Algebra and topology of group extensions

PART II

Alex Suciu

Northeastern University

Topology Seminar

Institute of Mathematics of the Romanian Academy

July 2, 2021

1 DERIVED SERIES AND ALEXANDER INVARIANTS

- Derived series and Alexander invariant
- LCS and Chen ranks
- Rational derived series and Alexander invariant
- Mod-p derived series and Alexander invariant

AB/ABF-EXACT SEQUENCES OF GROUPS

- Ab-exact sequences
- Abf-exact sequences

Derived series and Alexander invariant

- ► The *derived series* of a group *G* is defined inductively by $G^{(0)} = G, G^{(1)} = G', G^{(2)} = G'', and G^{(r)} = [G^{(r-1)}, G^{(r-1)}].$
- Its terms are fully invariant (and thus, normal) subgroups.
- Successive quotients: $G^{(r-1)}/G^{(r)} = (G^{(r-1)})_{ab}$.
- $G/G^{(\ell)}$ is the maximal solvable quotient of G of length ℓ .
- Alexander invariant:

$$B(G) := G'/G'',$$

a $\mathbb{Z}[G_{ab}]$ -module via $gG' \cdot xG'' = gxg^{-1}G''$ for $g \in G$ and $x \in G'$.

• If X is a connected CW-complex with $\pi_1(X) = G$, then

$$B(G) = H_1(X^{\mathrm{ab}}, \mathbb{Z}) = H_1(X, \mathbb{Z}[G_{\mathrm{ab}}]),$$

where $q: X^{ab} \rightarrow X$ is the universal abelian cover.

EXAMPLE

- Let $X = \bigvee^n S^1$. Then $\pi_1(X) = F_n$, $(F_n)_{ab} = \mathbb{Z}^n$, and $X^{ab} = 1$ -skeleton of $(T^n)^{ab}$.
- ► $(C_*((T^n)^{ab}; \mathbb{Z}), \partial^{ab})$ is the Koszul complex on $t_1 1, \ldots, t_n 1$ over the ring $\Lambda_n = \mathbb{Z}[\mathbb{Z}^n] = \mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}].$
- ► Hence, $B(F_n) = \operatorname{coker} \left(\partial_3^{\operatorname{ab}} : \Lambda_n^{\binom{n}{3}} \to \Lambda_n^{\binom{n}{2}} \right).$ $\circ B(F_2) = \Lambda_2.$ $\circ B(F_3) = \operatorname{coker} \left(\begin{pmatrix} 1 - t_3 & t_2 - 1 & 1 - t_1 \end{pmatrix} : \Lambda_2 \to \Lambda_2^3 \right).$
- ► Alexander module: $A(G) = \mathbb{Z}[G_{ab}] \otimes_{\mathbb{Z}[G]} I(G)$, where $I(G) = \ker(\varepsilon : \mathbb{Z}[G] \to \mathbb{Z})$ is the augmentation ideal.
- ► $A(G) = H_1(X^{\mathsf{ab}}, q^{-1}(x_0)) = \operatorname{coker}(\partial_2^{\mathsf{ab}}) \colon C_2(X^{\mathsf{ab}}) \to C_1(X^{\mathsf{ab}}).$
- Crowell exact sequence:

$$0 \to B(G) \to A(G) \to I(G_{ab}) \to 0.$$

- A homomorphism α: G → H induces compatible homomorphisms, α_{ab}: G_{ab} → H_{ab} and B(α): B(G) → B(H).
- ▶ That is, if $\tilde{\alpha}_{ab}$: $\mathbb{Z}[G_{ab}] \to \mathbb{Z}[H_{ab}]$ is the linear extension of α_{ab} to a ring map, then $B(\alpha)$ is a morphism of modules covering α_{ab} , i.e., $B(\alpha)(rm) = \tilde{\alpha}_{ab}(r) \cdot B(\alpha)(m)$ for all $r \in \mathbb{Z}[G_{ab}]$ and $m \in B(G)$.
- ▶ $B(\alpha)$ factors as $B(G) \rightarrow B(H)_{\alpha} \rightarrow B(H)$, where $B(H)_{\alpha}$ is the $\mathbb{Z}[G_{ab}]$ -module obtained from B(H) by restriction of scalars via $\tilde{\alpha}$.
- ► Alternatively, if $f: (X, x_0) \to (Y, y_0)$ is a cellular map and $f_{\sharp}: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ is the induced morphism, then $B(f_{\sharp}): B(\pi_1(X)) \to B(\pi_1(Y))$ is equal to $f_*: H_1(X^{ab}) \to H_1(Y^{ab})$.

