Algebra and topology of group extensions

Part I

Alex Suciu

Northeastern University

Topology Seminar

Institute of Mathematics of the Romanian Academy

June 25, 2021

ALEX SUCIU

ALGEBRA/TOPOLOGY OF GROUP EXTENSIONS

1 *N*-series and graded Lie algebras

N-series

- Lower central series
- Rational lower central series
- Mod-p lower central series

2 THE LOWER CENTRAL SERIES OF A SPLIT EXTENSION

- Split extensions of groups
- The lower central series of a split extension
- Almost direct products
- The rational lower central series of a split extension
- Rational almost direct products
- The mod-p lower central series of a split extension
- Mod-p almost direct products

N-series

- Following Lazard (1954), we define an *N*-series for a group *G* to be a descending filtration G = K₁ ≥ K₂ ≥ ··· ≥ K_n ≥ ··· such that [K_m, K_n] ⊆ K_{m+n} for all m, n ≥ 1.
- ▶ In particular, $K = \{K_n\}_{n \ge 1}$ is a *central series*, i.e., $[G, K_n] \subseteq K_{n+1}$.
- Thus, it is also a *normal series*, that is, $K_n \triangleleft G$ for all $n \ge 1$.
- Consequently, each quotient K_n/K_{n+1} lies in the center of G/K_{n+1} , and thus is an abelian group.
- If all those quotients are torsion-free, K is called an N_0 -series.
- Associated graded Lie algebra:

$$\operatorname{gr}^{K}(G) = \bigoplus_{n \ge 1} K_n / K_{n+1},$$

with addition induced by $: G \times G \to G$, and Lie bracket $[,]: \operatorname{gr}_m \times \operatorname{gr}_n \to \operatorname{gr}_{m+n}$ induced by $[x, y] := xyx^{-1}y^{-1}$.

ALEX SUCIU

• The *isolator* in G of a subset $S \subseteq G$ is the subset

 $\sqrt{S} := \sqrt[G]{S} = \{g \in G \mid g^m \in S \text{ for some } m \in \mathbb{N}\}$

- ▶ Clearly, $S \subseteq \sqrt{S}$ and $\sqrt{\sqrt{S}} = \sqrt{S}$. Also, if $\varphi : G \to H$ is a homomorphism, and $\varphi(S) \subseteq T$, then $\varphi(\sqrt[G]{S}) \subseteq \sqrt[H]{T}$.
- The isolator of a subgroup of *G* need not be a subgroup; for instance, ^{*G*}√{1} = Tors(*G*), which is not a subgroup in general (although it is if *G* is nilpotent).
- ► If $N \lhd G$ is a normal subgroup, then $\sqrt[G]{N} = \pi^{-1}(\text{Tors}(G/N))$, where $\pi : G \twoheadrightarrow G/N$, and so $\sqrt[G]{N}/N \cong \text{Tors}(G/N)$.

PROPOSITION (MASSUYEAU 2007)

Suppose $K = \{K_n\}_{n \ge 1}$ is an N-series for G. Then $\sqrt{K} := \{\sqrt{K_n}\}_{n \ge 1}$ is an N_0 -series for G.

Lower central series

- ▶ The *lower central series*, $\gamma(G) = \{\gamma_n(G)\}_{n \ge 1}$ is defined inductively by $\gamma_1(G) = G$, $\gamma_2(G) = G'$, and $\gamma_{n+1}(G) = [G, \gamma_n(G)]$.
- It is an N-series (P. Hall, 1934).
- ▶ If *K* is a descending central series for *G*, then $\gamma_n(G) \leq K_n$ for all *n*.
- ▶ The γ_n 's are fully invariant subgroups, i.e., $\varphi : G \to H$ morphism $\Rightarrow \varphi(\gamma_n(G)) \subseteq \gamma_n(H)$.
- $\operatorname{gr}(G) = \bigoplus_{n \ge 1} \gamma_n(G) / \gamma_{n+1}(G)$ is generated by $\operatorname{gr}_1(G) = G_{\operatorname{ab}}$.
- ▶ For any *N*-series *K*, there is a canonical map $\operatorname{gr}(G) \to \operatorname{gr}^{K}(G)$.
- $\Gamma_n := G/\gamma_n(G)$ is the maximal (n-1)-step nilpotent quotient of G.
- $G/\gamma_2(F) = G_{ab}$, while $G/\gamma_3(G) \leftrightarrow H^{\leq 2}(G, \mathbb{Z})$.
- G is residually nilpotent if and only if γ_ω(G) := ∩_{n≥1} γ_n(G) is the trivial subgroup.

