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Abstract-Existence. and uniqueness of a free energy function is studied for rate-type semilinear
viscoelastic constitutive equations with monotone or non-monotone equilibrium surfacl, in the 3-D
case. The free energy may be consequently convex or non-convex; its eiistence is proved by effectivc
construction. Necessary and sufficient conditions on the constitutive functions a." giuen suih that the
free energy be non-negative and "equivalent" to a Euclidean norm.

1 .  I N T R O D U C T I O N

Rate-type viscoelastic and viscoplastic constitutive equation with a Maxwell's type viscosity,
have been extensively investigated in several recent works (see for instance t1-5]). The starting
point in these studies was the existence of a free energy function foi turh constitutive
equations, which is a requirement of the second law of thermodynamics. Consequently, such a
requirement had to impose certain restrictions on the constitutive functions of the model (see
for instance 12,61). But free energy proved to be even more important. Indeed, when the free
energy function is non-negative, the total energy may be used as a measure in estimating the
solutions of certain initial and boundary value problems; a bound in energy of these solutions
may be easier to get as well as the continuous dependence on the input data. Moreover the
same energy allows to establish an Lp -approach (p > 1) to equilibrium of the solution when the
Maxwell's viscosity coefficient tends to infinity (see for instance [1,3, 8]). This last property
opened a way to obtain the solutions to elastic (and plastic) problems, which n-.jy not be ahvays
hyperbolic, through the solutions to viscoelastic (and viscoplastic) problems, which are
hyperbolic. In the last years the energetic study of rate-type viscoelastic constitutive equations
seems to lead to a better description of the phase transition phenomenon by means of such
constitutive equations with a non-monotone equilibrium curve (see for instancl [7,8]).

An energetic investigation of such rate-type viscoelastic constitutive equatibns with non-
monotone equilibrium surface and consequently with non-convex free en"rgy, is ,Jone in [5] for
the 1-D case only. In the present work we extend these results for the 3-D .ur" wittr large
deformations. The viscoelastic constitutive equation is considered semilinear (i.e. with elastic
linear instantaneous response) and the equilibrium hypersurface is continuous and may be
non-monotone. The main result consists in establishing necessary and sufficient conditions
imposed upon the constitutive functions such that a unique free energy, compatible with the
second law of thermodynamics, exists; moreover, the existence proof is given by an effective
construction of the free energy function. We also establish necessary andsufficient conditions
for this free energy function to be non-negative and to be "equivalent" to (or to lie between)
two Euclidean norms. Another result concerns the change in free energy that results from a
charge in the equilibrium hypersurface. All the conditions (restrictions) we find are expressed
by means of the equilibrium hypersurface (the equilibrium constituiive equation) and the
dynamic elastic moduli and may be tested in applications; what is more important, none of
the restrictions imposes the equilibrium hypersurface to be monotone, while the relaxation
moduli may be only continuous and therefore the relaxation time may be finite as well as
infinite.

In another work the results of the present paper are used to study the solution of a
non-isolated body problem with prescribed boundary motion.
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2 .  N O T A T I O N

9-the set of all 3 x 3 tensors;
T-the set of all symmetric 3 x 3 tensors;
Lin(9, 9)-the set of all linear mappings from I to 9;

F-the deformation gradient, F e g, I e det F> 0;

i-ttre Cauchy stress tensor, T e 9;
p,-the actual mass densitY, P") 0','p-the 

mass density in the reference configuration, p>0, p"9: p;

T-the second Piola-Kirchhoff stress tensor, T e 9,

T: gF-rt(r')-';
E--the strain tensor E e I given bY

1
E : ; ( F r F  -  1 )

which is conjugated to T with respect to the stress power

p :LT . 
"(=l 

tr(r i l ' ))
p  \ p

Both E and T are considered as functions of the time /, for each particle X of the body,

and the dot denotes the time derivative.

