Tropical upper bounds for the BNSR invariants

Alex Suciu

Northeastern University

Topology Seminar
Institute of Mathematics of the Romanian Academy
May 21, 2021

1 FINITENESS PROPERTIES OF ABELIAN COVERS

- The Bieri–Neumann–Strebel–Renz invariants
- Novikov–Sikorav homology
- 2 COHOMOLOGY JUMP LOCI
 - Characteristic varieties
 - Resonance varieties
 - Bounding the Sigma-invariants
- 3 TROPICAL GEOMETRY
 - Tropical varieties
 - A tropical bound for the Sigma-invariants
 - Alexander polynomial and BNS invariant
- 4 APPLICATIONS
 - One-relator groups
 - Compact 3-manifolds
 - Kähler manifolds
 - Hyperplane arrangements

The Bieri-Neumann-Strebel-Renz invariants

- Let *G* be a finitely generated group, $n = b_1(G) > 0$. Let $S(G) = S^{n-1}$ be the unit sphere in $\text{Hom}(G, \mathbb{R}) = \mathbb{R}^n$.
- (Bieri–Neumann–Strebel 1987)

$$\Sigma^{1}(\textit{G}) = \{\chi \in \textit{S}(\textit{G}) \mid \mathsf{Cay}_{\chi}(\textit{G}) \text{ is connected}\},$$

where $\operatorname{Cay}_{\chi}(G)$ is the induced subgraph of $\operatorname{Cay}(G)$ on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \geq 0\}.$

(Bieri–Renz 1988)

$$\Sigma^q(G,\mathbb{Z}) = \{ \chi \in S(G) \mid \text{the monoid } G_\chi \text{ is of type } \mathsf{FP}_q \},$$

i.e., there is a projective $\mathbb{Z}G_{\chi}$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_i finitely generated for all $i \leq q$. Moreover, $\Sigma^1(G,\mathbb{Z}) = -\Sigma^1(G)$.

• The BNSR-invariants of form a descending chain of open subsets,

$$S(G) \supseteq \Sigma^1(G,\mathbb{Z}) \supseteq \Sigma^2(G,\mathbb{Z}) \supseteq \cdots$$
.

• The Σ -invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G/N is free abelian:

$$N$$
 is of type $\operatorname{FP}_q \Longleftrightarrow \mathcal{S}(G,N) \subseteq \Sigma^q(G,\mathbb{Z})$ where $\mathcal{S}(G,N) = \{\chi \in \mathcal{S}(G) \mid \chi(N) = 0\}.$

• In particular: $\ker(\chi \colon G \to \mathbb{Z})$ is f.g. $\iff \{\pm \chi\} \subseteq \Sigma^1(G)$.

Novikov-Sikorav homology

• For each $\chi \in S(G)$, let

$$\widehat{\mathbb{Z}G}_{\chi} = \left\{\lambda \in \mathbb{Z}^G \mid \{g \in \operatorname{\mathsf{supp}} \lambda \mid \chi(g) \geq c\} \text{ is finite, } orall c \in \mathbb{R}
ight\}$$

be the Novikov–Sikorav completion of $\mathbb{Z}G$.

- Alternatively, let U_m be the additive subgroup of $\mathbb{Z}G$ (freely) generated by $\{g \in G \mid \chi(g) \geq m\}$.
- Requiring the decreasing filtration $\{U_m\}_{m\in\mathbb{Z}}$ to form a basis of open neighborhoods of 0 defines a topology on $\mathbb{Z}G$, compatible with the ring structure. Then

$$\widehat{\mathbb{Z}G}_{-\chi}=\varprojlim_{m}\mathbb{Z}G/U_{m}.$$

EXAMPLE

Let
$$G = \mathbb{Z} = \langle t \rangle$$
 and $\chi(t) = 1$. Then

$$\widehat{\mathbb{Z}G}_\chi = \Big\{ \sum_{i \leq k} n_i t^i \mid n_i \in \mathbb{Z}, \, \text{for some } k \in \mathbb{Z} \Big\}.$$

- Now let X be a connected CW-complex with finite q-skeleton, for some q ≥ 1. Write S(X) := S(G).
- (Farber–Geoghegan–Schütz 2010)

$$\Sigma^{q}(X,\mathbb{Z}) = \{ \chi \in \mathcal{S}(X) \mid H_{i}(X,\widehat{\mathbb{Z}G}_{-\chi}) = 0, \ \forall \ i \leq q \}.$$

- (Bieri 2007) If G is FP_k , then $\Sigma^q(G,\mathbb{Z}) = \Sigma^q(K(G,1),\mathbb{Z}), \forall q \leq k$.
- In particular, if G is finitely generated, the BNS set $\Sigma^1(G) = -\Sigma^1(G,\mathbb{Z})$ consists of those characters $\chi \in S(G)$ for which both $H_0(G,\widehat{\mathbb{Z}G}_\chi)$ and $H_1(G,\widehat{\mathbb{Z}G}_\chi)$ vanish.

