REPORT OF THE MISSION. BUCHAREST, 04/24/2012-05/12/2012.

The first days have been dedicated to the study of the former literature about the problem. In particular the result of Keel and Mckernan [2, Lemma 3.5] that states that for any lc-trivial fibration $f: (X, B) \to Z$ with general fibre a rational curve and with $B_Z = 0$ the divisor rM_Z is base-point-free.

We concentrate on the case where the base Z of the fibration is a curve. We can assume X smooth. By the Noether-Enriquez theorem, a smooth surface X such that there exists $f: X \to Z$ whose general fibre is a rational curve is birationally equivalent over Z to the product $\mathbb{P}^1 \times Z$. Then there exists a commutative diagram

By [1, Theorem 2.6] the moduli part of f and of π_2 are the same, then we can assume that X is a product and consider $f: (\mathbb{P}^1 \times Z, B) \to Z$.

In this case we have

$$\operatorname{Pic}(\mathbb{P}^1 \times Z) \cong f^*\operatorname{Pic}(Z) \oplus \mathbb{Z}[H]$$

where H is a fibre of the projection on $\pi: \mathbb{P}^1 \times Z \to \mathbb{P}^1$. We can also assume that B is a horizontal divisor. By the structure of the Picard group of $\mathbb{P}^1 \times Z$ there exists a divisor δ on Z such that $B \sim 2rH + f^*\delta$. Since B is horizontal, δ is base-point-free on Z. We have

$$r(K_{\mathbb{P}^{1}\times Z} + B) = r\pi^{*}K_{\mathbb{P}^{1}} + rf^{*}K_{Z} + 2rH + f^{*}\delta$$

= $rf^{*}(K_{Z} + \delta).$

Thus $rB_Z + rM_Z \sim \delta$. In particular we obtain the following generalization of Keel-McKernan's result.

Proposition 0.1. Let $f: (X, B) \to Z$ be a lc-trivial fibration whose general fibre is a rational curve. Assume that $B_Z = 0$. Then rM_Z is base-point-free.

We notice that we can see rB as a 1-dimensional family of divisors of degree 2r on \mathbb{P}^1 . Thus we have a natural map

$$Z \to |\mathcal{O}_{\mathbb{P}^1}(1)| \cong \mathbb{P}^{2r}$$

Date: May 31, 2012.

and a commutative diagram

The morphism F is again an lc-trivial fibration and

$$\mathcal{D} = \left\{ ([z:w], [x_0:\ldots:x_{2r}]) \left| \sum_{i=0}^{2r} z^i w^{2r-i} x_{2r-i} \right\} \right\}.$$

Unfortunately the moduli b-divisor does not descend to \mathbb{P}^{2r} . Let $\mu: \hat{\mathbb{P}}^{2r} \to \mathbb{P}^{2r}$ be a birational model such that the moduli b-divisor descends to it, that exists by [1, Theorem 2.7], and let \mathcal{B} be the discriminant. Let \mathcal{I}_m be the ideal sheaf $\mu_* \mathcal{O}_{\hat{\mathbb{P}}^{2r}}(-m\mathcal{B})$ defined for all m that clears the denominators of \mathcal{B} .

The problem becomes now the following: find an integer m(r) and a linear subsystem $\mathcal{V} \subseteq |m(r)H|$, where H is a hyperplane section of \mathbb{P}^{2r} , such that $Bs\mathcal{V} = \mathcal{I}_{m(r)}$. If $\mathcal{W} \in \mathcal{V}$, then

$$\mu^* \mathcal{W} = \mathcal{W} + m(r) \mathcal{B}.$$

To conclude we should prove that $m(r)M_Z \sim \nu^* \tilde{\mathcal{W}}$ where $\nu \colon Z \to \hat{\mathbb{P}}^{2r}$ is the induced morphism.

A problem that should be related to the sharp bound for the base-point-freeness of M_Z is the study of the automorphisms of pairs $(\mathbb{P}^1, \sum b_i p_i)$ with $\sum b_i p_i = 2$ and $b_i \in \frac{1}{r}\mathbb{Z}$. These are automorphisms of \mathbb{P}^1 that permute points with the same coefficient. From the general theory about subgroups of PSL(2) (see [3, Theorem 6.17]) follows this proposition.

Proposition 0.2. Let $(\mathbb{P}^1, \sum b_i p_i)$ be a pair with $\sum b_i p_i = 2$ and $b_i \in \frac{1}{r}\mathbb{Z}$. Then there are two cases

- $r = 1 \Rightarrow \operatorname{Aut}(\mathbb{P}^1, p_1 + p_2) \cong \mathbb{C}^* \times \mathbb{Z}/2\mathbb{Z};$
- $r \ge 2 \Rightarrow \operatorname{Aut}(\mathbb{P}^1, \sum b_i p_i) \subseteq \operatorname{PGL}(2)$ is a finite subgroup belonging to the following set $\{\mathbb{Z}/k\mathbb{Z}\}_{k\le 2r-1} \cup \{D_{2k}\}_{k\le 2r} \cup \{\mathcal{A}_4, \mathcal{S}_4, \mathcal{A}_5\}$

where D_{2k} stands for the dihedral group, the group of automorphisms of a regular polyhedron with k vertices.

References

- [1] F. Ambro, Shokurov's boundary property, J. Differential Geometry 67, pp 229-255 (2004).
- [2] S. Keel, K. Matsuki, J. McKernan, Log abundance theorem for threefolds *Duke Math. J.* 75 (1994), no. 1, 99-119.
- [3] M. Suzuki, Group theory Springer