3 .  T H E  C O N S T I T U T I V E  M O D E L

Let us consider the rate-type semilinear viscoelastic constitutive equation

i : 8il + c(E, T)

together with the following constitutive assumptions:
( i , )  8  e L i n ( 9 , 9 ) , 9 :  c o n s t . ,  8 E  ' E  > 0  f o r  a n y  E  e  9 , 8 * 0 ;

iirl tn, T^(i)) is a hypersurface in I x 9, Tp:Te-s g, Tn € Co(9), gE a

connected open set in 9, Tp(0):0;
(i.) G :9-c. I x 9---> Y, G e Co(g) where I is adomain with

I  = 6: {(E, 8(E - n) + r"(rt));  E, E e gu}

gE --  
Prng: {E e 9;  there exists T e I  wi th (E, T) e 9} :0

(1 )

simply

(2)

and

(io) The
solution of

G(E, T) :0 i f f  T: Tp(E), E e 9p; (3)

hypersurface T : Tn(E) is stable with respect to any relaxation process in 0, i.e. the

the Cauchy problem

(Eo, T6) e Ot1r) : G(Eo, T(t)), T(o): Ts'

has the properties: (E6, T(/)) e I f-or any t > 0 and

l im lT(r) - T"(En)l :0.

The constitutive assumptions (i1)-(ia) reflect some experimental remarks on the behaviour of

certain materials. Thus (i1) ensures an elastic linear instantaneous response and real

acceleration waves propagating over the undisturbed state (E :0, T:0). However, unlike the

1-D case, the hyperbotic itruri.ter of the governing system of equations is not granted (see [9]

where the loss oi hyperbolicity for a physically linear but geometrically non-linear constitutive

equation (1) is discuised). According to (ir) G vanishes only on a hypersurface (the equilibrium

region), the constitutive equation (f) is therefore viscoelastic; moreover, by (io), any relaxation

pr6."r, starting at a state in I is required to remain in I and to end on the equilibrium
'hypers,rrfu." 

T: Tn(E) after a finite or infinite time interval. Condition (2) requires I to

(4)

(s)
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contain any instantaneous process starting at a point on the equilibrium hypersurface. In the
1-D case (see [5]) 6 is shown to be the on]y proper domain for G in the sense that any process
starting in O always remain in 6 and 6 is defined by 9u and Tp only. By (ir) rate-type
constitutive equations with a finite relaxation time are also included since G is a continuous
function (see for instance [4, Chap. V] and [8, 15]).

In this mechanical frame hypotheses (it)-(io) are minimal from the mathematical point of
v iew.

4 .  E X I S T E N C E  A N D  U N I Q U E N E S S  O F  T H E  F R E E  E N E R G Y  F U N C T I O N

The existence of a free energy function for a constitutive equation is a requirement of the
second law of thermodynamics. We therefore investigate in this section what additional
conditions are necessary (and eventually sufficient) to impose upon the constitutive functions
8, T* and G such that (1) together with (it)-(io) posesses a free energy depending on stress and
strain.

We need first some additional notions.
A process in I is a pair (E(r), T(r)), r e [0, ru) with the following properties: (1) E(t) e 9B for

any t e [0, r,,), E(r) e Ct([0, r,,)); (2) T(r), r e [0, 16,) is the solution of (1) for the given E(r), with
T(0) : Tu; (3) (E(/), T(/)) e I for any t e [0, ro).

The constitutive equation (1) + (i,)-(io) is said to prossess a free energy function on g,

compatible with the second law of thermodynamics if there exists a function rlt :9 e R,
tl,: t l t(E,T), ,1, e Ct(9) such that for any process in I

T(/) . n(t) - prp(E(t), T(r)) > 0 for any r e [0, ro). (6)

The constitutive equation (1) has a free energy function depending on stress and strain if and
only if there exists 4t : U(E,T): I - Rlp e Cr(9) that satisfies

551

ov *  s ,  9v:1t
t E a T p

(which is an overdetermined system) and

(7)

arl)
AT

G(E, T) < 0

for any (E, T)
The answer

Turonev (A)
on 7 then

8 : 8 r

(ro(E) - ro(E)) .  (E - n). s(E -E) .  (n - nl for any E, E e 9u,

T^(E) . dE is path independent for any curve % c.9u

c ( E , ,  S ( E -  E ) + T " ( E ) ) . ( E - n ) = O  f o r  a n y  E , E  e 9 e .