THEOREM (MASSEY 1980) Let $I = I(G_{ab})$. Then $I^n B(G) = \gamma_{n+2}(G/G'')$, and thus

 $\operatorname{gr}_n(B) \cong \operatorname{gr}_{n+2}(G/G''), \quad \text{for all } n \ge 0.$

LCS and Chen ranks

- Let gr(G) = ⊕_{n≥1} γ_n(G)/γ_{n+1}(G) be the associated graded Lie algebra of G.
- ► Recall that gr(G) is generated by gr₁(G) = G_{ab}, and so gr(G) ⊗ Q is generated by H₁(G, Q) = G_{ab} ⊗ Q.
- Thus, if b₁(G) := dim_Q H₁(G, Q) is finite, all graded pieces of gr(G) ⊗ Q are finite-dimensional. Define:
 - LCS ranks: $\phi_n(G) := \dim_{\mathbb{Q}} \operatorname{gr}_n(G) \otimes \mathbb{Q}$.
 - Chen ranks: $\theta_n(G) := \phi_n(G/G'')$.
- $\theta_n(G) \leq \phi_n(G)$, with equality for $n \leq 3$.
- ► By Massey's theorem, the Chen ranks are computed by the Hilbert series of gr(B):

$$\mathsf{Hilb}(\mathsf{gr}(B(G)\otimes \mathbb{Q}),t)=\sum_{n\geq 0}\theta_{n+2}(G)t^n.$$

Rational derived series and Alexander invariant

- The rational derived series of G is defined by G_Q⁽⁰⁾ = G and G_Q^(r) = √[G_Q^(r-1), G_Q^(r-1)]. [Stallings, Harvey, Cochran]
 G_Q^(r)/G_Q^(r+1) ≃ (G_Q^(r))_{abf}.
- $G'_{\mathbb{Q}}$ is also known as the Johnson kernel. We have: $G/G'_{\mathbb{Q}} = G_{abf}$ and $G'_{\mathbb{Q}}/G' \cong \text{Tors}(G_{ab})$.
- ▶ *Rational Alexander invariant*: $B_{\mathbb{Q}}(G) := G'_{\mathbb{Q}}/G''_{\mathbb{Q}}$, viewed as a $\mathbb{Z}G_{abf}$ -module via $gG'_{\mathbb{Q}} \cdot xG''_{\mathbb{Q}} = gxg^{-1}G''_{\mathbb{Q}}$ for $g \in G$ and $x \in G'_{\mathbb{Q}}$.

LEMMA

Let X be a connected CW-complex with $\pi_1(X) = G$. Then

- $B_{\mathbb{Q}}(G) \cong H_1(X^{\mathrm{abf}}, \mathbb{Z})/\mathbb{Z}$ -Tors *as* $\mathbb{Z}[G_{\mathrm{abf}}]$ -*modules.*
- $B_{\mathbb{Q}}(G) \otimes \mathbb{Q} \cong H_1(X^{\mathrm{abf}}, \mathbb{Q})$ as $\mathbb{Q}[G_{\mathrm{abf}}]$ -modules.
- If G_{ab} is torsion-free, then $B_{\mathbb{Q}}(G) \cong B(G)/\mathbb{Z}$ -Tors as $\mathbb{Z}[G_{ab}]$ -mods.