ALEX SUCIU

ALGEBRA/TOPOLOGY OF GROUP EXTENSIONS

The rational lower central series

The rational lower central series, γ^Q(G), is defined by γ^Q₁(G) = G and γ^Q_{n+1}(G) = √[G, γ^Q_n(G)]. (Stallings, 1965)

LEMMA

 $\gamma_n^{\mathbb{Q}}(G) = \sqrt{\gamma_n(G)}$, for all $n \ge 1$.

- Hence, $\gamma^{\mathbb{Q}}(G)$ is an N_0 -series (since $\gamma(G)$ is an N-series).
- G/γ^Q_n(G) = Γ_n/Tors(Γ_n) is the maximal torsion-free (n − 1)-step nilpotent quotient of G; in particular, G/γ^Q₂G = G_{abf}.
- Associated graded Lie algebra: $\operatorname{gr}^{\mathbb{Q}}(G) = \bigoplus_{n \ge 1} \gamma_n^{\mathbb{Q}} G / \gamma_{n+1}^{\mathbb{Q}} G$.
- *G* is residually torsion-free nilpotent (RTFN) iff $\gamma_{\omega}^{\mathbb{Q}}(G) = \{1\}$.

PROPOSITION (BASS & LUBOTZKY, 1994)

- $gr(G) \rightarrow gr^{Q}(G)$ has torsion kernel and cokernel in each degree.
- $\operatorname{gr}(G) \otimes \mathbb{Q} \to \operatorname{gr}^{\mathbb{Q}}(G) \otimes \mathbb{Q}$ is an isomorphism.

Mod-p lower central series

- ► Fix a prime *p*. The (Stallings) *mod-p lower central series*, $\gamma^{p}(G)$, is defined by $\gamma_{1}^{p}(G) = G$ and $\gamma_{n+1}^{p}(G) = \langle (\gamma_{n}^{p}(G))^{p}, [G, \gamma_{n}^{p}(G)] \rangle$.
- $(\gamma_n^p(G))^p \subseteq \gamma_{n+1}^p(G)$; thus, $\gamma^p(G)$ is a *p*-torsion series.
- $\gamma_2^p(G) = \langle G^p, G' \rangle$, and so $G/\gamma_2^p(G) = G_{ab} \otimes \mathbb{Z}_p = H_1(G, \mathbb{Z}_p)$.
- (Paris 2009) $\gamma^{p}(G)$ is an *N*-series. Moreover, *G* is residually *p* iff $\gamma^{p}_{\omega}(G) = \{1\}.$
- γ^p(G) is the fastest descending central series among all *p*-torsion series for G.
- The quotients γ^p_n(G)/γ^p_{n+1}(G) are elementary abelian *p*-groups. Thus, gr^ρ(G) is a Lie algebra over ℤ_p.
- ▶ The map $G \to G$, $x \mapsto x^p$ defines maps $\operatorname{gr}_n^p(G) \to \operatorname{gr}_{n+1}^p(G)$. The \mathbb{Z}_p -Lie algebra $\operatorname{gr}^p(G)$ is generated—through Lie brackets and these power operations—by $\operatorname{gr}_1^p(G) = H_1(G, \mathbb{Z}_p)$.

Split extensions of groups

Consider a split exact sequence

$$1 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 1.$$
 (*)

- The splitting homomorphism σ satisfies β ∘ σ = id_C; it defines an action of C on A via the homomorphism φ: C → Aut(A) given by $\alpha(\varphi(c)(a)) = \sigma(c)\alpha(a)\sigma(c)^{-1}.$
- ► This realizes *B* as a split extension, $B = A \rtimes_{\varphi} C$; that is, the set $A \times C$ with operation $(a_1, c_1) \cdot (a_2, c_2) = (a_1 \varphi(c_1)(a_2), c_1 c_2)$.
- Conversely, every split extension $B = A \rtimes_{\varphi} C$ gives rise to (*).
- We identify C with its image under σ, and thus view it as C ≤ B, and identify A with its image under α and view it as A ⊲ B.
- The action of C on A is then the restriction of the conjugation action in B, that is, φ(c)(a) = cac⁻¹. Also, every b ∈ B can be written uniquely as b = ac, for some a ∈ A, c ∈ C.

ALEX SUCIU

The lower central series of a split extension

- Goal: Describe the lower central series γ(B) = {γ_n(B)}_{n≥1} of a split extension, B = A ⋊_φ C, in terms of γ(A), γ(C), and φ.
- ► Following Guaschi and Pereiro (2020), we define a sequence $L = \{L_n\}_{n \ge 1}$ of subgroups of *A* by setting $L_1 = A$ and letting

 $L_{n+1} = \langle [A, L_n], [A, \gamma_n(C)], [L_n, C] \rangle.$

 Guaschi–Pereiro showed that L is a descending normal series.
We strengthen their result with the next lemma, which we then use to give a quicker proof of the next theorem.