Moreover, this free energy is unique (up to a constant) on I c 9.
(B) If conditions (9)-(12) are satisfied then (1) + (i1)-(i4) possesses a

function (up to a constant) on fr.

Pnoon. (A) Let (8,,. T,,) e O. The instantaneous response hypersurface
(Eu, Tn) is the solution of the problem

e  I  ( s e e  [ 3 , 6 ] ) .
on the existence of a free energy is then given by the following.

If the constitutive equation (1) + (i1)-(i4) has a free energy function rl: t l t(E,T)

(8)

(1  1 )

(12)

(e)
E +fit (10)

I
J ,g

unique free energy

T: Tr(E; Es, Ts) at

ff r"' Es,r,) : 8, Tr(Eol Eo, To) : To
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Tr(E; Eo, To) : 8(E - Eo) * To, E e 06. (13)

The free energy tl),(n): 1l)(8,8(E - Eo) + Ts) along the instantaneous response hypersurface
will satisfy, according to (7),

y : L p g , - E o ) + T n l ,  E  e g r .
aE p  

- ' I ' n l '  Ee lDu '  (14)

But the necessary and sufficient condition for (14) to have a solution is that 8:8T, i.e.
condition (9).

Now, the general solution of (7) is

p lp (E ,T ) : t rU - 'T .T+E(T  -n re )  (15 )
-

where E is a Cr-class real function of argument T - 8B and it is defined on {T - 8E; (8,, T) e
9). The free energy (15) satisfies

f o r  a n y  E e 0 u . (16 )

(E,,, T,,) e O,Indeed, the free energy 4,Q): V(Eo, T(t)) along the relaxation process starting at
is decreasing according to (8) and (5) to the value V(Eo' Tp(E)), i.e.

ul)(F,o, Tn) > V(Eu, T(t)) > V(F,n, T"(En)) for any t > 0,

whence (16) follows. Therefore (16) and (17) lead to

9 ' (T " (E)  -gF) :  -g - tT^ (E) ,  Eegu

where q'(r):  )q(r) l  &. Let us denote

H(E) : Tn(E) - 8n for any E e 9u.

The mapping H is one-to-one on 9p as one can easily verify by using (18) and (19)
denote i ts inverse mapping by H:H(9)----> I,  H1H1n); :  E for any E e 9e .Then (18)
written as

E'G) : -8-tr, - H(t), for any t eIJ(9).

Since E is smooth, H results a continuous mapping from (20) and H(g) an open
also an open set in I x 9. Moreover (20) implies

n(") - aCIl(r) 
for any r e:gr(hu)

dT,
where

1
rr.r(t)  :  - i"- '"  -  r  -  q(t)* const.,  a elJ(go)

which gives through (21), (20) and (15) the form of the free energy function on A

p q ) ( E , T ) : E ' T  - I " " ' E - t r ( T -  | 8 f j ) + c o n s t . ,  ( E ,  T ) e  9 .  ( 2 2 )
L

We need to show that the mapping H given by (19) is dissipative i.e. relation (10). We prove
first the free energy function has a global minimum with respect to the stress, on the
equil ibrium set, i.e.

V(n,  T"(E))  < , / (8,  T) for  any (E,T) e 6,  T + TR(E).

According to (17) it remains to prove there is no f, ) 0 such that

Q(F,n, T(/)) : V(Eu, T"(Eu)) and f Q) + T"(En) for any t ) tr.

d U

; ;  (E ,  TR(E) )  :0
d l

(17 )

(18)

( ie )

and we
may be

(20)

set; thus I is

(21)

(23)

(24)
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such a / r )0 exists and let  I  e [ / r ,  *)  be f ixed, wi th (Eo,T( i ) )  e6;
and (24) we have

V(Eo, T(7)) < V(Bo, T) for any (E,,, T) e I

#r*",r(r)):0.

