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This is an expository article on the singularities of nilpotent orbit closures in
simple Lie algebras over the complex numbers. It is slanted towards aspects
that are relevant for representation theory, including Ma�ei's theorem relating
Slodowy slices to Nakajima quiver varieties in type A. There is one new observa-
tion: the results of Juteau and Mautner, combined with Ma�ei's theorem, give
a geometric proof of a result on decomposition numbers of Schur algebras due
to Fang, Henke and Koenig.
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INTRODUCTION

In September 2013, I had the privilege of giving a series of three lec-
tures in the Japanese-Australian Workshop on Real and Complex Singularities
(JARCS V), held at the University of Sydney. Why would someone who calls
himself a representation theorist be speaking at a conference on singularities?
One aim of the lectures was to answer that question, by indicating the impor-
tant role that the study of singular varieties has in geometric representation
theory. Another aim was simply to entertain an audience of singularity theo-
rists with some beautiful examples of singularities and their deformations and
resolutions: namely, those obtained by considering the closures of nilpotent
orbits in simple Lie algebras.

This expository article is based on the slides from those lectures. I have
added a few more details and references, while still assuming some familiarity
with complex algebraic geometry. Experts in geometric representation theory
will be able to think of many more results that ought to have been included to
make a comprehensive survey. Indeed, one could imagine a sequel to Colling-
wood and McGovern's textbook Nilpotent orbits in semisimple Lie algebras [4],
entitled Singularities of closures of nilpotent orbits in semisimple Lie algebras,
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which would be at least as long as the original. Two highly relevant topics
which time and space constraints made it impossible to treat properly are the
structure theory and classi�cation of simple Lie algebras (for which see [12])
and the theory of symplectic singularities (see [7, 10, 17]).

The goal that shaped my choice of topics and examples was Ma�ei's 2005
theorem ([25], Theorem 8) relating the resolutions of Slodowy slices in nilpotent
orbit closures of type A to Nakajima quiver varieties (stated as Theorem 9.1
below). Although this theorem is purely geometric, its importance really stems
from its representation-theoretic context. Part of the motivation for Nakajima
in conjecturing the isomorphism that Ma�ei proved was that both classes of
varieties had been used in geometric constructions of the same representations,
namely �nite-dimensional representations of the Lie algebras slm. I do not
tell that story in this article. Instead, in Section 9, I explain an application
of Ma�ei's theorem to modular representation theory: by results of Juteau
and Mautner (Theorem 4.4 below), the decomposition numbers of symmetric
groups and Schur algebras depend only on the singularities of the corresponding
Slodowy slices, and one can use this to give a geometric proof of a result of
Fang�Henke�Koenig [6, Corollary 7.1].

1. ADJOINT ORBITS AND THE ADJOINT QUOTIENT

Let Matn be the vector space of n×nmatrices over C, and letGLn ⊂ Matn
be the group of invertible n× n matrices.

De�ne a Lie algebra to be a vector subspace g of Matn that is closed under
the commutator bracket [X,Y ] := XY − Y X. In other words, g must satisfy

X,Y ∈ g =⇒ [X,Y ] ∈ g.

To each such Lie algebra g there corresponds a matrix group G, which is
de�ned to be the subgroup of GLn generated by all exp(X) for X ∈ g. Here
exp denotes the matrix exponential, de�ned by the usual absolutely convergent
series

exp(X) = I +X +
1

2
X2 +

1

6
X3 + · · · ,

where I denotes the n × n identity matrix. The matrix exp(X) is always
invertible because exp(X) exp(−X) = I.

One can easily show the following identity for any X,Y ∈ Matn:

exp(X)Y exp(−X) = Y + [X,Y ] +
1

2
[X, [X,Y ]] +

1

6
[X, [X, [X,Y ]]] + · · · .

It follows that

g ∈ G, Y ∈ g =⇒ gY g−1 ∈ g.
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That is, the group G acts on g by conjugation: we write g · Y := gY g−1

for short. This is called the adjoint action of G on g, and its orbits are the
adjoint orbits.

We assume henceforth that g is a simple Lie algebra. This means that
dim g > 1 and g has no nontrivial subspace S such that

X ∈ g, Y ∈ S =⇒ [X,Y ] ∈ S.

A consequence of this assumption (via a theorem of Cartan) is that the
trace form (X,Y ) 7→ tr(XY ) is nondegenerate on g. We can use this form to
identify the space g∗ of linear functions on g with g itself, in a G-equivariant
way. The algebra C[g] of polynomial functions on g has a unique Poisson bracket
extending the commutator bracket on g; thus g is a Poisson variety and the
adjoint action preserves this structure.

Example 1.1. The primary example of a simple Lie algebra is

sln := {X ∈ Matn | tr(X) = 0}, with corresponding group

SLn := {g ∈ GLn | det(g) = 1},

where n ≥ 2. The adjoint orbits in sln are exactly the familiar similarity classes.
(Ordinarily one would de�ne two matrices X,Y to be similar if there is some
g ∈ GLn such that Y = gXg−1. But since any g ∈ GLn can be written as a
product g′g′′ where g′ ∈ SLn and g′′ is a scalar matrix, it comes to the same
thing if one requires g ∈ SLn.)

We want to take a quotient of g by the adjoint action of G. In the setting
of algebraic geometry, this means that we need to consider the algebra C[g]G

of G-invariant polynomial functions on g. By de�nition, a function on g is G-
invariant if and only if it is constant on each adjoint orbit. The classic result
about these functions is:

Theorem 1.2 (Chevalley). The algebra C[g]G is freely generated by some
homogeneous polynomials χ1(X), χ2(X), · · · , χ`(X). So as an algebra it is iso-
morphic to C[t1, t2, · · · , t`].

The number of generators of C[g]G, denoted `, is called the rank of g.

Example 1.3. Let g = sln. Since the characteristic polynomial of a matrix
X is a similarity invariant, so is each of the coe�cients of the characteristic
polynomial. For matrices in sln, one of these coe�cients, namely the trace, is
zero by de�nition. The other n−1 coe�cients provide SLn-invariant polynomial
functions: for 1 ≤ i ≤ n− 1, we set

χi(X) := (−1)i+1 × coe�cient of tn−i−1 in det(tI −X).
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The sign here is chosen so that χi(X) equals the (i+1)th elementary sym-
metric polynomial in the eigenvalues of X. Note that χi(X) is a homogeneous
polynomial function of X of degree i+ 1. It turns out that the functions χi(X)
freely generate C[sln]SLn , as per Theorem 1.2. So sln has rank n− 1.

This is a convenient point at which to mention, for later reference, that
there is a complete classi�cation of simple Lie algebras (see [12] for details).
The isomorphism classes are labelled by symbols of the form X` where X is one
of the `Lie types' in the list A,B,C,D,E,F,G and ` denotes the rank, which
can take the following possible values:

A`: ` can be any positive integer. The simple Lie algebra of type A` is sl`+1

(more correctly, sl`+1 is a representative of the isomorphism class of simple
Lie algebras of type A`).

B`: ` ≥ 2. The simple Lie algebra of type B` is the special orthogonal Lie
algebra so2`+1, consisting of the skew-symmetric matrices in Mat2`+1.

C`: ` ≥ 3. The simple Lie algebra of type C` is the symplectic Lie algebra
sp2`, whose de�nition we will not need.

D`: ` ≥ 4. The simple Lie algebra of type D` is so2`.

E`: ` ∈ {6, 7, 8}.
F`: ` = 4 only.

G`: ` = 2 only.

We will revisit this classi�cation from a di�erent viewpoint in Section 5.
The adjoint quotient map is the map obtained by combining all the gen-

erating G-invariant polynomial functions on g:

χ : g → C` : X 7→ (χ1(X), · · · , χ`(X)).

One can then consider the �bres of this map, namely the a�ne algebraic
varieties

χ−1(u) = {X ∈ g |χ1(X) = u1, · · · , χ`(X) = u`}

for u = (u1, · · · , u`) ∈ C`. By de�nition, each such �bre is stable under the
adjoint action, and hence is a union of some adjoint orbits; possibly more than
one, because di�erent orbits cannot necessarily be separated using G-invariant
polynomial functions.