Characteristic varieties

- Let $\mathbb{T}_G := \operatorname{Hom}(G, \mathbb{C}^*)$ be the character group of $G = \pi_1(X)$, also denoted by $\operatorname{Char}(X) := H^1(X, \mathbb{C}^*)$.
- The characteristic varieties of X are the sets

$$\mathcal{V}^{i}(X) = \{ \rho \in \mathbb{T}_{G} \mid H_{i}(X, \mathbb{C}_{\rho}) \neq 0 \}.$$

- If X has finite q-skeleton, then $V^i(X)$ is Zariski closed for all $i \leq q$.
- We may define similarly $\mathcal{V}^i(X, \mathbb{k}) \subset H^1(X, \mathbb{k}^*)$ for any field \mathbb{k} .
- ullet These constructions are compatible with restriction and extension of the base field. Namely, if $\Bbbk \subset \mathbb{L}$ is a field extension, then

$$\mathcal{V}^{i}(X, \mathbb{k}) = \mathcal{V}^{i}(X, \mathbb{L}) \cap H^{1}(X, \mathbb{k}^{\times}),$$

$$\mathcal{V}^{i}(X, \mathbb{L}) = \mathcal{V}^{i}(X, \mathbb{k}) \times_{\mathbb{k}} \mathbb{L}.$$

• Let $X^{ab} \to X$ be the maximal abelian cover. View $H_*(X^{ab}, \mathbb{C})$ as a module over $\mathbb{C}[G_{ab}]$. Then

$$\bigcup_{i\leq q}\mathcal{V}^i(X)=\bigcup_{i\leq q}V\big(\mathsf{ann}\,\big(H_i\big(X^{\mathsf{ab}},\mathbb{C}\big)\big)\big).$$

• Let $\exp: \mathbb{C}^n \to (\mathbb{C}^*)^n$. Given a subvariety $W \subset (\mathbb{C}^*)^n$, define its exponential tangent cone at 1 (identity of $(\mathbb{C}^*)^n$) as

$$\tau_1(W) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}.$$

- $\tau_1(W)$ depends only on $W_{(1)}$; it is non-empty iff $1 \in W$.
- If $T \cong (\mathbb{C}^*)^r$ is an algebraic subtorus, then $\tau_1(T) = T_1(T) \cong \mathbb{C}^r$
- (Dimca–Papadima–S. 2009) $\tau_1(W)$ is a finite union of rationally defined linear subspaces.
- Set $\tau_1^{\mathbb{k}}(W) = \tau_1(W) \cap \mathbb{k}^n$, for a subfield $\mathbb{k} \subset \mathbb{C}$.

Resonance varieties

• Let $A = H^*(X, \mathbb{C})$. For each $a \in A^1$, we have that $a^2 = 0$. Thus, there is a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

The resonance varieties of X are the homogeneous algebraic sets

$$\mathcal{R}^{i}(X) = \{ a \in A^{1} \mid H^{i}(A, a) \neq 0 \}.$$

- Identify $A^1 = H^1(X, \mathbb{C})$ with \mathbb{C}^n , where $n = b_1(X)$. The map $\exp \colon H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^*)$ has image $\mathbb{T}^0_G = (\mathbb{C}^*)^n$.
- (Dimca–Papadima–S. 2009)

$$\tau_1(\mathcal{V}^i(X)) \subseteq \mathcal{R}^i(X).$$

• (DPS-2009, DP-2014) If X is a q-formal space, then, for all $i \leq q$,

$$\tau_1(\mathcal{V}^i(X)) = \mathcal{R}^i(X).$$

Bounding the Σ -invariants

THEOREM (PAPADIMA-S. 2010)

Let X be a connected CW-complex with finite q-skeleton. Let $\chi \colon \pi_1(X) \to \mathbb{R}$ be a non-zero homomorphism, and let $b_i(X,\chi)$ be the corresponding i-th Novikov–Betti number. Then,

$$\bullet \ -\chi \in \Sigma^q(X,\mathbb{Z}) \implies b_i(X,\chi) = 0, \ \forall i \leq q.$$