- Rational Alexander module: $A_{\mathbb{Q}}(G) = \mathbb{Z}[G_{abf}] \otimes_{\mathbb{Z}[G]} I(G)$.
- ► $A_{\mathbb{Q}}(G) \otimes \mathbb{Q} = H_1(X^{\mathrm{abf}}, q_0^{-1}(x_0), \mathbb{Q}) =$ $\mathrm{coker}(\partial_2^{\mathrm{abf}}) \otimes \mathbb{Q} : C_2(X^{\mathrm{abf}}, \mathbb{Q}) \to C_1(X^{\mathrm{abf}}, \mathbb{Q}).$
- \mathbb{Q} -Crowell: $0 \to B_{\mathbb{Q}}(G) \otimes \mathbb{Q} \to A_{\mathbb{Q}}(G) \otimes \mathbb{Q} \to I(G_{\mathsf{abf}}) \otimes \mathbb{Q} \to 0.$

PROPOSITION

Extend $\nu : G_{ab} \twoheadrightarrow G_{abf}$ to a ring map, $\tilde{\nu} : \mathbb{Z}[G_{ab}] \twoheadrightarrow \mathbb{Z}[G_{abf}]$. Then:

- $G' \hookrightarrow G'_{\mathbb{Q}}$ induces a functorial $\tilde{\nu}$ -morphism, $\kappa \colon B(G) \to B_{\mathbb{Q}}(G)$.
- If $\operatorname{Tors}(G_{ab})$ is finite, then $\kappa \otimes \mathbb{Q} \colon B(G) \otimes \mathbb{Q} \to B_{\mathbb{Q}}(G) \otimes \mathbb{Q}$ is surjective.
- If G_{ab} is torsion-free, then κ ⊗ Q: B(G) ⊗ Q → B_Q(G) ⊗ Q is an isomorphism.

THEOREM

Let $I = I(G_{abf}) \otimes \mathbb{Q}$. Then $I^n(B_{\mathbb{Q}}(G) \otimes \mathbb{Q}) = \gamma_{n+2}^{\mathbb{Q}}(G/G_{\mathbb{Q}}'') \otimes \mathbb{Q}$ for all n.

THEOREM (DIMCA–PAPADIMA–HAIN 2014, S. 2021)

Let G be a group with $b_1(G) < \infty$. Then $\kappa \colon B(G) \to B_0(G)$ yields

- An isomorphism gr(κ) ⊗ Q: gr(B(G) ⊗ Q) → gr(B_Q(G) ⊗ Q) of graded modules.
- We may define $\phi_n^{\mathbb{Q}}(G)$ and $\theta_n^{\mathbb{Q}}(G)$ as before.
- By Bass–Lubotzky (or the above theorem for second equality):

$$\phi_n^{\mathbb{Q}}(G) = \phi_n(G)$$
 and $\theta_n^{\mathbb{Q}}(G) = \theta_n(G)$.

► By Q-Massey:

$$\theta_n(G) = \dim_{\mathbb{Q}} \operatorname{gr}_{n-2}(B_{\mathbb{Q}}(G) \otimes \mathbb{Q}).$$

Mod-*p* derived series

• The mod-p derived series of G is defined by $G_p^{(0)} = G$ and

$$G_{p}^{(r)} = \left\langle \left(G_{p}^{(r-1)}\right)^{p}, \left[G_{p}^{(r-1)}, G_{p}^{(r-1)}\right] \right\rangle.$$

[Stallings, Harvey, Cochran, Lackenby]

- Its terms are fully invariant (thus, normal) subgroups.
- $G_{\rho}^{(r-1)}/G_{\rho}^{(r)} \cong H_1(G_{\rho}^{(r-1)}, \mathbb{Z}_{\rho})$. In particular, $G/G_{\rho}' = H_1(G, \mathbb{Z}_{\rho})$ is the maximal elementary *p*-abelian quotient of *G*.
- This is the fastest descending normal (and even subnormal) series for which the successive quotients are Z_p-vector spaces.
- ► If G is finitely generated, then G/G^(r)_p is a finite p-group, with all elements having order dividing p^r.