These varieties have very good geometric properties.

Theorem 1.4 (Kostant [18]). For any u ∈ C`, the �bre χ−1(u):

• consists of �nitely many adjoint orbits � for generic u, only one;

• contains a unique dense orbit, and is hence irreducible;

• has codimension ` in g, and is hence a complete intersection;

• is nonsingular in codimension 1, and is hence normal.
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Example 1.5. When g = sln, χ
−1(u) consists of matrices with a speci�ed

characteristic polynomial, or equivalently a speci�ed multiset of eigenvalues.
The di�erent orbits in χ−1(u) come from the di�erent possible sizes of Jordan
blocks; the dense orbit consists of the regular matrices with the speci�ed char-
acteristic polynomial, i.e. those with a single Jordan block for each eigenvalue.

The nonsingularity in codimension 1 of Theorem 1.4 follows from the
result (obtained independently by Borel, Kirillov and Kostant, see [18, Propo-
sition 15]) that every adjoint orbit has even dimension. This in turn follows
from an easy calculation showing that the closure of any adjoint orbit is a Pois-
son subvariety of g, and the induced skew-symmetric form on the cotangent
bundle of the orbit is nondegenerate.

2. NILPOTENT ORBITS AND THEIR CLOSURES

We now come to the main object of study. The nilpotent cone N ⊂ g
is one of the �bres of the adjoint quotient, namely N := χ−1(0). Since it is
de�ned by the vanishing of some homogeneous polynomials, N is stable under
scalar multiplication (this is the sense in which it is a cone). By Theorem 1.4,
N is the union of �nitely many adjoint orbits, which are called the nilpotent
orbits of g. It follows immediately from this �niteness that each nilpotent orbit
is stable under nonzero scalar multiplication.

If O is a nilpotent orbit, then its closure O is stable under the adjoint
action and contained in N , so it is the union of O and some other nilpotent
orbits O′ which must have smaller dimension than O. This gives rise to a
partial order ≤ on the nilpotent orbits, the closure order, where O′ ≤ O means
that O′ ⊆ O. There is always a unique minimum orbit for this partial order,
namely the orbit {0} consisting solely of 0; by Theorem 1.4, there is also always
a unique maximum orbit for this partial order, namely the regular orbit Oreg

which is dense in N .

Example 2.1. When g = sln, N consists of all n × n matrices that are
nilpotent in the sense that their characteristic polynomial is the same as that of
the zero matrix; or equivalently, that their only eigenvalue is 0; or equivalently,
that some power of them equals the zero matrix. In this case the splitting of
N into nilpotent orbits is determined purely by the di�erent sizes of Jordan
blocks a nilpotent matrix can have. The order of the blocks being immaterial,
it is conventional to list the sizes in decreasing order. Thus, the set of nilpotent
orbits is in bijection with the set of partitions of n, where a partition λ of n
means a weakly decreasing sequence (λ1, λ2, · · · ) of nonnegative integers adding
up to n. (It is notationally convenient to make the sequence in�nite, with all
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terms being zero after a certain point; but in writing speci�c partitions we omit
the zeroes.) We write Oλ for the nilpotent orbit corresponding to the partition
λ. In this notation, {0} = O(1,1,··· ,1) and Oreg = O(n).

Example 2.2. As a sub-case of the previous example, take g = sl2. Then
the nilpotent cone is a singular quadric hypersurface:

N =

{[
a b
c −a

] ∣∣∣∣ a, b, c ∈ C, a2 + bc = 0

}
.

In this case, {0} and Oreg are the only two orbits (i.e. Oreg = N \ {0}).

Example 2.3. As another sub-case of Example 2.1, take g = sl3. There are
three partitions of 3: (1, 1, 1), (2, 1) and (3). Hence, we have three nilpotent
orbits in sl3, and the closure order is such that

{0} < O(2,1) < Oreg.

Note that

O(2,1) = {X ∈ sl3 | rank(X) = 1}, so
O(2,1) = {X ∈ sl3 | rank(X) ≤ 1}

= {X ∈ sl3 | every 2× 2 minor of X is 0}.

Here, we have used the fact that a rank-1 matrix with trace 0 is automatically
nilpotent. Thus, the closed subvariety O(2,1) of sl3 is de�ned by the vanishing of
nine degree-2 polynomials, and none of these de�ning equations is redundant.
Since the codimension of O(2,1) in sl3 is easily seen to be 4, we conclude that

O(2,1) does not share with N the property of being a complete intersection. (In

fact, O is never a complete intersection unless O = {0} or O = Oreg; see [1, 31].)

We write O′ ≺ O to mean that O covers O′ in the closure order, in the
sense that O′ < O and there is no orbit O′′ such that O′ < O′′ < O. In this
case one says that O′ is a minimal degeneration of O.

It is a fact that there is always a unique orbit Omin such that {0} ≺ Omin,
the minimal orbit (short for `minimal nonzero orbit'). There is also always a
unique orbit Osubreg such that Osubreg ≺ Oreg, the subregular orbit. See ([4],
Chapter 4) for the proofs.

In Example 2.1 we saw a combinatorial parametrization of the nilpotent
orbits for sln. We can express the closure order explicitly using these parame-
ters.

Theorem 2.4 (Gerstenhaber [9]). The closure order on nilpotent orbits
for sln is given by:
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Oµ ≤ Oλ ⇐⇒

µ1 ≤ λ1,
µ1 + µ2 ≤ λ1 + λ2,

µ1 + µ2 + µ3 ≤ λ1 + λ2 + λ3,
...

...
...

...
...

The partial order on partitions arising in Theorem 2.4 is called the dom-
inance order, written µ E λ.

To describe the minimal degenerations in this case, it is helpful to use
the graphical representation of a partition λ = (λ1, λ2, · · · ) as a left-justi�ed
diagram of boxes, with λi boxes in the ith row from the top. A corner box of
such a diagram means a box which has no box either below or to the right of
it.

Proposition 2.5 ([20], Section 1). The minimal degenerations of nilp-
otent orbits for sln are described as follows:

Oµ ≺ Oλ ⇐⇒
µ di�ers from λ by moving a corner box
either down from one row to the next,
or left from one column to the next.

When Oµ ≺ Oλ, the codimension of Oµ in Oλ is twice the di�erence in
row numbers of the box that is moved.

Example 2.6. Take g = sl16 and let λ = (5, 4, 4, 3). There are three corner
boxes, of which two can be moved down one row or left one column; these
corner boxes are indicated in bold in the following pictures.

 

 

So the minimal degenerations of O(5,4,4,3) are O(5,4,4,2,1) (of codimension
2) and O(4,4,4,4) (of codimension 6).

Example 2.7. When g = sln, the minimal orbit Omin is O(2,1,1,··· ,1), and
its dimension (which equals the codimension of {0} = O(1,1,··· ,1) in its closure)
equals 2(n− 1). The subregular orbit Osubreg is O(n−1,1), and its codimension

in N = O(n) is 2.
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Each nilpotent orbit O is a nonsingular variety, since it is a homogeneous
space for the group G. However, the closure O has interesting singularities.
As was observed by Namikawa, O is a holonomic Poisson variety in the sense
of ([17], De�nition 1.3), and it follows as in ([17], Lemma 1.4) that the singular
locus Sing(O) is the whole of O \O. So the irreducible components of Sing(O)
are the closures O′ where O′ ≺ O; in other words, the generic singularities of
O are those at points of the minimal degenerations O′ ≺ O.

3. SLODOWY SLICES

In studying the singularity of O at a point X, the �rst step is to discard
the directions in which O is nonsingular, that is, the directions of the orbit
OX = G · X. There is a particularly nice way to do this that relies on the
following result from Lie algebra structure theory:

Theorem 3.1 (Jacobson�Morozov, see ([4], Section 3.3)). Given any X ∈
N , there is an element Y ∈ g such that

[[X,Y ], X] = 2X, [[X,Y ], Y ] = −2Y.