•
$$\chi \notin \tau_1^{\mathbb{R}}(\mathcal{V}^{\leq q}(X)) \iff b_i(X,\chi) = 0, \ \forall i \leq q.$$

COROLLARY

$$\Sigma^q(X,\mathbb{Z})\subseteq \mathcal{S}\left(au_1^\mathbb{R}\Big(\ \mathcal{V}^{\leq q}(X)\Big)
ight)^{\mathrm{c}}$$

- Thus, $\Sigma^q(X,\mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.
- If X is q-formal, then $\Sigma^i(X,\mathbb{Z}) \subseteq S(\mathbb{R}^{\leq i}(X))^c$ for all $i \leq q$.

EXAMPLE

Let X be a nilmanifold. Then $\Sigma^i(X,\mathbb{Z}) = S(X)$, while $\mathcal{V}^i(X) = \{1\}$, $\forall i$. Thus, $\Sigma^q(X,\mathbb{Z}) = S(\tau_1^{\mathbb{R}}(\mathcal{V}^{\leq q}(X)))^c$, for all q.

EXAMPLE

- Let $G = G_{\Gamma} = \langle v \in V \mid vw = wv \text{ if } \{v, w\} \in E \rangle$ be the right-angled Artin group associated to a finite simple graph $\Gamma = (V, E)$.
- There is a finite K(G, 1) which is formal.
- $\Sigma^q(G,\mathbb{R}) = S(\mathcal{R}^{\leq q}(G,\mathbb{R}))^c$ holds for all q.
- $\Sigma^q(G,\mathbb{Z}) = S(\mathcal{R}^{\leq q}(G,\mathbb{R}))^c$, provided the homology groups of certain subcomplexes in the flag complex of Γ are torsion-free.
- This condition is always satisfied in degree q = 1, giving $\Sigma^1(G) = S(\mathcal{R}^1(G, \mathbb{R}))^c$.

Tropical varieties

- Let $\mathbb{K} = \mathbb{C}\{\{t\}\} = \bigcup_{n>1} \mathbb{C}((t^{1/n}))$ be the field of Puiseux series \mathbb{C} .
- A non-zero element of \mathbb{K} has the form $c(t) = c_1 t^{a_1} + c_2 t^{a_2} + \cdots$, where $c_i \in \mathbb{C}^*$ and $a_1 < a_2 < \cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field \mathbb{K} admits a valuation $v \colon \mathbb{K}^* \to \mathbb{Q}$, given by $v(c(t)) = a_1$.
- Let $v: (\mathbb{K}^*)^n \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the *n*-fold product of the valuation.
- The *tropicalization* of a subvariety $W \subset (\mathbb{K}^*)^n$, denoted Trop(W), is the closure (in the Euclidean topology) of v(W) in \mathbb{R}^n .
- This is a rational polyhedral complex in \mathbb{R}^n . For instance, if W is a curve, then $\mathsf{Trop}(W)$ is a graph with rational edge directions.

- If T be an algebraic subtorus of $(\mathbb{K}^*)^n$, then $\mathsf{Trop}(T)$ is the linear subspace $\mathsf{Hom}(\mathbb{K}^*,T)\otimes\mathbb{R}\subset\mathsf{Hom}(\mathbb{K}^*,(\mathbb{K}^*)^n)\otimes\mathbb{R}=\mathbb{R}^n$.
- Moreover, if $z \in (\mathbb{K}^*)^n$, then $\text{Trop}(z \cdot T) = \text{Trop}(T) + \nu(z)$.
- For a variety $W \subset (\mathbb{C}^*)^n$, we may define its tropicalization by setting $\operatorname{Trop}(W) = \operatorname{Trop}(W \times_{\mathbb{C}} \mathbb{K})$.
- In this case, the tropicalization is a polyhedral fan in \mathbb{R}^n .

- For a polytope P, with (polar) dual P*, let
 - $ightharpoonup \mathcal{F}(P)$ face fan (the set of cones spanned by the faces of P).
 - $\triangleright \mathcal{N}(P)$ (inner) normal fan.

If $0 \in int(P)$, then $\mathcal{N}(P) = \mathcal{F}(P^*)$.