,#(Eo, r(r)) - r(7)

and, on the other hand, we get from (22)

ora .-
0 *(E0, 

T( i ) )  :  T(7) -  8En+ 8H(T(t)  -  wEJ: TR(E(/))

ut (&:JG[e 9, 
to there exists fr,egu with T(7) - €En: H(E(t)). Therefore T(i):TR(E(7))

and E(/) : Eo. In conclusion, as T(7) : T^(Eo) there is no /, ) 0 such that (24) holds.
Now directly from (23) and (22) we deduce

( H ( E ) - H ( E ) ) . 8 < d , ( H ( E ) ) -  a ( H ( E ) ) < ( H ( E ) _ H ( E ) ) . 8  ( 2 6 )

for any E, E e 9u, E * E, that is H, is given by (19), is a strictly dissipative mapping

( H ( E )  - H ( E ) ) .  ( E - E ) < 0  f o r  a n y  E , E  €  9 u ,  E + 8 , ,

and relation (10) follows.
Let us denote by V^(E) : t/(E, T"(E)) ,, E e gu the free energy along the equil ibrium

hypersurface, i.e. the equil ibrium free energy. Although T:T^(E) is only continuous on gu,

V^ is of Cl-class on 9p and satisfies the classical thermostatic relation

5s3

thenLet us suppose
according to (17)

that is

(2s)
Relations (25) and (7) lead to

avR(E) r
a1--: ; 

t^(") for anY E e 9t'

Indeed, from (22) and (26) we can easily get

(27)

,:* lptp^(E) - pltn(F,n) - I*(Eo) . (B - Eu)l- 0
l E - E o l + O lE - Enl

for any E, Eo € 9u, E + E0. Therefore, since T: Tn(E) is only continuous on the simply
connected open set 9u, relation (11) is a necessary and sufficient condition for the system (27)
to have a solution.

Further, according to the definit ion (2) of 6, for any (E, T)eg there exists fr,egusuch that
T - 8E: H(E); consequently we have from (22) that

dr l (E.  T)p --#-- E - H(T - 8rJ) :E - E for any (E,T) e 6

and condition (12) follows since r/ has to satisfy inequality (g).
The free energy function has been found to have the form (22); if there is another free

energy vt(E T) on 6 then, according to (15) we have (rp - V,)(b, T): (E - g,)(T - sE).
But E'(t) : AlG) - 

-8-'" - H(t) which proves that rp(E, T) given by ('22) i i  uniq,re, up to a
constant, on A c. 9. The proof of point A is complete.

(B) In order to prove the existence of a free energy V on 6 we construct a solution of the
system (7), we show it also satisfies the inequality (8) and finally prove it is unique up to a
constant"

We already know the general solution of (7) is given by (15); we look then for a function E
which satisfies (18), so we have to show first that (18) has a solution.

We start with the mapping H(E) defined by (19); condition (10) implies H is one-to-one and,
according to a domain invariance result (see [10, Chap. III]), H(9) is an open set and H, the
inverse mapping of H, is continuous H(9;'). Then the integrabil ity condii ions (11) and (9)
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ensure the existence of a Cr-class function o:Tse R, which satisfies

dal(E)-* : H(E) on 9u. (28)

Moreover (see [11]) since H is strictly dissipative, a.r is strictly concave on any open convex
subset of. 9e, i.e.

a(LF.1+ (1 -  L)Er)  > / ,ar(E1) + (1 -  A)ot(82)

for any 8,, Ez e 9o, Er*Fz, A € (0, 1) with trE, + (1 - L)Ere ge, consequently

H(E,)  .  (E,  -  Er)  < @(E,)  -  o(Er)  < H(Er)  .  (E,  -  Er)

on any open convex subset of. 9u. We now can define ttt:H(9)--+R by

a'r(t) : t '  H1t; - ar(H(t)) on H(9)'

A similar procedure to that used at point A to prove ar^ is of Cl-class and satisfies
here to the conclusion that ar is of Cl-class on H(9) and satisfies

0rttk\

; :  
H(t)  on H(! t ,u) .