Any such Y belongs to N , and in fact belongs to the G-orbit OX . More-
over, if Y, Y ′ are two such elements, then there is some g ∈ G such that
g ·X = X and g · Y = Y ′.

Example 3.2. If g = sl2 and X = [ 0 1
0 0 ], then it is easy to check that

Y = [ 0 0
1 0 ] satis�es the conditions in Theorem 3.1. In fact, this example is the

motivation for those conditions: if X,Y satisfy the conditions of Theorem 3.1
and are nonzero, then they generate a subalgebra of g that is isomorphic to sl2.

Given X,Y ∈ N as in Theorem 3.1, we de�ne

SX := {Z ∈ g | [Z −X,Y ] = 0}.
Note that SX is an a�ne-linear subspace of g passing through X, called

the Slodowy slice at X. It would be more correct to denote it SX,Y , but we
omit Y from the notation on the grounds that it is `almost' determined by X,
in the sense of the last statement of Theorem 3.1; if we were to change Y , then
SX would only change by the action of some g ∈ G. Nevertheless, we must bear
in mind that the group that acts naturally on SX is not the whole stabilizer
GX of X, but rather the joint stabilizer GX,Y = {g ∈ G | g ·X = X, g ·Y = Y }.

Proposition 3.3 (Kostant, Slodowy [34]). If X,Y ∈ N are as in Theo-
rem 3.1, then SX is a transverse slice to OX at X, in the sense that dimSX =
dim g− dimOX and the morphism

G× SX → g : (g,X ′) 7→ g ·X ′
is a submersion.
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This result means that for any orbit closure O containing X, the singu-
larity of O at X is smoothly equivalent to that of SX ∩O at X. Henceforth we
will usually consider, instead of O itself, such a subvariety SX ∩ O. Note that
if X = 0, then necessarily Y = 0 also, so S0 = g and S0 ∩ O = O.

The dimension of SX ∩ O equals the codimension of OX in O. It is
a fact that SX does not meet any nilpotent orbits except those whose closure
contains X, so SX∩O only meets orbits O′ such that OX ≤ O′ ≤ O. Moreover,
SX ∩OX = {X}. In particular, if OX ≺ O, then SX ∩O is singular only at X;
that is, we have an isolated singularity in that case.

Example 3.4. Take g = sl3. A pair X,Y lying in the regular nilpotent
orbit Oreg is

X =

0 1 0
0 0 1
0 0 0

 , Y =

0 0 0
2 0 0
0 2 0

 .
In this case, a simple calculation gives

SX =


0 1 0
a 0 1
b a 0

∣∣∣∣∣∣ a, b ∈ C

 .

Computing the characteristic polynomial of the given matrix in SX , one
�nds

χ1

0 1 0
a 0 1
b a 0

 = −2a, χ2

0 1 0
a 0 1
b a 0

 = b.

So SX meets each �bre of the adjoint quotient map in exactly one point
(it turns out that this holds for general g when X ∈ Oreg). In particular,
SX ∩N = {X}, in accordance with the above general rules.

Example 3.5. Now keep g = sl3 but consider a pair in the subregular
nilpotent orbit O(2,1):

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
1 0 0
0 0 0

 .
A simple calculation gives

SX =


a 1 0
b a c
d 0 −2a

∣∣∣∣∣∣ a, b, c, d ∈ C

 .
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Computing the characteristic polynomial, one �nds:

χ1

a 1 0
b a c
d 0 −2a

 = −3a2 − b,

χ2

a 1 0
b a c
d 0 −2a

 = 2a(b− a2) + cd.

In particular,

SX ∩N =


 a 1 0
−3a2 a c
d 0 −2a

 ∣∣∣∣∣∣ a, c, d ∈ C, 8a3 = cd

 ,

a singular surface with an isolated singularity at X.

4. WHY DO REPRESENTATION THEORISTS CARE?

Perhaps surprisingly, the singularities of nilpotent orbit closures have been
shown to encode a lot of representation-theoretic information. In particular,
the case of sln relates to the representations of the symmetric group Sn. To
give an example of a concrete statement along these lines, we need to introduce
some classic representation theory constructions.

For any partition λ of n, de�ne the polynomial

πλ(x1, · · · , xn) := ∆(x1, · · · , xλ1)∆(xλ1+1, · · · , xλ1+λ2) · · · , where

∆(y1, · · · , ym) :=
∏

1≤i<j≤m
yi − yj .

De�ne the Specht module Sλ ⊂ Z[x1, · · · , xn] by

Sλ = Z-span{πλ(xσ(1), · · · , xσ(n)) |σ ∈ Sn}.

Experts will note that this Specht module is traditionally labelled not by
λ but by the transpose partition λt (so the conventions in some subsequent
results are tranposed from their familiar form). However it is labelled, Sλ is
clearly stable under the action of the symmetric group Sn (acting by permuting
the variables x1, · · · , xn); that is, it is a ZSn-module. Let Bλ : Sλ×Sλ → Z be
the restriction of the Z-bilinear form on Z[x1, · · · , xn] for which the monomials
are orthonormal.

Example 4.1. Take n = 3. By convention, ∆(y1, · · · , ym) = 1 when m < 2



11 Singularities of nilpotent orbit closures 451

(since it is then an empty product), so

π(1,1,1)(x1, x2, x3) = 1,

π(2,1)(x1, x2, x3) = x1 − x2,

π(3)(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3).

Thus, S(1,1,1) is a free rank-one Z-module spanned by 1, on which S3 acts
trivially, and B(1,1,1)(1, 1) = 1. By contrast,

S(2,1) = Z-span{x1 − x2, x1 − x3, x2 − x3}

is a free rank-two Z-module with basis {x1 − x2, x2 − x3}, and relative to this
basis the matrix of the form B(2,1) is [ 2 −1

−1 2 ]. Finally, S(3) is a free rank-one
Z-module spanned by π := (x1 − x2)(x1 − x3)(x2 − x3), on which S3 acts via
its sign character, and B(3)(π, π) = 6.

Theorem 4.2 (James [13]). For any �eld F , let SFλ = Sλ ⊗Z F and let
BF
λ be the F -bilinear form on SFλ induced by Bλ.

(1) When F has characteristic 0, a complete set of inequivalent irreducible
representations of Sn over F is given by

{SFλ |λ is a partition of n}.

(2) When F has characteristic p, a complete set of inequivalent irreducible
representations of Sn over F is given by

{DF
µ |µ is a p-restricted partition of n},

where DF
µ = SFµ /Rad(BF

µ ), and µ is said to be p-restricted if µi−µi+1 < p
for all i.

Example 4.3. Continue the n = 3 example. If F has characteristic 0, then
the representations SF(1,1,1), S

F
(2,1), S

F
(3) are all irreducible and inequivalent; they

are referred to respectively as the trivial, re�ection, and sign representations
of S3 over F . If F has characteristic p > 3, the situation is the same: all the
partitions µ of 3 are p-restricted, and for all such µ we have DF

µ = SFµ (that is,

the form BF
µ is nondegenerate; in other words, the determinant of the matrix of

the integral form Bµ is not divisible by p). If F has characteristic 2, then SF(1,1,1),

SF(2,1), S
F
(3) are again all irreducible, but SF(3) is equivalent to S

F
(1,1,1) (the sign

representation is trivial since −1 = 1 in F ). This accords with Theorem 4.2,
sinceDF

µ = SFµ for µ ∈ {(1, 1, 1), (2, 1)}, and the partition (3) is not 2-restricted.

If F has characteristic 3, then SF(2,1) is reducible: the one-dimensional subspace

spanned by x1 + x2 + x3 is invariant, and equals the radical of BF
(2,1) (note

that the matrix of the integral form B(2,1) has determinant 3). So DF
(2,1) is the
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quotient of SF(2,1) by this subspace, and is equivalent to the sign representation.

Again DF
(1,1,1) = SF(1,1,1), and the partition (3) is not 3-restricted.