• If W = V(f) is a hypersurface defined by $f = \sum_{\mathbf{u} \in A} a_{\mathbf{u}} \mathbf{t}^{\mathbf{u}} \in \mathbb{C}[\mathbf{t}^{\pm 1}]$, and $\operatorname{Newt}(f) = \operatorname{conv}\{\mathbf{u} \mid a_{\mathbf{u}} \neq 0\} \subset \mathbb{R}^n$, then

$$\mathsf{Trop}(V(f)) = \mathcal{N}(\mathsf{Newt}(f))^{\mathsf{codim}>0}.$$

EXAMPLE

Let $f = t_1 + t_2 + 1$. Then Newt $(f) = \text{conv}\{(1, 0), (0, 1), (0, 0)\}$ is a triangle, and so Trop(V(f)) is a tripod.

Tropicalizing the characteristic varieties

- Recall $\mathbb{K} = \mathbb{C}\{\{t\}\}$ comes with a valuation map, $v \colon \mathbb{K}^* \to \mathbb{Q}$.
- Let ν_X : Char $_{\mathbb{K}}(X) \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the composite

$$H^1(X, \mathbb{K}^*) \xrightarrow{\nu_*} H^1(X, \mathbb{Q}) \longrightarrow H^1(X, \mathbb{R}).$$

- I.e., if $\rho \colon \pi_1(X) \to \mathbb{K}^*$ is a \mathbb{K} -valued character, then the morphism $v \circ \rho \colon \pi_1(X) \to \mathbb{Q}$ defines $\nu_X(\rho) \in H^1(X,\mathbb{Q}) = \mathbb{Q}^n \subset \mathbb{R}^n$.
- Given an algebraic subvariety $W \subset H^1(X, \mathbb{C}^*)$ we define its *tropicalization* as the closure in $H^1(X, \mathbb{R}) \cong \mathbb{R}^n$ of the image of $W \times_{\mathbb{C}} \mathbb{K} \subset H^1(X, \mathbb{K}^*)$ under ν_X ,

$$\mathsf{Trop}(W) := \overline{\nu_X(W \times_{\mathbb{C}} \mathbb{K})}.$$

• Applying this definition to the characteristic varieties $\mathcal{V}^i(X)$, and recalling that $\mathcal{V}^i(X,\mathbb{K}) = \mathcal{V}^i(X) \times_{\mathbb{C}} \mathbb{K}$, we have that

$$\mathsf{Trop}(\mathcal{V}^i(X)) = \overline{\nu_X(\mathcal{V}^i(X,\mathbb{K}))}.$$

LEMMA

Let $W \subset (\mathbb{C}^*)^n$ be an algebraic variety. Then $\tau_1^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

Sketch of proof.

- Every irreducible component of $\tau_1^{\mathbb{R}}(W)$ is of the form $L \otimes_{\mathbb{Q}} \mathbb{R}$, for some linear subspace $L \subset \mathbb{Q}^n$.
- The complex torus $T := \exp(L \otimes_{\mathbb{Q}} \mathbb{C})$ lies inside W.
- Thus, $\mathsf{Trop}(T) = L \otimes_{\mathbb{Q}} \mathbb{R}$ lies inside $\mathsf{Trop}(W)$.

PROPOSITION

- $\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)) \subseteq \operatorname{Trop}(\mathcal{V}^i(X))$, for all $i \leq q$.
- If there is a subtorus $T \subset \operatorname{Char}^0(X)$ such that $T \not\subset \mathcal{V}^i(X)$, yet $\rho T \subset \mathcal{V}^i(X)$ for some $\rho \in \operatorname{Char}(X)$, then $\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)) \subsetneq \operatorname{Trop}(\mathcal{V}^i(X))$.

A tropical bound for the Σ -invariants

THEOREM (PS-2010, S-2021)

Let $\rho \colon \pi_1(X) \to \mathbb{k}^*$ be a character such that $\rho \in \mathcal{V}^{\leq q}(X, \mathbb{k})$. Let $v \colon \mathbb{k}^* \to \mathbb{R}$ be the homomorphism defined by a valuation on \mathbb{k} , and write $\chi = v \circ \rho$. If the homomorphism $\chi \colon \pi_1(X) \to \mathbb{R}$ is non-zero, then $\chi \notin \Sigma^q(X, \mathbb{Z})$.

Sketch of proof.