Relation (31) shows that equation (20) has the solution

I
q(t)  :  -  

i " - ' "  
. t  -  a(r , )  for  any t  eIdL(9);  (32)

we therefore constructed a free energy (15) on A with E given by (32), which satisfies
ArP IAT(8, T"(E)) : 0 for any E e 9e. According to (I2) this free energy does also verify
inequality (8) since

0ttt
p  

a + ( E , T ) : 8 - r T  
+  E ' ( T  -  S B ) - - 8 - ' ( 8 f . + H ( E ) )  - a - t T n ( E ) : E _ E

where E e 96 such that T - 8E: H(E).
It only remains to prove that this free energy rp(E,T) is unique on 6, up to a constant. We

already klow from point A that any free energy prlt(E, T) : (I l2)8-rT. T + q(T - gE) has to
satisfy Arplaf (E,T^(E)):0 for any E e9p therefore @ is a solution of equation (20) as well
as E and E - E can only be a constant.

Rpvnnrs. The above result states that conditions (9)-(12) are necessary and sufficient for the
existence and uniqueness of the free energy on 6; however, if 9=6, they are only necessary
and no more sufficient for the existence of the free energy on whole 9. lt would be natural that
for any state (E, T) reached by a process which starts at the natural state (E : 0, T: 0) e 6,
the free energy function be uniquely defined but, as we have seen, this happens only for the
states in 0. Therefore it would be desirable that hypotheses (i,)-(io) and conditions (9)-(12)
ensure the domain 6 an invariance property with respect to any process, i.e. any process which
starts at a state in 6 remains in 6. Such an invariance property of 6 was established in the l-D
case (see [5]) and for some particular cases it also remains valid in the 3-D case (see [8, Section
1.4.21) but we could not prove it in general. The mathematical argument that 6 seems to be
the only domain, in the 3-D case, where both existence and uniqueness of the free energy are
secured, is furnished by the following observation: the free energy V may also be determined
as the solution of the Cauchy problem

(2e)

(30)

(27), leads

(31)

* * s +: 1r, r)(E,To(E)) : vn(E) on ep,
A E . g l p

(33)

where tlt"(E) is the solution of another Cauchy problem: arp*(n)laF.: Olp)T*(E), Vo(g) :0.
Since the characteristics of the system (33) are the instantaneous-response hyperplanes (13),
the existence and uniqueness domain of the solution of (33) is just O when T"(E) is smooth (see
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f2,6,13, Chap. v i i ] ) .  We can not use this resul t  in our case where T^(E) is only cont inuous but

iimple 
""u*pi"., 

in the l-D case, show that an extension of the free energy function from 6 to

A = 6 may sometimes be impossible (i.e. we lose existence) or non-unique.

An interesting remark is that the free energy function is determined by the equilibrium

surface T: Tn(E) and the elastic modulus I only and once they are fixed we have exactly one

free energy for the whole class of relaxation moduli G consistent with (I2).

We also mention that a sufficient condition for the equilibrium hypersurface T: Tn(E) to be

stable with respect to any relaxation process is

G(E, T) .  (T - TR(E)) > 0 fo r  any  (E ,T )  e  9 ,  T+TR(E) . (34)

We end with some comments on the results obtained when T"(B) is assumed of C'-class. In

this case, considered in [8], the stabil ity of T: T"(B) with respect to the relaxation processes

(io) is not assumed and g is taken as a convex bounded domain; under the following

hypotheses

aTR(E) _ raTR(E))r on e,
a E  \ a E  /  '

(which is equivalent to (11)) and

l aro(E) _ \
\  a n  " ) r ' q < 0  

f o r a n Y \ e g ,  q + 0

(which is equivalent to (10)), equation (7) is proved to have a unique solution which satisfies

(16). Another set of additional conditions on the form of G is proved to be sufficient for this

solution to satisfy (8) too (i.e. to be a free energy for equation (1)).