LEMMA

L is an N-series for A

THEOREM (GUASCHI–PEREIRO 2020, S. 2021)

- $\varphi \colon C \to \operatorname{Aut}(A)$ restricts to $\varphi \colon \gamma_n(C) \to \operatorname{Aut}(L_n)$.
- $\gamma_n(B) = L_n \rtimes_{\varphi} \gamma_n(C).$

THEOREM

Let $1 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 1$ be a split exact sequence of groups, with monodromy $\varphi \colon C \to \operatorname{Aut}(A)$. There is then an induced split exact sequence of graded Lie algebras,

$$0 \longrightarrow \operatorname{gr}^{L}(A) \xrightarrow{\operatorname{gr}^{L}(\alpha)} \operatorname{gr}(B) \xrightarrow{\operatorname{gr}(\beta)} \operatorname{gr}(C) \longrightarrow 0.$$

Consequently, $\operatorname{gr}(B) \cong \operatorname{gr}^{L}(A) \rtimes_{\bar{\varphi}} \operatorname{gr}(C)$, where the monodromy $\bar{\varphi} \colon \operatorname{gr}(C) \to \operatorname{Der}(\operatorname{gr}^{L}(A))$ is the map of Lie algebras induced by φ .

EXAMPLE

- Let $K = \langle a, t \mid tat^{-1} = a^{-1} \rangle$ be the Klein bottle group.
- $K = A \rtimes_{\varphi} C$, where $C = \langle t \rangle$ acts by inversion on $A = \langle a \rangle$.
- $L_n = \langle a^{2^{n-1}} \rangle$ and $\operatorname{gr}_n^L(A) = \mathbb{Z}_2$ for $n \ge 1$.
- $\gamma_n(A) = \{1\}$ and $gr_n(A) = 0$ for n > 1.
- By the theorem, $\gamma_n(K) = L_n$ for n > 1, and thus $\gamma_{\omega}(K) = \{1\}$.

Almost direct products

- A split extension B = A ⋊_φ C is called an *almost direct product* if C acts trivially on the abelianization A_{ab} = H₁(A, Z).
- That is, the monodromy factors through a map φ: C → T(A), where T(A) := ker (Aut(A) → Aut(A_{ab})) is the Torelli group of A.
- Equivalently, $\varphi(c)(a) \cdot a^{-1} \in A'$, for all $c \in C$ and $a \in A$.
- ▶ If we view *C* as a subgroup of *G* via the splitting $\sigma : C \to B$, so that $\varphi(c)(a) \cdot a^{-1} = [c, a]$, the condition most succinctly reads as $[A, C] \subseteq \gamma_2(A)$.
- ► Ex: $P_n = F_{n-1} \rtimes \varphi P_{n-1}$, where $\varphi : P_{n-1} \hookrightarrow \mathcal{T}(F_{n-1}) \subset \operatorname{Aut}(F_{n-1})$ is the Artin embedding of the pure braid group.

THEOREM

If $B = A \rtimes_{\varphi} C$ is an almost direct product, then $L = \gamma(A)$.

As a corollary, we recover well-known results of Falk and Randell.

ALEX SUCIU

ALGEBRA/TOPOLOGY OF GROUP EXTENSION

COROLLARY (FALK-RANDELL 1985)

Let $B = A \rtimes_{\varphi} C$ be an almost direct product. Then

- $\gamma_n(B) = \gamma_n(A) \rtimes_{\varphi} \gamma_n(C)$ for all $n \ge 1$.
- ► The corresponding split exact sequence restricts to split exact sequences 1 $\rightarrow \gamma_n(A) \xrightarrow{\alpha} \gamma_n(B) \xrightarrow{\beta} \gamma_n(C) \rightarrow 1$ for all *n*.

COROLLARY (FALK-RANDELL 1988)

Suppose $B = A \rtimes_{\varphi} C$ is an almost direct product of two residually nilpotent groups. Then B is also residually nilpotent.

COROLLARY (FALK-RANDELL 1985)

If $B = A \rtimes_{\varphi} C$ is an almost direct product, then $\operatorname{gr}(B) \cong \operatorname{gr}(A) \rtimes_{\bar{\varphi}} \operatorname{gr}(C)$, where $\bar{\varphi} \colon \operatorname{gr}(C) \to \operatorname{Der}(\operatorname{gr}(A))$ is the map of Lie algebras induced by φ .

The rational lower central series of a split extension

- To describe $\gamma^{\mathbb{Q}}(B) = \sqrt{\gamma(B)}$ we use the sequence $\sqrt{L} = \{\sqrt{L_n}\}_{n \ge 1}$.
- Recall we showed that L is an N-series for A.
- Thus, \sqrt{L} is an N_0 -series for A.