- Let $\hat{\mathbb{k}}$ be the topological completion of \mathbb{k} with respect to the absolute value $|c| = \exp(-v(c))$. Get a field extension, $\iota : \mathbb{k} \hookrightarrow \hat{\mathbb{k}}$.
- Let $G = \pi_1(X)$. Extend $\rho \colon G \to \mathbb{k}^{\times}$ to a ring map, $\bar{\rho} \colon \mathbb{Z}G \to \mathbb{k}$.
- Since $\chi = v \circ \rho$, we can extend $\bar{\rho}$ to a morphism of topological rings, $\hat{\rho} \colon \widehat{\mathbb{Z}G}_{-\chi} \to \hat{\mathbb{k}}$, making $\hat{\mathbb{k}}$ into a $\widehat{\mathbb{Z}G}_{-\chi}$ -module, denoted $\hat{\mathbb{k}}_{\hat{\rho}}$.
- Restricting scalars via the inclusion $\mathbb{Z}G \hookrightarrow \widehat{\mathbb{Z}G}_{-\chi}$ yields the $\mathbb{Z}G$ -module $\hat{\mathbb{k}}_{\iota \circ \rho}$, defined by the character $\iota \circ \rho \colon G \to \hat{\mathbb{k}}^{\times}$.

For a ring R, a bounded below chain complex of flat right
 R-modules K*, and a left R-module M, there is a (right half-plane,
 boundedly converging) Künneth spectral sequence,

$$E_{ij}^2 = \operatorname{Tor}_i^R(H_j(K), M) \Rightarrow H_{i+j}(K \otimes_R M)$$
.

- Use ring $R = \widehat{\mathbb{Z}G}_{-\chi}$, chain complex of free R-modules $K_* = C_*(\widetilde{X}, \mathbb{Z}) \otimes_{\mathbb{Z}G} \widehat{\mathbb{Z}G}_{-\chi}$, and R-module $M = \hat{\mathbb{k}}_{\hat{\rho}}$.
- Now let $\rho \in \mathcal{V}^{\leq q}(X, \mathbb{k})$, and suppose $\chi = \upsilon \circ \rho \in \Sigma^q(X, \mathbb{Z})$.
- This is equivalent to $H_j(X,\widehat{\mathbb{Z}G}_{-\chi})=0$ for all $j\leq q$; that is, $H_j(K)=0$ for $j\leq q$. Therefore, $E_{ij}^2=0$ for $j\leq q$.
- Hence, $H_{i+j}(X, \hat{\Bbbk}_{\iota \circ \rho}) = 0$ for $j \leq q$, and so $H_j(X, \hat{\Bbbk}_{\iota \circ \rho}) = 0$ for $j \leq q$.
- This is equivalent to $\iota \circ \rho \notin \mathcal{V}^{\leq q}(X, \hat{\mathbb{k}})$. Hence, $\rho \notin \mathcal{V}^{\leq q}(X, \mathbb{k})$, contradicting our hypothesis on ρ .
- Therefore, $\chi \notin \Sigma^q(X, \mathbb{Z})$.

THEOREM (S-2021)

$$\Sigma^q(X,\mathbb{Z})\subseteq \mathcal{S}(\mathsf{Trop}(\mathcal{V}^{\leq q}(X)))^{\mathrm{c}}$$

Sketch of proof.

- Let $\rho: \pi_1(X) \to \mathbb{K}^{\times}$ and set $\chi = \mathbf{v} \circ \rho: \pi_1(X) \to \mathbb{Q}$, a rational point on $H^1(X, \mathbb{R})$.
- Suppose $\rho \in \mathcal{V}^{\leq q}(X, \mathbb{K}) = \mathcal{V}^{\leq q}(X) \times_{\mathbb{C}} \mathbb{K}$.
- Then χ is a rational point on $\text{Trop}(\mathcal{V}^{\leq q}(X)) = \overline{\nu_X(\mathcal{V}^{\leq q}(X,\mathbb{K}))}$.
- Conversely, all rational points on $\operatorname{Trop}(\mathcal{V}^{\leq q}(X))$ are of the form $\nu_X(\rho) = \mathbf{v} \circ \rho$, for some $\rho \in \mathcal{V}^{\leq q}(X, \mathbb{K})$.
- Finally, assume that $\chi \neq 0$, so that χ represents an (arbitrary) rational point in $S(\text{Trop}(\mathcal{V}^{\leq q}(X)))$.
- By the previous theorem, $\chi \in \Sigma^q(X, \mathbb{Z})^c$.
- But the rational points are dense in $S(\text{Trop}(\mathcal{V}^{\leq q}(X)))$, and $\Sigma^q(X,\mathbb{Z})^c$ is closed in S(X), so we're done.