The representations SFλ are fairly well understood, in the sense that there
are combinatorial formulas for their dimensions, explicit bases, and many other
results. The irreducible representations DF

µ , de�ned when F has characteristic
p and µ is p-restricted, have proved harder to handle. A major unsolved problem
in representation theory is to compute the decomposition numbers dpλµ := [SFλ :

DF
µ ], which count the occurrences of each irreducible DF

µ in a composition series

for SFλ . If we knew these numbers, we would be able to translate our knowledge
of SFλ into knowledge of DF

µ . There is actually a more general de�nition of dpλµ
which makes sense when µ is not p-restricted, involving representations of the
Schur algebra rather than the symmetric group (see [26]).

One of the earliest results proved about these decomposition numbers was
that dpλµ = 0 unless µ E λ, in the notation introduced after Theorem 2.4; in

other words, dpλµ = 0 unless Oµ ⊆ Oλ. In retrospect, this can be seen to be a
hint that there should be a connection with the closures of nilpotent orbits for
sln, and such a connection has now been established by Juteau [15, 16] (in the
cases relating to Sn) and Mautner [27] (in the setting of the Schur algebra).
Their results imply:

Theorem 4.4 (Juteau, Mautner). Let λ and µ be partitions of n with
µ E λ. The decomposition number dpλµ depends only on p and the singularity

of SX ∩ Oλ at X for X ∈ Oµ.

More precisely, what one needs to know about SX ∩ Oλ are certain local
intersection cohomology groups with coe�cients in the �nite �eld with p ele-
ments; these are invariants of the smooth equivalence class of the singularity at
X. It may well be that calculating these local intersection cohomology groups
in full is no easier than the algebraic problem of calculating the decomposition
numbers dpλµ, but as we will see in Section 9, the geometric approach allows
enlightening proofs of some qualitative results.

5. KLEINIAN SINGULARITIES

In what appears at �rst to be a digression from the study of nilpotent
orbits, we recall the de�nition of a famous class of isolated surface singularities.
Let Γ be a nontrivial �nite subgroup of SL2(C). Up to conjugacy in SL2(C),
there is a quite restricted range of possibilities for such Γ (see [28, 34] for more
details):

A`: cyclic of order `+ 1 for ` ≥ 1;
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D`: binary dihedral of order 4(`− 2) for ` ≥ 4;

E`: binary tetrahedral (order 24), binary octahedral (order 48), binary icosa-
hedral (order 120) for ` = 6, 7, 8 respectively.

The various types of groups Γ are labelled here by some of the symbols
X` used in the classi�cation of simple Lie algebras; the reason for this will be
seen shortly.

Since Γ is a subgroup of SL2(C), it comes with an action on the vector
space C2. We now want to consider the quotient C2/Γ, which by de�nition is
the a�ne variety whose algebra of functions is the invariant ring C[C2]Γ.

Theorem 5.1 (Klein). In each case the invariant ring C[C2]Γ is generated
by three homogeneous elements x, y, z satisfying a single relation, given in the
following table.

A` x`+1 + yz = 0
D` x`−1 + xy2 + z2 = 0
E6 x4 + y3 + z2 = 0
E7 x3y + y3 + z2 = 0
E8 x5 + y3 + z2 = 0

So C2/Γ can be identi�ed with the hypersurface in C3 de�ned by the equa-
tion given in the above table; it is a normal surface with an isolated singularity
at 0, known as a Kleinian singularity.

The semiuniversal deformation of a hypersurface P (x1, · · · , xd) = 0 in Cd
with an isolated singularity at 0 is a family of hypersurfaces in Cd, depending
on a parameter u = (ui) ∈ C`, de�ned by the equations

P (x1, · · · , xd) +
∑̀
i=1

uibi(x1, · · · , xd) = 0,

where {bi} is a linearly independent subset of C[x1, · · · , xd] whose span is com-
plementary to the ideal (P, ∂P∂x1 , · · · ,

∂P
∂xd

). So the dimension ` of the parameter
space equals the codimension of this ideal, which is �nite because the singularity
is isolated.

Example 5.2. Consider the type-A` Kleinian singularity, given by the poly-
nomial P (x, y, z) = x`+1 +yz. The ideal (P, ∂P∂x ,

∂P
∂y ,

∂P
∂z ) is (x`, y, z), so the two

meanings of the letter ` are consistent, and the set {bi} can be chosen to be
{x`−1, · · · , x, 1}. Thus, the equation de�ning a general hypersurface in the
semiuniversal deformation is

x`+1 + u1x
`−1 + · · ·u`−1x+ u` + yz = 0.

Now recall that in our simple Lie algebra g there is a unique subregular
nilpotent orbit Osubreg ≺ Oreg; it turns out that the codimension of Osubreg in



454 Anthony Henderson 14

Oreg = N is always 2 (in the case g = sln, we saw this in Example 2.7). Let
Ssubreg denote the Slodowy slice SX for some X ∈ Osubreg. By the results of
Section 3, Ssubreg ∩ N is a normal surface with an isolated singularity. The
explanation for the above labelling of subgroups Γ of SL2(C) is the following
remarkable connection between the two classes of surface singularities:

Theorem 5.3 (Brieskorn, see [34]). If g is of type A`, D` or E` and
Γ ⊂ SL2(C) is of the corresponding type, we have an isomorphism

Ssubreg ∩N ∼= C2/Γ.

Moreover, the family of varieties Ssubreg ∩ χ−1(u), where χ is the adjoint
quotient map and u runs over C`, is isomorphic to the semiuniversal deforma-
tion of C2/Γ.

Example 5.4. Let g = sl3, which is of type A2. Then Γ is cyclic of order
3, and the Kleinian singularity C2/Γ is given by the equation x3 + yz = 0. The
calculation we did in Example 3.5 already makes it clear that Ssubreg ∩ N is
isomorphic to C2/Γ, and the remaining part of Theorem 5.3 is equally easy to
check.

Example 5.5. Let g = sl4, which is of type A3. Calculations similar to
those in Example 3.5 give:

Ssubreg =



a 1 0 0
b a 1 0
c b a d
e 0 0 −3a


 ,

χ1 = −6a2 − 2b,
χ2 = −8a3 + 4ab+ c,
χ3 = −3a4 + 6a2b− 3ac− de.

Setting χi = ui and solving for b and c, one sees that Ssubreg ∩ χ−1(u) is
isomorphic to the following hypersurface in C3:

{(a, d, e) ∈ C3 | 81a4 + de+ 9u1a
2 + 3u2a+ u3 = 0}.

This clearly gives a family isomorphic to the semiuniversal deformation of
the Kleinian singularity of type A3, as described in Example 5.2. For compar-
ison with the next example, we record that here the group GX,Y is isomorphic
to C×, and its action on Ssubreg (which necessarily preserves each intersection
Ssubreg ∩ χ−1(u)) is the action of C× given by �xing a, b, c and scaling d and e
by inverse scalars.

The obvious question left unanswered by Theorem 5.3 is what happens
for the simple Lie algebras of types other than A`,D`,E`. Let us consider an
example.

Example 5.6. Consider the Lie algebra

g = {[aij ] ∈ Mat5 | a6−j,6−i = −aij , for all i, j}.
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(Note that g consists of matrices that are `skew-symmetric about the other
diagonal'.) It is easy to show that g is isomorphic to so5, so it is simple and
has type B2. Choosing suitable X,Y , one �nds that

Ssubreg =




a b 0 0 0
0 0 1 0 0
0 c 0 −1 0
d 0 −c 0 −b
0 −d 0 0 −a


 ,

χ1 = −a2 − 2c,
χ2 = 2(a2c+ bd).

So Ssubreg ∩ χ−1(u) is isomorphic to the following hypersurface in C3:

{(a, b, d) ∈ C3 | a4 − 2bd+ u1a
2 + u2 = 0}.