THEOREM

Let $B = A \rtimes_{\varphi} C$. Then:

- $\varphi \colon C \to \operatorname{Aut}(A)$ restricts to $\varphi \colon \sqrt[C]{\gamma_n(C)} \to \operatorname{Aut}(\sqrt[A]{L_n}).$
- $\sqrt[B]{\gamma_n(B)} = \sqrt[A]{L_n} \rtimes_{\varphi} \sqrt[C]{\gamma_n(C)}.$
- ► $\operatorname{gr}^{\mathbb{Q}}(B) \cong \operatorname{gr}^{\sqrt{L}}(A) \rtimes_{\bar{\varphi}} \operatorname{gr}^{\mathbb{Q}}(C).$

Rational almost direct products

- ► $B = A \rtimes_{\varphi} C$ is called a *rational almost direct product* if C acts trivially on the torsion-free abelianization $A_{abf} = H_1(A, \mathbb{Z})/\text{Tors.}$
- Equivalently, $\varphi(c)(a) \cdot a^{-1} \in \sqrt{A'}$, for all $c \in C$ and $a \in A$, or, $[A, C] \subseteq \sqrt{\gamma_2(A)}$.
- If *C* acts trivially on A_{abf}, then it acts trivially on A_{abf} ⊗ Q. The converse holds if A_{abf} is finitely generated, but not in general.

THEOREM

Let $B = A \rtimes_{\varphi} C$ a rational almost direct product. Then

- $\sqrt[A]{L_n} = \sqrt[A]{\gamma_n(A)}$ for all n.
- $\sqrt[B]{\gamma_n(B)} = \sqrt[A]{\gamma_n(A)} \rtimes_{\varphi} \sqrt[C]{\gamma_n(C)}.$
- $\bullet \ \operatorname{gr}^{\mathbb{Q}}(B) \cong \operatorname{gr}^{\mathbb{Q}}(A) \rtimes_{\bar{\varphi}} \operatorname{gr}^{\mathbb{Q}}(C).$

COROLLARY

Let $B = A \rtimes C$ be a split extension of RTFN groups. If C acts trivially on A_{abf} , then B is also RTFN.

ALEX SUCIU

ALGEBRA/TOPOLOGY OF GROUP EXTENSION

The mod-*p* lower central series of a split extension

Let B = A ⋊_φ C. Define a sequence of subgroups L^p = {L^p_n}_{n≥1} by setting L^p₁ = A and letting

$$L_{n+1}^{p} = \left\langle \left(L_{n}^{p} \right)^{p}, \left[A, L_{n}^{p} \right], \left[A, \gamma_{n}^{p}(C) \right], \left[L_{n}^{p}, C \right] \right\rangle.$$

THEOREM

- L^p is a p-torsion N-series for A.
- $\varphi \colon C \to \operatorname{Aut}(A)$ restricts to $\varphi \colon \gamma_n^p(C) \to \operatorname{Aut}(L_n^p)$.
- $\gamma_n^p(B) = L_n^p \rtimes_{\varphi} \gamma_n^p(C).$
- $\operatorname{gr}^{\rho}(B) \cong \operatorname{gr}^{L^{\rho}}(A) \rtimes_{\bar{\varphi}} \operatorname{gr}^{\rho}(C)$

Mod-p almost direct products

- ► $B = A \rtimes_{\varphi} C$ is called a *mod-p almost direct product* if C acts trivially on $A_{ab} \otimes \mathbb{Z}_p = H_1(A, \mathbb{Z}_p)$.
- Equivalently, $[\mathbf{A}, \mathbf{C}] \subseteq \gamma_2^{\mathbf{p}}(\mathbf{A})$.

THEOREM

If $B = A \rtimes_{\varphi} C$ is a mod-p almost direct product, then $L^{p} = \gamma^{p}(A)$.

Combining the previous two theorems recovers the following result.

COROLLARY (BELLINGERI–GERVAIS, 2016)

Let $B = A \rtimes_{\omega} C$ be a mod-p almost direct product. Then,

- $\gamma_n^p(B) = \gamma_n^p(A) \rtimes_{\varphi} \gamma_n^p(C)$, for all $n \ge 1$.
- If A and C are residually p-finite, then B is also residually p-finite.

COROLLARY

 $\operatorname{gr}^{\rho}(B) \cong \operatorname{gr}^{\rho}(A) \rtimes_{\bar{\varphi}} \operatorname{gr}^{\rho}(C).$

REFERENCES

- Alexander I. Suciu, *Lower central series and split extensions*, preprint May 2021, arXiv:2105.14129.
- Alexander I. Suciu, *Alexander invariants and cohomology jump loci in group extensions*, preprint June 2021.