COROLLARY

$$\Sigma^q(X,\mathbb{Z})\subseteq S(\mathsf{Trop}(\mathcal{V}^{\leq q}(X)))^{\operatorname{c}}\subseteq S(au_1^\mathbb{R}(\mathcal{V}^{\leq q}(X)))^{\operatorname{c}}.$$
 $\Sigma^1(G)\subseteq -S(\mathsf{Trop}(\mathcal{V}^1(G)))^{\operatorname{c}}\subseteq S(au_1^\mathbb{R}(\mathcal{V}^1(G)))^{\operatorname{c}}.$

COROLLARY

If $\mathcal{V}^{\leq q}(X)$ contains a component of $\operatorname{Char}(X)$, then $\Sigma^q(X,\mathbb{Z})=\emptyset$.

THEOREM

Let $f_{\alpha} \colon G \to G_{\alpha}$ be a finite collection of epimorphisms. If each $\mathcal{V}^{1}(G_{\alpha})$ contains a component of $\mathbb{T}_{G_{\alpha}}$, then

$$\Sigma^1(\textit{G})\subseteq \Big(\bigcup \textit{S}\big(\textit{f}_{\alpha}^*(\textit{H}^1(\textit{G}_{\alpha},\mathbb{R}))\big)\Big)^c.$$

The Alexander polynomial

- Let $H = G_{ab}/tors(G_{ab})$ be the maximal torsion-free abelian quotient of $G = \pi_1(X)$ and $g \colon X^H \to X$ the respective cover.
- Set $A_X := H_1(X^H, q^{-1}(x_0), \mathbb{Z})$, viewed as a $\mathbb{Z}[H]$ -module.
- Let $E_1(A_X) \subseteq \mathbb{Z}[H]$ be the ideal of codimension 1 minors in a presentation for A_X .
- $\Delta_X := \gcd(E_1(A_X)) \in \mathbb{Z}[H]$ is the Alexander polynomial of X. It only depends on G, so also write it as Δ_G .
- Suppose $I_H^p \cdot (\Delta_G) \subseteq E_1(A_G)$, for some $p \ge 0$. Then

$$\mathcal{V}^1(X) \cap \mathbb{T}_G^0 = \{1\} \cup V(\Delta_G).$$

• This condition is satisfied if G is a 1-relator group, or $G = \pi_1(M)$, where M is a closed, orientable 3-manifold with empty or toroidal boundary (C. McMullen, D. Eisenbud–W. Neumann).

- Let $\operatorname{Newt}(\Delta_G) \subset H_1(G,\mathbb{R})$ be the Newton polytope of Δ_G .
- Given $\phi \in H^1(G; \mathbb{Z}) \cong \text{Hom}(H, \mathbb{Z})$, its *Alexander norm*, $\|\phi\|_A$, is the length of $\phi(\text{Newt}(\Delta_G))$.
- This defines a semi-norm on $H^1(G,\mathbb{R})$, with unit ball

$$B_A = \{ \phi \in H^1(G; \mathbb{R}) \mid \|\phi\|_A \le 1 \}.$$

• If Δ_G is symmetric (i.e., invariant under $t_i \mapsto t_i^{-1}$), then B_A is, up to a scale factor of 1/2, the polar dual of the Newton polytope of Δ_G ,

$$2B_A = \operatorname{Newt}(\Delta_G)^*$$
.

PROPOSITION

If Δ_G is symmetric and $I_H^p \cdot (\Delta_G) \subseteq E_1(A_G)$, for some $p \geq 0$, then

$$\Sigma^1(G) \subseteq \bigcup S(F).$$

F an open facet of B_A

Two-generator, one-relator groups

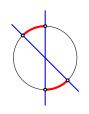
• Let $G = \langle x, y \mid r \rangle$, with $b_1(G) = 2$. K. Brown gave a combinatorial algorithm for computing $\Sigma^1(G)$.

EXAMPLE



- Let $G = \langle a, b \mid b^2 (ab^{-1})^2 a^{-2} \rangle$.
- Then $\Sigma^1(G) = S^1 \setminus \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (0, -1), (-1, 0)\}.$
- On the other hand, $\Delta_G = a + b + 1$.
- Thus, $\Sigma^1(G) = -S(\mathsf{Trop}(V(\Delta_G)))^c$, though $\tau_1 \mathcal{V}^1(G) = \{0\}$.

EXAMPLE



- Let $G = \langle a, b \mid a^2ba^{-1}ba^2ba^{-1}b^{-3}a^{-1}ba^2ba^{-1}ba$ $b^{-1}a^{-2}b^{-1}ab^{-1}a^{-2}b^{-1}ab^3ab^{-1}a^{-2}b^{-1}ab^{-1}a^{-1}b\rangle$.
- Then $\Delta_G = (a-1)(ab-1)$, and so $S(\text{Trop}(V(\Delta_G)))$ consists of two pairs of points.
- Yet $\Sigma^1(G)$ consists of two open arcs joining those points.