This family of hypersurfaces is a deformation of the Kleinian singularity
of type A3, but compared with that of Example 5.5, it has only two parameters,
not the full three of the semiuniversal deformation: in other words, there is no `a
term' in the equation. One can explain this de�ciency in terms of the symmetry
group GX,Y of Ssubreg, which in this case has two connected components. The
identity component is isomorphic to C× and acts by �xing a, c and scaling b
and d by inverse scalars, analogously to the situation of Example 5.5. But there
is also an element of the non-identity component that �xes b, c, d and sends a
to −a, precluding the possibility of an `a term' in the above equation.

Motivated by such considerations of symmetry, Slodowy realized that to
extend Theorem 5.3 to the other types of simple Lie algebras, one needs to
assign to each type not a single �nite subgroup of SL2(C) but a pair of such
subgroups Γ,Γ′, with Γ being a normal subgroup of Γ′. The correct subgroups
are speci�ed in the following list:

B`: Γ of type A2`−1, Γ′ of type D`+2, Γ′/Γ ∼= S2;

C`: Γ of type D`+1, Γ′ of type D2`, Γ′/Γ ∼= S2;

F4: Γ of type E6, Γ′ of type E7, Γ′/Γ ∼= S2;

G2: Γ of type D4, Γ′ of type E7, Γ′/Γ ∼= S3.

It is automatic that Γ′/Γ acts on the Kleinian singularity C2/Γ.

Theorem 5.7 (Slodowy [34]). If g is of type B`, C`, F4 or G2 and Γ,Γ′ ⊂
SL2(C) are as given above, then we have an isomorphism

Ssubreg ∩N ∼= C2/Γ,

under which the action of Γ′/Γ on C2/Γ corresponds to the action of some
subgroup of GX,Y on Ssubreg ∩N . Moreover, the family of varieties

Ssubreg ∩ χ−1(u), u ∈ C`,
satis�es a suitable universal property among (Γ′/Γ)-equivariant deformations
of C2/Γ.
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One consequence of Theorems 5.3 and 5.7 is that the isomorphism class
of a simple Lie algebra g can be determined purely by examining the surface
singularity Ssubreg ∩N and its deformation Ssubreg ∩ χ−1(u).

The universal property of the deformation SX ∩χ−1(u) has been general-
ized to non-subregular X by Lehn�Namikawa�Sorger [24].

6. OTHER MINIMAL DEGENERATIONS

In the previous section, we considered the isolated singularity arising from
the minimal degeneration Osubreg ≺ Oreg. Further examples come from the
other minimal degenerations of nilpotent orbits. Notably, at the other extreme
of the closure order, we can consider {0} ≺ Omin.

The singularity of Omin = Omin ∪{0} at 0 is of a standard type. Let P(g)
be the projective space whose points are the lines L through 0 in g. Those L
that lie in Omin form a closed subvariety P(Omin) of P(g). Being a projective
variety with a homogeneous G-action, P(Omin) belongs to the class of partial
�ag varieties for G. We have a tautological line bundle Z → P(Omin), where
the total space is de�ned by

Z := {(X,L) ∈ g× P(Omin) |X ∈ L}.

Since P(Omin) is nonsingular, so is Z. The �rst projection Z → Omin

is a resolution of singularities; it contracts the zero section of the line bundle
Z → P(Omin) to the single point 0, while mapping the complement of this zero
section isomorphically onto Omin.

Example 6.1. Take g = sln. Then Omin = {X ∈ sln | rank(X) = 1}. A
rank-1 matrix X ∈ Matn can be determined by specifying its image V1 and
kernel Vn−1 (subspaces of Cn of dimensions 1 and n− 1 respectively) as well as
specifying the induced linear map Cn/Vn−1 → V1. The trace of X is zero if and
only if V1⊆Vn−1. Hence, P(Omin) can be identi�ed with a variety of partial �ags,
where `partial �ag' has the traditional sense of a chain of subspaces of Cn:

P(Omin) ∼= {0 ⊂ V1 ⊆ Vn−1 ⊂ Cn | dimVi = i}.

Then Z → P(Omin) is identi�ed with the line bundle over this partial �ag
variety where the �bre over V1 ⊆ Vn−1 is

{X ∈ sln |X(Cn) ⊆ V1, X(Vn−1) = 0},

and the singular variety Omin is obtained from this line bundle by contracting
the zero section to a point. Similar constructions of vector bundles over partial
�ag varieties will play a large role in the next section.
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The singularities arising from minimal degenerations of nilpotent orbits
have now been completely described: in types A`, B`, C` and D` by Kraft�
Procesi [21, 22], in type G2 by Kraft [19], and in types E` and F4 by Fu�
Juteau�Levy�Sommers [8].

The result for sln (i.e. type An−1) is particularly nice: in that case the
singularities we have already considered, at the two extremes of the closure
order, su�ce to descibe all minimal degenerations. For the purpose of this
statement, a minimal singularity of type Am means the singularity of Omin at
0 when g = slm+1, as discussed in Example 6.1.

Theorem 6.2 (Kraft�Procesi [21]). Suppose g = sln and Oµ ≺ Oλ. Let
Sµ denote SX for some X ∈ Oµ, so Sµ ∩ Oλ is a variety with an isolated
singularity. Recall from Proposition 2.5 that µ is obtained from λ by moving a
single corner box down and to the left.

• If the box moves one row down and m columns left, then Sµ ∩ Oλ is
isomorphic to a Kleinian singularity of type Am.

• If the box moves m rows down and one column left, then Sµ ∩ Oλ is
isomorphic to a minimal singularity of type Am.

The original statement of [21] was in terms of smooth equivalence of sin-
gularities; the promotion of this to an isomorphism of varieties will be explained
after Corollary 9.3.

Example 6.3. The diagram in Figure 6 shows the closure order on nilpotent
orbits for sl6 (i.e. type A5), with each orbit represented by the box-diagram
of its partition. Every minimal degeneration is labelled by the type of the
resulting isolated singularity, as given by Theorem 6.2. Following the notation
of [21], Am means a Kleinian singularity of type Am and am means a minimal
singularity of type Am. (Thus, the uppermost line is labelled A5 in accordance
with Theorem 5.3, and the lowest line is labelled a5 by de�nition.) Note that
a1 and A1 refer to the same thing, the nilpotent cone of sl2 with its singularity
at 0.

Example 6.4. When g is of type G2, there are �ve nilpotent orbits and the
closure order is a total order:

{0} ≺ Omin ≺ O ≺ Osubreg ≺ Oreg.

The minimal-degeneration singularities are described in [19]. The most
interesting is that of the middle orbit closure O at points of Omin:in [8] this is
shown to be the non-normal isolated surface singularity de�ned as the image of

ψ : C2 → C7 : (t, u) 7→ (t2, tu, u2, t3, t2u, tu2, u3).

Note that ψ is injective, so it is the normalization map of the singularity.
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A5

A3

A1 A1

A2 A2

a2 a2

a1 a1

a3

a5

Fig. 1. Closure order on nilpotent orbits for sl6.

7. THE SPRINGER RESOLUTION

One of the nicest features of the singular varieties O is that they have
resolutions that are vector bundles over partial �ag varieties for G; see [32]
for a general construction. We have seen one example of this already, the
resolution of Omin described in Section 6. In this section we will examine a
similar resolution of Oreg = N .

A Borel subalgebra of g is a subspace b ⊂ g, closed under the commutator
bracket [·, ·], which is conjugate to a subspace of upper-triangular matrices and
is maximal with these properties. The Borel subalgebras of g are all in the
same orbit for the adjoint action of G: in particular, they all have the same
dimension, which turns out to be 1

2(dim g+`). Moreover, the Borel subalgebras
form a closed subvariety B of the Grassmannian of all subspaces of g of this
dimension. This projective homogeneous G-variety B is called the �ag variety
of G (or of g). The name is explained by the next example.

Example 7.1. When g = sln, the Borel subalgebras are exactly the con-
jugates of the subalgebra of upper-triangular matrices. Since these are the
stabilizing subalgebras of `complete �ags' in Cn (i.e. chains of subspaces of Cn,
one of each dimension), the variety B for sln can be identi�ed with the variety
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of such �ags,

F := {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Cn | dimVi = i}.

