ x [ salisfics condition (4) and

— Viy.t) = V(x. )
(16) I(V(.t)) = // | ('}', ) (. 0) da,da, < o, forany t €1,
JYJY y

. x'm+1

where m € N s the dimension of ¥, then

1/2 - /2
{/ |V(x./)]2<ix} <O {/ |V(x,1)|3<la_,.} ,
Jb )
5 1/2 9 1/’3
1A% N )
(17) |(,——(x.t) dx <G da, :
{ Jp l ()’ ! o
ov

2 1/ 1/2
{/ ———~(x,f)‘ dx} gc:g{/ W(x,m”da,} + IV )},
JD <

ax
foranyt € I, where ', Ca, C'y are positive constants which depend on domain only.

oV
ar !

5. SOME ENERGETIC PROPERTIES OF SOLUTIONS

In [7] it is observed that the free energy function ¥ = yi(€,0) can be used to
derive an energy identity verified by the smooth solutions of the governing system of

PDEqs. According (o [1] we have the following results.
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For any smooth solution of (1) on D x I, the energy identity

R d v-v o . ay _
(18a) a{p<7+u(eta)>}—dlv(av)—p—a—;‘G-pb~v,

holds, while for any smooth solution of (12) on D x I, the energy identity is

0 wew o . Jy ov. =
(18b) —({ﬁ{p(T-{-w(E,a))}—dn(crw)——p?)—; G-o "= =bow.

Define the total energy E.(1) of body D at time ¢ by

(19a) LEo(t) = Ey(v(-. t),e(- 1),o(- 1)) = /Dp(x) {%—'ﬁ + uv(e,a)} (x,t)dx,

Le., the total encrgy at time ¢ corresponding to the solution (v, o, €)(x.1), (x.1) €
€ D x [ of problem (1)-(3). Also define by

plx) {I-w—!- + w(e.o)} {x,t)dx.

(191)) Eul([):Ew(w(‘,t),l':(‘,f),O'(‘.t)): / 9

JD
the total energy at time t corresponding to the solution (w,o.€)(x, ). (x,1) € D x |
of problem (12)-(14).

By using Schwarz inequality we derive the following inequalities which connect
the total energies F, () and E,.(t)

2

: 1/
E ) < VEL(t)+ {/ ﬁ(‘,x—)!V(x,t)]‘"dx}  forany tel,
(20) b

_ 1/2
VEL,() S VES()+ {/ p“(Q)() fV(x,()Izdx} , forany f € 1.
)

I

Let us note that the energy identities (18) holds for any solution of the free encrgy
equation (9), ie., for any function having the general form (10). The free encrgy
function has the supplementary property that it satisfies the residual inequality (9)s
which can be exploited to derive meaningly energy estimates of the solution (see for

example [1]).
6. STABILITY OF SMOOTH SOLUTIONS
In what follows we establish the continuous dependence in total energy of smooth

solutions of a non-isolated body problem with prescribed boundary motion (1)-(3)

with respect to the initial data (ug, vo.00)(x). x € D, the boundary data V(x,1).
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(x,t) € ¥x [ and the body force b = b(x.1), (x,t) € D x /. For simplicity we assume
here that Deg = S.

PROPOSITION |. Let the constitutive function G = G(e, o) s Lipschitz contin-
wous on D and the following conditions are satisfied:

(a) the boundary data © is of C'' class;

(b) the initial data (2), the body force b and the mass densily p are such that

12 1/
(21) E(0) = / p{ﬂ + u’:(en,an)} dx < oc;/ (/ /)11)]2(1x> dit <
Jo 2 1 \JUp

(¢) the boundary data V = V(x,t), (x,1) € X x I salisfies condition (1) and the

additional resirictions

2

/l{/):|—\7(x,t,)['“'da,}l/gdt < oo/l{/L

— - N 1/2
57 ] ) - sf -
/I(V(-,t))’/‘di:/{/ / Viy. 1) V(’f ) da,.day} dt < o,
1 1 WUsJy ly — x|m+

where m 1s the dimension of ¥,
(d) there emists & € Lin(S,8), & = const., & = ET i=1.2

AY
—(%—(XJ)

da,} dt <
(22) :

(23) O< &y -p<Ey-n<Ean-n foranyneS.n#£0.

such that the potential por{€) of the cquilibrium hypersurface op(e) = pdyp(e)/oe
satisfies the mequality

1 1
(24) 5516 € < piple) 5535 € for any € € Dg.

Then the smooth solution of the problem (1) - (3) s unique and depends continuounsly

in the total energy E. (1) on the mput data.