Compact 3-manifolds

- Let M be a compact, connected, orientable 3-manifold with $b_1(M) > 0$.
- A non-zero class $\phi \in H^1(M; \mathbb{Z}) = \operatorname{Hom}(\pi_1(M), \mathbb{Z})$ is a *fibered* if there exists a fibration $p \colon M \to S^1$ such that the induced map $p_* \colon \pi_1(M) \to \pi_1(S^1) = \mathbb{Z}$ coincides with ϕ .
- The Thurston norm $\|\phi\|_{\mathcal{T}}$ of a class $\phi \in H^1(M; \mathbb{Z})$ is the infimum of $-\chi(\hat{S})$, where S runs though all the properly embedded, oriented surfaces in M dual to ϕ , and \hat{S} denotes the result of discarding all components of S which are disks or spheres.
- Thurston showed that $\|-\|_T$ defines a seminorm on $H^1(M; \mathbb{Z})$, which can be extended to a continuous seminorm on $H^1(M; \mathbb{R})$.
- The unit norm ball, $B_T = \{ \phi \in H^1(M; \mathbb{R}) \mid ||\phi||_T \le 1 \}$, is a rational polyhedron with finitely many sides and symmetric in the origin.

- There are facets of B_T , called the *fibered faces* (coming in antipodal pairs), so that a class $\phi \in H^1(M; \mathbb{Z})$ fibers if and only if it lies in the cone over the interior of a fibered face.
- Bieri, Neumann, and Strebel showed that the BNS invariant of $G = \pi_1(M)$ is the projection onto S(G) of the open fibered faces of the Thurston norm ball B_T ; in particular, $\Sigma^1(G) = -\Sigma^1(G)$.
- Under some mild assumptions, McMullen showed that $\|\phi\|_A \leq \|\phi\|_T$; thus, $B_T \subset B_A$, leading to an upper bound for $\Sigma_1(G)$ in terms of B_A .

THEOREM

Let M be a compact, connected, orientable, 3-manifold with empty or toroidal boundary. Set $G = \pi_1(M)$ and assume $b_1(M) \geq 2$. Then

- ① Trop $(\mathcal{V}^1(G) \cap \mathbb{T}_G^0)$ is the positive-codimension skeleton of $\mathcal{F}(B_A)$, the face fan of the unit ball in the Alexander norm.
- ② (Partly recovers McMullen's theorem) $\Sigma^1(G)$ is contained in the union of the open cones on the facets of B_A .

Example: Let *M* be Seifert manifold with

- Orientable base surface of genus g.
- Exceptional fibers $(\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r)$.
- Orbifold Euler number $e = -\sum_{i=1}^{r} \beta_i / \alpha_i$.
- $\bullet \ \theta(\alpha) = \alpha_1 \cdots \alpha_r / \operatorname{lcm}(\alpha_1, \dots, \alpha_r).$

PROPOSITION

Suppose $e \neq 0$ and either g > 1, or g = 1 and $\theta(\alpha) > 1$. Then $\Sigma^{1}(M) = \emptyset$.

Kähler manifolds

- Let M be a compact Kähler manifold. Then M is formal.
- (Beauville, Catanese, Green–Lazarsfeld, Simpson, Arapura, B. Wang) $\mathcal{V}^i(M)$ are finite unions of torsion translates of algebraic subtori of $H^1(M,\mathbb{C}^*)$.

THEOREM (DELZANT 2010)

$$\Sigma^{1}(M) = S(M) \setminus \bigcup_{\alpha} S(f_{\alpha}^{*}(H^{1}(C_{\alpha}, \mathbb{R}))),$$

where the union is taken over those orbifold fibrations $f_{\alpha} \colon M \to C_{\alpha}$ with the property that either $\chi(C_{\alpha}) < 0$, or $\chi(C_{\alpha}) = 0$ and f_{α} has some multiple fiber.

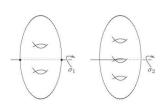
In degree 1, we may recast this result in the tropical setting, as follows.

COROLLARY

$$\Sigma^1(M) = S(\mathsf{Trop}(\mathcal{V}^1(M))^c.$$

EXAMPLE

Let C_1 be a smooth curve of genus 2 with an elliptic involution σ_1 , and C_2 a curve of genus 3 with a free involution σ_2 .