We will make this identi�cation B ∼= F whenever we consider sln.

We have a tautological vector bundle g̃ → B, where the total space is
de�ned by

g̃ = {(X, b) ∈ g× B |X ∈ b}.

Let π : g̃ → g denote the �rst projection. For any X ∈ g, the �bre
π−1(X) can be identi�ed with the variety of Borel subalgebras containing X;
this variety is called the Springer �bre of X. The map π as a whole is known as
the Grothendieck�Springer simultaneous resolution, because it simultaneously
provides resolutions of every �bre of the adjoint quotient map χ : g→ C`.

Theorem 7.2 (Grothendieck, Springer, see [34]). For any u ∈ C`, each
connected component of π−1(χ−1(u)) is a resolution of χ−1(u). In particular,
Ñ := π−1(N ) (which is connected) is a resolution of N .

Here the resolution maps are the restrictions of π to the stated domains.
The reason that Ñ is connected is that the nilpotent elements of a Borel

subalgebra b form a vector subspace nb, the nilradical of b. Thus,

Ñ = {(X, b) ∈ g× B |X ∈ nb} → B

is a sub-vector bundle of the vector bundle g̃ → B. The resolution Ñ → N is
called the Springer resolution of the nilpotent cone.

Example 7.3. For g = sln, the Grothendieck�Springer simultaneous reso-
lution can be described thus:

g̃ ∼= {(X, (Vi)) ∈ sln ×F |X(Vi) ⊆ Vi for all i}.

Notice that ifX stabilizes a complete �ag (Vi) in the sense of this condition
that X(Vi) ⊆ Vi for all i, then X is nilpotent if and only if we have the stronger
condition X(Vi) ⊆ Vi−1 for all i, where we set V0 = 0 and Vn = Cn to take
care of the i = 1 and i = n cases. (In other words, the nilradical of the Borel
subalgebra of upper-triangular matrices consists of the strictly upper-triangular
matrices.) Hence,

Ñ ∼= {(X, (Vi)) ∈ sln ×F |X(Vi) ⊆ Vi−1 for all i},

and for X ∈ N the Springer �bre has the following description:

π−1(X) ∼= {(Vi) ∈ F |X(Vi) ⊆ Vi−1 for all i}.

Let us consider these Springer �bres over some particular nilpotent orbits
of sln. If X = 0 we of course have π−1(0) ∼= F . At the other extreme, if
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X ∈ Oreg has a single Jordan block, then there is a unique �ag (Vi) ∈ F such
that X(Vi) ⊆ Vi−1 for all i, namely the one given by Vi = ker(Xi), so π−1(X)
is a single point (in general, the Springer resolution Ñ → N is an isomorphism
over Oreg). If X ∈ Osubreg = O(n−1,1), one can easily show that π−1(X) is the
union of the following n− 1 projective lines, each of which meets the adajcent
lines transversely at a single point and does not meet any of the other lines:

{(Vi) |V2 = ker(X), V3 = ker(X2), V4 = ker(X3), · · · },
{(Vi) |V1 = im(Xn−2), V3 = ker(X2), V4 = ker(X3), · · · },
{(Vi) |V1 = im(Xn−2), V2 = im(Xn−3), V4 = ker(X3), · · · },

...

{(Vi) |V1 = im(Xn−2), V2 = im(Xn−3), · · · , Vn−2 = im(X)}.

The geometry of general Springer �bres can be very complicated.

Slodowy showed in [34] that the Grothendieck�Springer simultaneous res-
olution theorem implies an analogous statement for each slice SX for X ∈ g.
In particular, the Springer resolution restricts to a resolution π−1(SX ∩ N )→
SX ∩N . This recovers a much-studied resolution of the Kleinian singularities:

Theorem 7.4 (Brieskorn, Slodowy [34]). If Γ is the �nite subgroup of
SL2(C) such that Ssubreg ∩N ∼= C2/Γ, then the resolution

π−1(Ssubreg ∩N ) → Ssubreg ∩N

corresponds to the minimal resolution of C2/Γ.

Example 7.5. Take g = sl3. Recall the explicit matrix description of an
element of Ssubreg ∩ N from Example 3.5. After some simple computations of
the conditions for a �ag 0 ⊂ V1 ⊂ V2 ⊂ C3 to belong to the Springer �bre of
that matrix, one concludes that

π−1(Ssubreg ∩N ) ∼= {((a, c, d), [s : t], [u : v]) ∈ C3 × P1 × P1 |[
−4a2 c
d −2a

] [
s
t

]
=

[
0
0

]
,

[
u v

] [−4a2 c
d −2a

]
=
[
0 0

]
,

2asu = tv}.

Here, the resolution map is the projection onto the (a, c, d) component,
which necessarily lies in the type-A2 Kleinian singularity de�ned by the equa-
tion 8a3 = cd. If (a, c, d) is not the singular point (0, 0, 0), then [s : t], [u : v]
are uniquely determined by the above conditions; if (a, c, d) = (0, 0, 0), then



21 Singularities of nilpotent orbit closures 461

the �nal condition becomes tv = 0, so the �bre is a union of two projective
lines meeting transversely at a point (this is a special case of the subregular
Springer �bre described in Example 7.3).

8. NORMALITY OF ORBIT CLOSURES FOR sln

In this section, we will take g = sln and discuss some special properties of
the orbit closures Oλ in this case, in particular the proof by Kraft and Procesi
that they are normal varieties. As seen in Example 6.4, there do exist non-
normal nilpotent orbit closures in simple Lie algebras of other types; see [2, 19,
22, 35, 36] for results on this.

We can generalize the Springer resolution of N to construct a resolution
of Oλ where λ is any partition of n. For this, let r1, · · · , rm be the lengths of
the columns of the box-diagram of λ, in decreasing order (thus the number m
is by de�nition equal to λ1). We consider the partial �ag variety

Fλ =

{
0 = U0 ⊂ U1 ⊂ · · · ⊂ Um = Cn

∣∣∣∣ dim
Ui
Ui−1

= ri

}
,

and the vector bundle over Fλ whose total space is

F̃λ = {(X, (Ui)) ∈ sln ×Fλ |X(Ui) ⊆ Ui−1 for all i}.

Then it is not hard to show that the �rst projection maps F̃λ to Oλ, and
in fact is a resolution πλ : F̃λ → Oλ. If λ = (n), then m = n and ri = 1 for all
i, so we are dealing with complete �ags and we recover the Springer resolution.

Example 8.1. If λ = (2, 1, · · · , 1), we have m = 2, r1 = n− 1 and r2 = 1,
so F(2,1,··· ,1) is the projective space of (n−1)-dimensional subspaces of Cn, and
F̃(2,1,··· ,1) is the rank-(n− 1) vector bundle over this projective space where the
�bre over the (n− 1)-dimensional subspace U1 is

{X ∈ sln |X(Cn) ⊆ U1, X(U1) = 0}.

The resolution π(2,1,··· ,1) : F̃(2,1,··· ,1) → O(2,1,··· ,1) contracts the zero section
of the vector bundle to the singular point 0 and maps the complement isomor-
phically onto O(2,1,··· ,1); for X ∈ O(2,1,··· ,1), the unique (n − 1)-dimensional
subspace U1 satisfying the above conditions is ker(X). Note that π(2,1,··· ,1) is

di�erent from the resolution of O(2,1,··· ,1) considered in Example 6.1: it is more
economical in the sense that the �bre over 0 is a smaller-dimensional partial
�ag variety, but less canonical in the sense that it breaks the symmetry between
dimension-1 and codimension-1 subspaces.
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There is a connection between these resolutions and quiver representa-
tions, which really just means diagrams of linear maps between vector spaces.
A pair (X, (Ui)) ∈ F̃λ can be encoded as such a diagram:

Cn

pr




V1

pr
**

X

II

V2

X

jj

pr
**
V3

X

jj

pr
** · · ·

pr ,,

X

jj Vm−2

pr
,,

X

jj Vm−1

X
ll

where Vi = Cn/Ui, pr : Vi → Vi+1 is the canonical projection, and we abuse
notation by writing X for the map Vi+1 → Vi induced by X. Note that here
we have dimVi = n − r1 − · · · − ri; we denote this quantity by vi, and let v
denote the (m− 1)-tuple (v1, · · · , vm−1).