Preof. Let us consider two sets of input data
(b vi ah)x),xe D, br(xt),(x.t)e DxI,

—k

Vi(x.t).(x. t)e ¥x [, k=12

which verify conditions (b) and (¢). We supposc that for each set of the input data
there is at least a global smooth solution (uf v e (x,t), (x, ) e Dx [, k=1,20f

problem (1)-{3). We denote

(u,v.o,€)(x, 1) = (ul —utvi—vio -0t €l - e:')(x,t), (x,t)y € D x I,

- (W0, Vo, 00, €0)(x) = (u} = uZ,vi = vi 0 — 0 €} —€2)(x).  x€D.
26

Vix,t) = (V' =V )(x.0),(x.t) € T x [,

b(x.t) = (b' = b¥)(x,t),(x,{) € D x I,
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(27) G™(x,1) = G(e'(x.1),0' (x,1)) — G(€%(x,1),6°(x. 1)), (x,0)€ D x .

By perforining the change of dependent variable (11) where V = V(x,t) is the
harmonic function which satisfies the boundary condition (26)3, we get that (u, w, o)
verifies the initial-boundary value problem (12)-(14) with G substituted by G* and
b defined by (15)4(26)4.

Let us introduce the function

(28) ot (o, €) = %g—la o4 A*(0 - E€)- (0 — E€), (o,6) €D,

where A* € Lin(§,S), A™ = (A" A*n-np>0forany ne S, n#0.

It is obvious that «* = v*(e.€) is a solution of the free energy equation (9);
and W&j is equivalent with an Euclidean normon & x 8.

Let us note that for the set of functions w, o, € defined by relations (26) and (11),
there holds the energy identity (18h) with G substituted by G and v substituted by
[E

Integrating that identity with respect to x on 1) and taking into account the
boundary condition (14) we obtain

1L ()

» B IV .-
(29} DENSLCA N / ob - wdx + / o- (—,.—%IX + / /)d,L -GTdx,
dt ) D x JD Oo

where [7 (1) is defined according to (19b) with ¢ substituted by .

In this case \/E}, (t) is equivalent to a L?-norm for the functions (w(-,t), €(-.1).
o(-.1)): D — R*x 8§ x § depending on a parameter .

Using the norm \/R’W'To) we can now write the estimates

< . , v ,
(30) IG*(x, )] < My /pi=(€.0), p e (€,0)] < Ma/pyr(€,0),

where My and AMy are two positive constants which come out from the equivalence of
two Fuclidean norms on § x 8. Let us note that relation (30); is just the Lipschitz
condition on function G.

By using Schwarz inequality and estimates (30) and (17), from Lemma | we get

Dy 2 /2 1/2
(31 / p—— G dx < / p2 dx {/ fG"igdx} < MM (1),
Jp' Oo D D

oV l /2 , , 1/2
/rr-—,~—dx§{/ & o odx I/ QXiY-gX(lx <
Jp  dx Ip 2 Wp Tox ox

1/
<V2 [:';‘U(I){(!3{/‘|V(x,t)]3dar} +(:3{1(V('.z))}‘/'~’}.

o
do
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1/ 12
/ pb - wdx < {/ ?Iw|2dx} {/ 2p|glg(lx} <
D Jp 2 Jp
12 oV 2 e
< max /2p(x)\ EL (1) {/ ]b[zdx} + Y {/ —(x, t)i daf}
x€ D s

ot
where '}, C'y, C'3 are positive constants which depend on domain D only.

(33)

Therefore F7 (1) satisfics the differential mecquality

\/E‘ <MVEL() + N(t)

(34) T

for any t € 1. where
1/2
N(t) = max {- lb{ dx + () /
xeD 2 Ju

and M = A AL /2.

Thus

1
(36) VEL() € {\/f,‘;(o)ﬂu/ N(r)ex,>(~Mr)(Jr}exp(m)

0

forany t € [.
By using inequalities {20) and estimates (17) from Lemma 1, we obtain the
following bound in total energy £7(f) corresponding to the solution v. €. o

(37)
/2
(¢ { VEI0)+ Cy max (ZX) {/ V(x. (J)]g(‘laf} +

t 9
+ / A’\"(T)exp(—z\[r)dr}exp(M?) + 7y max V otx) { [v (x. z‘)|2('lar}1/“, tel.
0 xeD

The inequality (37) implies the continuous dependence in the total energy E7 (1) of the
of smooth solutious of the initial-houndary value problem with prescribed boundary
motion (1)-(3) with respect to the input data on any finite time interval. [t also
implies the unigueness of smooth solutions of problem (1)-(3).

According to Proposition 2 in [3]. relations (23)+(24) are necessary and sufficient
condrtions for the total energy £, () of the body D at time t to be equivalent to £ (1)
in the following sense: there are two positive constants aj. as, ay < as, such that

ar B3 () < Fo(t) < ayE(t), for any t € I. Then, obviously, the smooth solution of
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problem (1)-(3) is continuously dependent on the input data with respect to the total

energy of the body. This completes the proof.
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