Mod-p Alexander invariant

- ► *Mod-p Alexander invariant*: $B_p(G) := G'_p/G''_p$, viewed as a $\mathbb{Z}_p[H_1(G, \mathbb{Z}_p)]$ -module via $gG'_p \cdot xG''_p = gxg^{-1}G''_p$ for $g \in G, x \in G'_p$.
- ▶ Let $G = \pi_1(X)$ and let $X^{(p)} \to X$ be the *p*-congruence cover of *X*, classified by epimorphism $\pi_1(X) \xrightarrow{ab} H_1(X, \mathbb{Z}) \xrightarrow{\nu_p} H_1(X, \mathbb{Z}_p)$. Then $\pi_1(X^{(p)}) = G'_p$ and $B_p(G) = H_1(X^{(p)}, \mathbb{Z}_p)$.
- ▶ $G' \hookrightarrow G'_p$ induces a functorial $\tilde{\nu}_p$ -morphism, $\kappa_p \colon B(G) \to B_p(G)$, which coincides with $H_1(X^{ab}, \mathbb{Z}_p) \to H_1(X^{(p)}, \mathbb{Z}_p)$.

EXAMPLE

If *G* is abelian, then $B(G) = B_{\mathbb{Q}}(G) = 0$, yet $B_{p}(G) = G^{p}/G^{p^{2}}$. E.g., $B_{p}(\mathbb{Z}^{n}) = \mathbb{Z}_{p}^{n}$. Also, $B_{p}(\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}) = 0$ yet $B_{p}(\mathbb{Z}_{p^{2}}) = \mathbb{Z}_{p}$.

THEOREM

Let $I = \ker \left(\mathbb{Z}_{\rho}[H_1(G, \mathbb{Z}_{\rho})] \xrightarrow{\varepsilon} \mathbb{Z}_{\rho} \right)$. Then $I^n B_{\rho}(G) = \gamma_{n+2}^{\rho}(G/G'_{\rho}) \ \forall n$.

Ab-exact sequences

- Let $1 \to K \xrightarrow{\iota} G \xrightarrow{\pi} Q \to 1$ be an exact sequence.
- There is then a 5-term exact sequence in homology,

 $H_{2}(G,\mathbb{Z}) \xrightarrow{\pi_{\ast}} H_{2}(Q,\mathbb{Z}) \xrightarrow{\delta} H_{1}(K,\mathbb{Z})_{Q} \xrightarrow{\iota_{\ast}} H_{1}(G,\mathbb{Z}) \xrightarrow{\pi_{\ast}} H_{1}(Q,\mathbb{Z}) \rightarrow 0$

• If *Q* acts trivially on K_{ab} , then $H_1(K, \mathbb{Z})_Q = H_1(K, \mathbb{Z})$.

LEMMA

The following conditions are equivalent.

- The group Q acts trivially on K_{ab} and δ: H₂(Q, Z) → H₁(K, Z) is the zero map.
- The sequence $0 \longrightarrow K_{ab} \xrightarrow{\iota_{ab}} G_{ab} \xrightarrow{\pi_{ab}} Q_{ab} \longrightarrow 0$ is exact.
- A split exact sequence 1 → K → G → Q → 1 is ab-exact iff Q acts trivially on K_{ab}; that is, G = K ⋊ Q is an almost direct product.
- ▶ If $1 \to K \to G \to Q \to 1$ is an ab-exact sequence, then its restriction, $1 \to K' \to G' \to Q' \to 1$ is an exact sequence.

EXAMPLE

- Let G_Γ = ⟨v ∈ V | [v, w] = 1 if {v, w} ∈ E⟩ be the RAAG associated to a finite (simple) graph Γ = (V, E)
- Exact sequence $1 \to N_{\Gamma} \to G_{\Gamma} \xrightarrow{\pi} \mathbb{Z} \to 1$, where $\pi(\nu) = 1, \forall \nu \in V$.
- Bestvina–Brady 1997: N_Γ is finitely generated iff Γ is connected;
 N_Γ is finitely presented iff flag complex Δ_Γ is simply connected.
- Papadima–S. 2007): if Γ is connected, then Z acts trivially on H₁(N_Γ, Z), and so this sequence is ab-exact.