Consider the a�ne variety Λv,n of all diagrams of linear maps

Cn

A0




Cv1

A1 ++

B0

II

Cv2
B1

kk

A2 ++ Cv3
B2

kk

A3 ** · · ·
Am−3 --

B3

kk Cvm−2

Am−2 ,,

Bm−3

jj Cvm−1

Bm−2

ll

satisfying the equations

Ai−1Bi−1 = BiAi for 1 ≤ i ≤ m− 2, and

Am−2Bm−2 = 0.

This is a closed subvariety of the a�ne space

Hom(Cn,Cv1)⊕Hom(Cv1 ,Cn)⊕Hom(Cv1 ,Cv2)⊕Hom(Cv2 ,Cv1)⊕ · · · .

It is almost, but not exactly, correct to say that the diagram de�ned by
(X, (Ui)) ∈ F̃λ represents a point of Λv,n: certainly the equations are satis�ed,
but one has to make some choice of identi�cations of the vector space Vi with
Cvi for all i, and this results in a change-of-basis indeterminacy. To take this
into account, we need to consider the natural action of the group Gv := GLv1×
· · · ×GLvm−1 on Λv,n. This action is free on the open subset

Λsv,n := {(Ai, Bi) ∈ Λv,n |Ai surjective for all i},

so there is a well-de�ned geometric quotient variety Λsv,n/Gv, and the correct
statement is that we have an isomorphism

Λsv,n/Gv
∼→ F̃λ : (Ai, Bi) 7→ (B0A0, (ker(Ai−1 · · ·A1A0))).
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Here and below, when we want to specify a map whose domain is a quo-
tient, we write the formula for the composition with the quotient projection.

It is now natural to consider the quotient Λv,n/Gv, which by de�nition is
the a�ne variety whose algebra of functions is the invariant ring C[Λv,n]Gv .

Theorem 8.2 (Kraft�Procesi [20]). We have an isomorphism

Λv,n/Gv
∼→ Oλ : (Ai, Bi) 7→ B0A0.

Moreover, Λv,n is a normal variety and hence so is Oλ.

Kraft and Procesi could prove that Λv,n is normal by proving �rst that
it is a complete intersection (not true of Oλ, as we saw in Example 2.3). It is
easy to see that the property of normality is inherited by quotients under group
actions.

Note that the open embedding Λsv,n → Λv,n induces a map on quotients
Λsv,n/Gv → Λv,n/Gv that is far from injective. Indeed, under the above iso-
morphisms this map Λsv,n/Gv → Λv,n/Gv corresponds to the resolution map

F̃λ → Oλ. To understand this, one has to recall that the points of Λv,n/Gv

correspond to the closed Gv-orbits in Λv,n. Every Gv-orbit in Λsv,n is closed in
Λsv,n, but in general it is not closed in Λv,n; it gets mapped to the unique closed
orbit in its closure in Λv,n. Compare the map from (Cn \ {0})/C× ∼= Pn−1

to Cn/C×; the latter is a single point because the only closed C×-orbit in Cn
is {0}.

Example 8.3. Continue with Example 8.1. Since v1 = 1, we have

Λv,n = {(A0, B0) ∈ Hom(Cn,C1)×Hom(C1,Cn) |A0B0 = 0}

∼= {((a1, · · · , an), (b1, · · · , bn)) ∈ (Cn)2 |
n∑
i=1

aibi = 0},

with Gv = C× scaling the vectors (a1, · · · , an) and (b1, · · · , bn) by inverse
scalars. In this example, Theorem 8.2 is easy to see: the Gv-invariant polyno-
mial functions on Λv,n are generated by the functions

((a1, · · · , an), (b1, · · · , bn)) 7→ ajbi

as i and j vary, and these functions form the entries of a map Λv,n → O(2,1,··· ,1),
factoring through the isomorphism of Theorem 8.2. Note that

Λsv,n = {(A0, B0) ∈ Λv,n |A0 6= 0},

so Λsv,n/Gv has a map to Pn−1 de�ned by (A0, B0) 7→ [a1 : · · · : an]; this is a

rank-(n− 1) vector bundle, corresponding to the bundle F̃(2,1,··· ,1) → F(2,1,··· ,1)

seen in Example 8.1.
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For the purposes of the next section it is useful to note a slight general-
ization of the above results. In the de�nition of r1, · · · , rm (and hence of v),
we can actually take the column-lengths of λ in any order, not necessarily in
decreasing order; what is more, we can also include some zeroes among the ri's
(meaning m could be larger than λ1). In this more �exible setting, r1, · · · , rm
are no longer uniquely determined by λ, but we will continue to use the nota-
tions Fλ and F̃λ for the varieties de�ned using the chosen r1, · · · , rm. It is still
true that πλ : F̃λ → Oλ is a resolution, and we still have the same isomorphism
Λsv,n/Gv

∼→ F̃λ. Theorem 8.2 requires a modi�cation, because Λv,n may now
not even be irreducible, let alone normal; however, if we let Λ1

v,n be the closure
of Λsv,n in Λv,n (an irreducible component of Λv,n), then we still have an iso-

morphism Λ1
v,n/Gv

∼→ Oλ. This all follows from the more general Theorem 9.1
below; see [33] for a description of Λv,n/Gv in the present setting.

Example 8.4. Take g = sln and λ = (2, 1, · · · , 1). Instead of the choice
used in Example 8.1 we could set r1 = 1, r2 = n− 1. Then

Λv,n = {(A0, B0) ∈ Hom(Cn,Cn−1)×Hom(Cn−1,Cn) |A0B0 = 0}

which has multiple irreducible components (for n ≥ 4). The irreducible com-
ponent Λ1

v,n is de�ned by the extra condition rank(B0) ≤ 1.

9. MAFFEI'S THEOREM AND ITS CONSEQUENCES

Ma�ei's theorem [25] is a generalization of the isomorphism statements in
the previous section, that applies to the varieties Sµ ∩Oλ, where µ E λ and Sµ
means SX for some X ∈ Oµ. We will refer to the point X as the base-point of
Sµ ∩ Oλ.

As at the end of the previous section, we let r1, · · · , rm be the column-
lengths of λ in some order and possibly with some zeroes included, allowing us
to assume m > µ1. We de�ne the resolution πλ : F̃λ → Oλ as before. Let wi
be the multiplicity of i in µ for 1 ≤ i ≤ m − 1, and let w = (w1, · · · , wm−1).
The new de�nition of v = (v1, · · · , vm−1) is

vi := w1 + 2w2 + · · ·+ iwi + iwi+1 + · · ·+ iwm−1 − r1 − · · · − ri.

Because of our assumptions that µ E λ and m > µ1, the quantity w1 +
2w2 + · · ·+ iwi + iwi+1 + · · ·+ iwm−1 appearing here is the sum of the lengths
of the i longest columns of µ, and vi ≥ 0. Note that if µ = (1, · · · , 1), then
w = (n, 0, · · · , 0) and v is the same as in the previous section.

Now we consider the a�ne variety Λv,w of all diagram of linear maps
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Cw1

Γ1





Cw2

Γ2





Cw3

Γ3





Cwm−2

Γm−2





Cwm−1

Γm−1




Cv1

A1 ++

∆1

II

Cv2
B1

kk

A2 ++

∆2

II

Cv3
B2

kk

A3 **

∆3

II

· · ·
Am−3 --

B3

kk Cvm−2

Am−2 ,,

Bm−3

jj

∆m−2

II

Cvm−1

Bm−2

ll

∆m−1

II

satisfying the equations Ai−1Bi−1 + Γi∆i = BiAi for 1 ≤ i ≤ m− 1, where we
interpret A0, B0, Am−1, Bm−1 as 0. Again we have a natural action of Gv on
Λv,w. If µ = (1, · · · , 1), then we can clearly identify Λv,w with the previous
Λv,n, with Γ1 and ∆1 becoming A0 and B0 respectively.