5 .  P R O P E R T I E S  O F  T H E  F R E E  E N E R G Y  F U N C T I O N

The free energy is important mainly because its existence is required by the second law of

thermodynamics. In the same time energy has already proved to be quite useful when used as a

"norm" for the estimation of the solutions of certain systems of partial differential equations

(for instance energy is frequently used in numerical methods for testing stability). We therefore

study in this section under what additional assumptions on the constitutive functions the free

energy r/ is non-negative and when it is "equivalent" to an Euclidean norm on I x g. On the

other hand, certain thermal processes (such as annealing or quenching for instance) that leave

the Young's modulus g unchanged, do change the equil ibrium curve and consequently the free

energy. We also present in this section a result related to these kind of changes in energy (also

called the monotony property of the free energy with respect to the equilibrium hypersurface).

All these results are non-trivial extensions of some former ones obtained in the 1-f) case (see

[5]); the hypotheses may be tested in applications since they involve only the dynamic elastic

moduli and the equilibrium hypersurface. The frame is sufficiently general to include

non-monotone equil ibrium stress-strain relations which are proper to certain materials (as iron

for instance) as well as to some material bodies in phase transitions (see for instance [7]). In a

different work we use some of these results in order to establish energy estimates for the

solutions of certain init ial and boundary value problems in 3-D rate-type semilinear

viscoelasticity.
From now on we consider only the f ree energy r /  wi th , / (0,  0) :0,  i .e.  9(0):0.

PnoposlrloN 1. The function E is non-negative on H(Or) if and only if

PV o(E) g - t T R ( E )  . T " ( E ) (3s )

(35 ' , )

When 9e= 9condi t ion (35) is equivalent to

1
2

V " ( E ) > 0  o n 9 s .

on 9e.
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Pnoop. We easily get from (32), (30), (28) and (27) that
1

q(H(E) )  :  - ;8 - tTR(E)  .T^(E)  +  pVo(E)  on  su

and therefore (35) is obviously equivalent to E(t) > 0 on H(g). When gn: g we only have
t_o prove that condition (35') implies condition (35).Let E* e9n be fixed and let us denote by
E the inelastic strain for instantaneous unloading attached to the state (E*,TR(E*)), i.e.

E : E *  - 8 - t T n ( 8 " ) e g o .

For E( l ) :  (1 - ,e.)E + / .E* e 9u, h e [0,  1]  we have

p!*(E(L)) - prp*(E) : f^ t^("(,r)) . (8. - B) d,
J o

and, according to inequal i ty (10) wr i t ten for  E:E(s) and E:E*,  we get

p! )n(E*)  -  pr l , * (E)  :  
| " '  Tp(E(s) )  .  (E*  -  n l  tu  >TR(E*)  .  (E*  -  ny  - ! " rEx -  n)  .  (n-  -  E) .J s 2

We therefore obtain, together with (35'), that

p l t * (E" )>  pV*(E* )  -  p t l to (E)  >  ! " - 'T^ (E* )  .To(E* )
L

that is condition (35).

- Conditions (35) and (35') may be tested if we remember that p Otttn(E)lan: Tp(E) and
J* T"(E) ' dE is path independent on any curve % c gu (condition (11)).

The proof to Proposition 1 points out that the equivalence between (35) and (35') holds in a
wider frame, i.e. when gp is a convex domain such that for any E* ege the inelastic strain
B(E-) defined by (37) also belongs to 96. Now, V is obviously non-negative if E is, but the
converse is not always true. However we may state the following.

Conollenv. When 9z is convex and such that for any E* e9s the inelastic strain n(n-) ege
(in particular when 9n: 9), then

4)(8, T) > 0 on I if and only if ?^(E) > 0 on gu.

Indeed, let  us suppose there is at  eH(Q) wi th E(t)<0 whi le V>0 on 6.  Let  E* egube
such that t : H(E*) and consider n(n-) : E* - E- tT^(E*) € gr.. Then pV(ft, D :
E|SD: Eft) < 0 which is a contradiction.