- Then $\Sigma_1 = C_1/\sigma_1$ is a curve of genus 1, $\Sigma_2 = C_2/\sigma_2$ is a curve of genus 2, and $M = (C_1 \times C_2)/\sigma_1 \times \sigma_2$ is a smooth, complex projective surface with $H_1(M,\mathbb{Z}) = \mathbb{Z}^6$.
- Projection onto the first coordinate yields an orbifold fibration $f_1: M \to \Sigma_1$ with two multiple fibers, each of multiplicity 2. The other projection defines a smooth fibration $f_2: M \to \Sigma_2$.
- We have $V^1(M) = \{t \mid t_1 = t_2 = 1\} \cup \{t_4 = t_5 = t_6 = 1, t_3 = -1\}$, with the two components obtained by pullback along f_1 and f_2 .
- Thus, $\Sigma^1(M) = S^5 \setminus S(\{x_3 = \dots = x_6 = 0\} \cup \{x_1 = x_2 = 0\}).$

Hyperplane arrangements

- Let $A = \{H_1, \dots, H_n\}$ be an (essential, central) arrangement of hyperplanes in \mathbb{C}^d .
- Its complement, $M(A) \subset (\mathbb{C}^*)^d$, is a smooth, quasi-projective Stein manifold; thus, it has the homotopy type of a finite, d-dimensional CW-complex.
- $H^*(M(A), \mathbb{Z})$ is the Orlik–Solomon algebra of L(A).
- (Arapura) The characteristic varieties $\mathcal{V}^i(\mathcal{A}) := \mathcal{V}^i(M(\mathcal{A})) \subset (\mathbb{C}^*)^n$. are unions of translated subtori.
- Consequently, $\mathsf{Trop}(\mathcal{V}^i(\mathcal{A})) = -\mathsf{Trop}(\mathcal{V}^i(\mathcal{A})).$
- (Denham–S.–Yuzvinsky 2016/17) M(A) is an "abelian duality space"; thus, its jump loci propagate: $V^1(A) \subseteq \cdots \subseteq V^{d-1}(A)$.
- (Arnol'd, Brieskorn) M(A) is formal. Thus, $\tau_1(\mathcal{V}^i(A)) = \mathcal{R}^i(A)$.

THEOREM

Let M be the complement of an arrangement of n hyperplanes in \mathbb{C}^d . Then, for each 1 < q < d - 1:

- Trop($\mathcal{V}^q(M)$) is the union of a subspace arrangement in \mathbb{R}^n .
- $\Sigma^q(M, \mathbb{Z}) \subseteq S(\mathsf{Trop}(\mathcal{V}^q(M)))^c$.

QUESTION (MFO MINIWORKSHOP 2007)

Given an arrangement A, do we have

$$\Sigma^{1}(M(\mathcal{A})) = \mathcal{S}(\mathcal{R}^{1}(\mathcal{A}, \mathbb{R}))^{c}? \tag{*}$$

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^n , defined by $\prod_{1 \leq i < j \leq n} (z_i z_j) = 0.$ Then $M(\mathcal{A}) = \operatorname{Conf}(n, \mathbb{C}) \simeq K(P_n, 1)$.
- Answer to (\star) is yes: $\Sigma^1(M(\mathcal{A}))$ is the complement of the union of $\binom{n}{3} + \binom{n}{4}$ planes in $\mathbb{C}^{\binom{n}{2}}$, intersected with the unit sphere.

EXAMPLE

- Let \mathcal{A} be the "deleted B₃" arrangement, defined by $z_1z_2(z_1^2-z_2^2)(z_1^2-z_2^2)(z_2^2-z_3^2)=0$.
- (S. 2002) $\mathcal{V}^1(\mathcal{A})$ contains a (1-dimensional) translated torus $\rho \cdot \mathcal{T}$.
- Thus, $\operatorname{Trop}(\rho \cdot T) = \operatorname{Trop}(T)$ is a line in \mathbb{C}^8 which is *not* contained in $\mathcal{R}^1(\mathcal{A}, \mathbb{R})$. Hence, the answer to (\star) is no.

QUESTION (REVISED)

$$\Sigma^{1}(M(\mathcal{A})) = S(\operatorname{Trop}(\mathcal{V}^{1}(\mathcal{A}))^{c}? \tag{**}$$

REFERENCE

Alexander I. Suciu, *Sigma-invariants and tropical varieties*, arXiv:2010.07499. To appear in Math. Annalen, available here.