The generalization of Λsv,n is the open subset Λsv,w of Λv,w de�ned by the
`stability' condition that there is no proper subspace of

⊕
iCvi that contains⊕

i im(Γi) and is stable under all the maps Ai, Bi. Let Λ1
v,w be the closure of

Λsv,w in Λv,w. It follows from the next result that Λsv,w is nonempty, and it is
clearly stable under simultaneous scaling of all the maps Ai, Bi,Γi,∆i, so the
point 0 ∈ Λv,w belongs to Λ1

v,w.

Theorem 9.1 (Ma�ei ([25], Theorem 8)). With notation as above, we
have variety isomorphisms

Λsv,w/Gv
∼= π−1

λ (Sµ ∩ Oλ),

Λ1
v,w/Gv

∼= Sµ ∩ Oλ,

under which the map Λsv,w/Gv → Λ1
v,w/Gv induced by the embedding of Λsv,w

in Λ1
v,w corresponds to the restriction of πλ to π−1

λ (Sµ ∩ Oλ). The Gv-orbit of

0 ∈ Λ1
v,w corresponds to the base-point of Sµ ∩ Oλ.

The varieties Λsv,w/Gv and Λ1
v,w/Gv are examples of Nakajima quiver

varieties (see [10, 29, 30]), and these isomorphisms were originally conjectured
by Nakajima in [29]. Ma�ei's de�nition of the isomorphisms is e�ectively in-
ductive, and as a result much less explicit than in the µ = (1, · · · , 1) case
considered by Kraft and Procesi in [20].

Example 9.2. Take g = sl3, µ = (2, 1), and λ = (3). Setting r1 = r2 =
r3 = 1, we get v = w = (1, 1). Hence, Λv,w consists of diagrams

C1

Γ1





C1

Γ2




C1

A1 **

∆1

HH

C1

B1

jj

∆2

HH

with Γ1∆1 = B1A1, A1B1 = −Γ2∆2. Since all the vector spaces are 1-
dimensional, Γi,∆i, A1, B1 themselves constitute functions on Λv,w. It is easy
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to see that the invariant ring C[Λv,w]Gv is generated by

a = ∆1Γ1 = −∆2Γ2, b = ∆1B1Γ2, c = ∆2A1Γ1,

which satisfy the single equation a3 + bc = 0. Hence, Λv,w/Gv is isomorphic
to the type-A2 Kleinian singularity, in accordance with Theorem 9.1 and Ex-
ample 3.5. (In this case, Λv,w = Λ1

v,w.)

The Kleinian singularities of all types A`, D` and E` have a uniform
construction in terms of Nakajima quiver varieties of the corresponding type [3,
23]. Hence, the subregular slice Ssubreg ∩ N in any simple Lie algebra g is
isomorphic to a certain Nakajima quiver variety. A partial generalization of
this statement to other varieties SX ∩N is given in [11].

Returning to type A, Ma�ei's description of the varieties Sµ∩Oλ in terms
of quiver varieties has some easy consequences that relate Slodowy slices in
di�erent nilpotent cones. For convenience in stating these consequences, we
identify partitions of n with their box diagrams.

Corollary 9.3. If λ and µ have the same �rst row or the same �rst
column, then we have a base-point-preserving isomorphism Sµ∩Oλ ∼= Sµ′ ∩Oλ′
where λ′,µ′ are obtained from λ,µ by deleting that row/column.

Proof. Suppose λ and µ have the same �rst row, i.e. λ1 = µ1. We can take
m = λ1+1, and let r1, · · · , rm−1 be the column-lengths of λ in decreasing order,
with rm = 0. Then vm−1 = 0 and wm−1 > 0 by de�nition. When we form the
(m − 1)-tuples v′ and w′ for λ′ and µ′ in the same way, we �nd that v′ = v
and w′ di�ers from w only in that w′m−1 = wm−1−1. We have an obvious Gv-

equivariant isomorphism Λv,w
∼→ Λv,w′ , because the fact that vm−1 = 0 forces

the maps Γm−1,∆m−1 to be zero whether one works with wm−1 or w′m−1. This

induces an isomorphism Λ1
v,w/Gv

∼→ Λ1
v,w′/Gv. So Theorem 9.1 implies the

desired isomorphism Sµ ∩ Oλ ∼= Sµ′ ∩ Oλ′ . The proof when λ and µ have the
same �rst column is similar, but with v1 = 0 rather than vm−1 = 0. �

If Oµ ≺ Oλ is a minimal degeneration as described in Proposition 2.5,
then one can apply Corollary 9.3 repeatedly to remove all the common rows
and columns, leaving a minimal degeneration Oµ∗ ≺ Oλ∗ where either µ∗ =
(1, · · · , 1) or λ∗ has a single part. This proves Theorem 6.2. Well before Theo-
rem 9.1, Kraft and Procesi proved in [21] a slightly weaker form of Corollary 9.3,
with smooth equivalence instead of isomorphism; this is how they proved their
version of Theorem 6.2.

In view of Theorem 4.4, either form of Corollary 9.3 immediately im-
plies the following known result in representation theory, as was observed by
Juteau [15]:
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Corollary 9.4 (James [14]). Let p be a prime. If λ and µ have the same
�rst row or the same �rst column, then dpλµ = dpλ′µ′ where λ

′,µ′ are obtained
from λ,µ by deleting that row/column.

James' result was generalized by Donkin [5] to the case where λ and µ
admit a `horizontal cut'. This more general result can be deduced from an
analogous generalization of Corollary 9.3 (the corresponding quiver varieties
have vi = 0 for some i not necessarily in {1,m− 1}).

Another consequence of Theorem 9.1 is:

Corollary 9.5. Suppose that λ and µ both have at most t nonzero parts,
each of which is at most m. Then we have a base-point-preserving isomorphism
Sµ ∩ Oλ ∼= Sµc ∩ Oλc where λc,µc are obtained from λ,µ respectively by taking
complements in a t × m rectangle (and rotating through 180◦ to obtain box-
diagrams of the normal orientation).

Example 9.6. If λ = (5, 4, 4, 3) and µ = (3, 3, 3, 3, 2, 2), then we can take
t = 6 and m = 5, producing λc = (5, 5, 2, 1, 1) and µc = (3, 3, 2, 2, 2, 2). In the
following picture, the boxes of λc, µc are those containing dots.

 
··· ·· · · · ·· · · · ·

 
· · · · ·· · · · ·· ···

 
· ·· ·· ·· ·· · ·· · ·

 
· · ·· · ·· ·· ·· ·· ·

Proof. We can assume that µ 6= λ, since otherwise the claim is trivial.
After applying Corollary 9.3 as many times as necessary both to λ, µ and to
λc, µc, we can assume that λ1 = (λc)1 = m, µ1 < m, (µc)1 < m. Set r1, · · · , rm
to be the column-lengths of λ in decreasing order, and so de�ne v,w. If we
de�ne vc,wc similarly, then vci = vm−i and w

c
i = wm−i for all i. We thus have

an isomorphism Λv,w
∼→ Λvc,wc that interchanges the roles of the maps Γi and

Γm−i, the maps ∆i and ∆m−i, and the maps Ai and Bm−1−i for all i, and
changes the sign of all the maps Bi in order to preserve the de�ning equations.
This induces an isomorphism Λ1

v,w/Gv
∼→ Λ1

vc,wc/Gvc . So Theorem 9.1 implies

the desired isomorphism Sµ ∩ Oλ ∼= Sµc ∩ Oλc . �

As mentioned in the introduction, Corollary 9.5 provides (via Theorem 4.4
again) a geometric proof of another known result in representation theory:

Corollary 9.7 (Fang�Henke�Koenig ([6], Corollary 7.1)). Let p be a
prime. With notation as in Corollary 9.5, we have dpλµ = dpλcµc.
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