PnoposnroN 2. The function E has the property

d f i .  t<  q ( t )  < . i l2 r , . r  on  H(Or)

i :1,2 are symmetr ic and posi t ive def in i te,  i f  and only
symmetric and positive definite, with

0 < 8 f t . q  <  8 z r t . q < E q . q  o n  g  -  { 0 }
such that

1 1
) 8 , E . E  +  ) t s  -
z z

Moreover

i l i : * U "  -  E , ) - ,  -  s - r f  ,

When ga= 9, condition (39) i, l,riuulent to

l l

i 8 r n . E <  
p e n ( E ) = i " r ,

(36)

where .il, e Lin(g , g),

8,  eLin(9,  9) ,  i  :  I ,2,

(38)

if there exist

(37)

(3e)

(41)

s,)- '(T"(E) - arr.). (T"(E) - 8,8)< pv^(E)

1 1
=;g rn .E  + ; (8  -  E r ) - ' (T^ (E)  -  & rE) . (T " (E)  _  &rE) on 9u. (40)

t - t  )
.  L ,  - .

E on 9o. (40')
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Pnoor. When (38) holds, a simple calculation starting from relation (36) leads to

i  : 1 , 2 ,  o n  9 p ,  w h e r a  8 , ,  i  : 1 , 2 ,  d e n o t e

s,: (! r- ' \  +
\ z

E(H(E)) - -d,H(E) .  H(E) :  prln(E ) -)u,n' n

+)rc - v,)- '(r^(E) -

the l inear .  symmetr ic

\  
- r

d , l  d , 8 ,  i : 1 ,

8,8) .(T"(E) - 8,8) (42)

and positive definite mappings

2.

Then (40) follows as well as (39).
Conversely,  when (a0) holds,  we may def ine d, ,  i :1,2,  by relat ions (41) and prove they

are symmetric and positive definite. Then (38) follows from (42).

The equivalence of (a0) and (40') when 9r= 9follows the same technique already used in

the proof of Proposition 1.

Cononany. Conditions (39) and (40) (or (39) and (40') when 9n-9) are necessary and

sufficient for the free energy 11, to satisfy

Vt(E, T) < V(8, T) < V'(E, T) on I
where

1 l
p Q l E . T )  : , Y - ' T . T  + ; l ( g - 8 , ) - ' -  8 - ' l ( T  - s F , ' )  ' ( T -  1 f F ' ) ,  i : 1 , 2 ,  o n  I x  { 1 .

L . L

Now we can easily see that rl),(E,T), i:1,2 are the free energy functions corresPgnqrrgj_o

the l inear equi l ibr ium hypersurfaces THI:8i8,  i :1,2,  respect ively,  and each Vpr l ,aE,T).
i :1,2 is equivalent to the Eucl idean norm on 9x 9.

The "equivalence" of the free energy function to an Euclidean norm on I x .7 was first

established in [3] but for rate-type semilinear viscoelastic constitutive equations with smooth

and monotone equilibrium hypersurfaces T: T"(E) which satisfy

a < 8 { t  q  < # q  . q  < 8 2 \ ' q  <  h r t ' r l  f o r  a n y  r t e  g -  { 0 }  a n d  a n y  E  e  9 o

where 8, e Lin(9, 9), 8, symmetric, i : I,2.
We end this section with the "monotony property" of the free energy function with respect

to the equilibrium hypersurface.

PRoposnroN 3 .  Le t  Tp , :Te ic .9 -+9 and Gi :6 , - - ->9 ,  i :1 ,2  (where  O,  cor responds to  Qo, ,

i : I ,2) ,  wi th gurOgp2convex, be two relaxat ion modul i  and two equi l ibrurn curves such that

each tr ip let  (8,Tp;, ,  Gi) ,  i :1,2 sat isf ies the hypotheses ( i t ) - ( io)  and the condi t ions (9)-(12).