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an ab-exact sequence, and assume Q is abelian. Then:

- $\iota: K \hookrightarrow G$ restricts to an equality, K' = G'.
- ▶ $B(\iota)$ factors through a $\mathbb{Z}[K_{ab}]$ -linear isomorphism $B(K) \xrightarrow{\simeq} B(G)_{\iota}$.
- If G_{ab} is finitely generated, then $\theta_n(K) \leq \theta_n(G)$ for all $n \geq 1$.

Assume now that the sequence is also split-exact. Then:

► The map ι induces isomorphisms of graded Lie algebras, $\operatorname{gr}_{\geq 2}(K) \xrightarrow{\simeq} \operatorname{gr}_{\geq 2}(G)$ and $\operatorname{gr}_{\geq 2}(K/K'') \xrightarrow{\simeq} \operatorname{gr}_{\geq 2}(G/G'')$.

• If $b_1(G) < \infty$, then $\phi_n(K) = \phi_n(G)$ and $\theta_n(K) = \theta_n(G)$ for all $n \ge 2$.

Abf-exact sequences

LEMMA/DEFINITION

A sequence $1 \to K \xrightarrow{\iota} G \xrightarrow{\pi} Q \to 1$ is called abf-exact if one of the following equivalent conditions is satisfied.

- ► The group Q acts trivially on K_{abf} and the composite $H_2(Q, \mathbb{Z}) \xrightarrow{\delta} H_1(K, \mathbb{Z}) \rightarrow H_1(K, \mathbb{Z}) / \text{Tors is zero.}$
- The sequence $0 \longrightarrow K_{abf} \xrightarrow{\iota_{abf}} G_{abf} \xrightarrow{\pi_{abf}} Q_{abf} \longrightarrow 0$ is exact.
- Suppose K_{abf} is finitely generated. Then the extension is abf-exact iff Q acts trivially on H₁(K, Q) and δ ⊗ Q = 0.
- Reverse implication may not hold if K_{abf} not f.g.

LEMMA

Let $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$ be a split exact sequence.

- The sequence is abf-exact iff Q acts trivially on K_{abf}.
- If K_{abf} is finitely generated, then the sequence is abf-exact iff Q acts trivially on H₁(K, ℚ).

ALEX SUCIU

ALGEBRA/TOPOLOGY OF GROUP EXTENSION

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an abf-exact sequence, and assume Q is torsion-free abelian. Then:

- $\iota: K \hookrightarrow G$ restricts to an equality, $K'_0 = G'_0$.
- $B_{\mathbb{Q}}(\iota)$ factors through a $\mathbb{Z}[K_{abf}]$ -isomorphism $B_{\mathbb{Q}}(K) \xrightarrow{\simeq} B_{\mathbb{Q}}(G)_{\iota}$.
- If G_{abf} is finitely generated, then $\theta_n(K) \leq \theta_n(G)$ for all $n \geq 1$.

Assume now that the sequence is also split-exact. Then:

- The map ι induces isomorphisms of graded Lie algebras, $\operatorname{gr}^{\mathbb{Q}}_{\geqslant 2}(K) \xrightarrow{\simeq} \operatorname{gr}^{\mathbb{Q}}_{\geqslant 2}(G)$ and $\operatorname{gr}^{\mathbb{Q}}_{\geqslant 2}(K/K'') \xrightarrow{\simeq} \operatorname{gr}^{\mathbb{Q}}_{\geqslant 2}(G/G'')$.
- If $b_1(G) < \infty$, then $\phi_n(K) = \phi_n(G)$ and $\theta_n(K) = \theta_n(G)$ for all $n \ge 2$.

COROLLARY

Let X be a connected CW-complex with $b_1(X) < \infty$, let $f: X \to X$ be a map inducing the identity on $H_1(X, \mathbb{Q})$, and let T_f be its mapping torus. Then $\phi_n(\pi_1(X)) = \phi_n(\pi_1(T_f))$ and $\theta_n(\pi_1(X)) = \theta_n(\pi_1(T_f))$ for all $n \ge 2$.

REFERENCES

- Alexander I. Suciu, *Lower central series and split extensions*, preprint May 2021, arXiv:2105.14129.
- Alexander I. Suciu, Alexander invariants and cohomology jump loci in group extensions, preprint July 2021, arXiv:2107.05148.