Then

V.(E,T) > Vr(E, T) on 6,  o 6t  (44)

if and only if

V"t(E) > otnz(E) on 961) %ut,  (45)

where r/, is the free energy function on 6, and rpo, is the equilibrium free energy corresponding

to (8,  T*,) ,  i  :  I ,2,  respect ively.

Pnoor .  Le t  us  denote  by  9r :Te to9 t ,  and le t  r ,e I I {9 ) ) I j I2 (9 . ) ,  w i th  H, (E) :  Tn , (E)  -

8 ,  i :  I , 2 .  T h e n  t :  H r ( E t )  :  H r ( E 2 )  a n d  f r o m  ( 3 6 )  w e  h a v e

Er(t) - ErF): pVn{Er) - pt!^r(Er) - l"rrr- E') . (E' - Er) - T^r(Er) ' (n,, - Er)
L

(43)

:  p l tn lLr )  -  p l t * r (Er)  + ) "J , r -  Er)  .  (E,  -  Er)  -  T^, ( I i , )  .  (8 ,  - -Er)  (46)
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For

so (46) rnay be

E,G) -  qr ( t )

:  PII NJET

t 1 l
t 1 l
l - l

[ 3 ]
[1 ]
l,5 t
t6l

E(,1) : trBt

C. FACIU ANd M. MIH,4.ILESCU-SULICIU

+ (1 -  L)Bt, .1 e [0,  1]  we have

pVo,(fi)$)) - prt,*,(Er) : f" r*,(n(s)) . (E, - Er) &,
J o

written

i  : 7 , 2

r 7* J,,
l l* J,,

(10)

) - PV*'(Er) [r"r(E(s)) - T^r(E r) - S(fr(s) - Er)] . (E, - Er) tu

[ r " , (n(s) )  -T^ , (E, ) -  sFt (s)  -E, ) ]  . (E,  -Er ) tu  (47)

, the first integral in (a7) is negative and the second one is

:  PVn'(Er)  -  PV*r(Ez)

but, according to condition
positive, therefore

pVnt(Er)-  pt l tnz(Ez) <E,( t )  -  ErF)<pt l tn lBr)-  pe^r(Er)

and the assertion of Proposition 3 follows.
Such a "monotony property" of the free energy function has been established in [12] for

smooth and rnonotone equil ibrium hypersurfaces T: T^,(E) , i :1,2 that satisfy the followine
condition

0  <  
aTRr(E)  aTR' (E)

A E ' q ' t l < - # q ' q  
< 8 \ ' t t  f o r  a n y  \ e g  -  { 0 }  a n d  a n y  E e 9 u .

One can show that these inequalit ies imply the following ones

0 < pl,*,(E) < p4nt (E) < 
trU" .  n on gur) gur. (= gr).

6 .  C O N C L U D I N G  R E M A R K S

A rate-type semilinear viscoelastic constitutive equation (1) + (ir)-(i4) possesses a unique
energy function (up to a constant) only if conditions (9)-(12) are satisfied. Several examples in
the 1-D case as well as similar results obtained under more restrictive hypotheses seem to point
out that these conditions are also sufficient not only necessary even if we could not prove it yet.
Several important properties of the free energy function, such as non-negativeness and
"equivalence" to the Euclidean norm in g x 9, are studied under an almost minimal set of
additional conditions. All these conditions, which refer to the equilibrium free energy function
U*(E), are in fact restrictions imposed on the equilibrium hypersurface of the viscoelastic
model and may be tested. Since the equilibrium free energy is a potential for the equilibrium
hypersurface, it has a simple interpretation in the l-D case, as the area defined by the
equil ibrium curve (see t5]) What is more important, the frame imposed by the above
conditions remains large enough to consider a wide class of continuous and even non-monotone
equil ibrium hypersurfaces, when the free energy function may consequently be non-convex,
and only continuous relaxation moduli which allow both infinite and finite relaxation time. We
therefore expect, as in the l-D case (see [7, 14]) that the rate-type semilinear viscoelastic model
may lead to a better description of phase transitions in 3-D bodies.
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