MINIMAL DOUBLY RESOLVING SETS OF NECKLACE GRAPH

ALI AHMAD, MARTIN BAČA* and SABA SULTAN

Communicated by Vasile Brînzănescu

Consider a simple connected undirected graph G = (V, E), where V represents the vertex set and E represents the edge set, respectively. A subset D of V is called doubly resolving set if for every two vertices x, y of G, there are two vertices $u, v \in D$ such that $d(u, x) - d(u, y) \neq d(v, x) - d(v, y)$. A doubly resolving set with minimum cardinality is called minimal doubly resolving set. This minimum cardinality is denoted by $\psi(G)$.

In this paper, we find the minimal doubly resolving set for necklace graph N_{e_n} , $n \ge 2$. Also, we prove that $\psi(N_{e_n}) = 3$ for $n \ge 2$.

AMS 2010 Subject Classification: 05C12, 05C15.

 $Key \ words:$ resolving set, metric dimension, minimal doubly resolving set, necklace graph.

1. INTRODUCTION AND PRELIMINARY RESULTS

The concept of resolving set has been introduced by Slater [8] and also independently by Harary and Melter [4]. This concept has different applications in the areas of network discovery and verification [1], robot navigation [7], and chemistry.

Consider a simple connected undirected graph G = (V, E), where Vand E denote the sets of vertices and edges of G, respectively. Let d(x, y)denote the distance between vertices x and y. A vertex v of graph G is said to resolve two vertices x and y of G if $d(v, x) \neq d(v, y)$. A vertex set $W = \{w_1, w_2, \ldots, w_k\}$ of G is a resolving set or locating set of G if every two distinct vertices of G are resolved by some vertex of W. The k-tuple $r(v, W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_k))$ is called the vector of metric coordinates of v with respect to W. A resolving set of minimum cardinality is called metric basis of G. The cardinality of metric basis, denoted by $\beta(G)$, is called metric dimension of G.

Cáceres *et al.* [2] introduced "doubly resolving sets" by showing its connection with metric dimension of the Cartesian product $G \Box G$ of the graph G.

^{*} Corresponding author.

These sets constitute a useful tool for obtaining upper bounds on the metric dimension of graphs. Vertices x, y of the graph G of order at least 2, are said to doubly resolve vertices u, v of G if $d(u, x) - d(u, y) \neq d(v, x) - d(v, y)$. A vertex set D of G is a doubly resolving set of G if every two distinct vertices of G are doubly resolved by some two vertices of D, that is, if there are no two distinct vertices of G with the same difference between their corresponding metric coordinates with respect to D. The minimal doubly resolving set is a doubly resolving set is denoted by $\psi(G)$. The problem of minimal doubly resolving set is NP-hard [5]. The minimal doubly resolving sets for Hamming and Prism graphs has been obtained in [6] and [3], respectively.

Note that $\beta(G) \leq \psi(G)$ always. Since if x, y doubly resolve u, v, then $d(u, x) - d(v, x) \neq 0$ or $d(u, y) - d(v, y) \neq 0$, and hence x or y resolve u, v, which follows that a doubly resolving set is also a resolving set. In [9], the metric dimension of necklace graph, $\beta(N_{e_n})$, has been determined. In this paper, we determine the minimal doubly resolving sets for necklace graph.

2. THE MINIMAL DOUBLY RESOLVING SETS FOR NECKLACE GRAPH N_{e_n}

In this section, we will find the minimal doubly resolving set for the necklace graph N_{e_n} . The necklace graph N_{e_n} , for $n \ge 2$, consists of the vertex set $V = \{v_0, v_1, \ldots, v_{n+1}, u_1, u_2, \ldots, u_n\}$ and the edge set $E = \{v_i v_{i+1}, u_i u_{i+1}, v_i u_i : 1 \le i \le n-1\} \cup \{v_0 v_1, v_0 u_1, v_0 v_{n+1}, v_n v_{n+1}, v_n u_n\}$. The following Figure 1 displays the necklace graph N_{e_n} .

Fig. 1 – The necklace graph N_{e_n} .

It has been proved [9], that for $n \ge 2$, $\beta(N_{e_n}) = \begin{cases} 2, & \text{if } n \text{ is even;} \\ 3, & \text{if } n \text{ is odd.} \end{cases}$

We will find here the minimal doubly resolving sets for necklace graphs. Also we will prove that $\psi(N_{e_n}) = 3$ for $n \ge 2$. Therefore the necklace graph is interesting to consider in the sense that, its metric dimension depends on parity of n, that is, whether n is even or odd, but the cardinality of minimal doubly resolving set is independent on the parity of n. Since $\psi(N_{e_n}) \geq \beta(N_{e_n})$,

thus for $n \ge 2$, $\psi(N_{e_n}) \ge \begin{cases} 2, \text{ if } n \text{ is even}; \\ 3, \text{ if } n \text{ is odd.} \end{cases}$

Define $S_i(v_0) = \{ w \in V : d(v_0, w) = i \}$ be the set of vertices in V at distance i from v_0 . For N_{e_n} with $n \ge 4$, we can easily find the sets $S_i(v_0)$ which are given in Table 1.

TABLE 1		
S(a, b) for	• M	

$S_i(v_0)$ for N_{e_n}			
n	i	$S_i(v_0)$	
	1	$\{v_1, u_1, v_{n+1}\}$	
	$2 \le i \le k$	$\{v_i, u_i, v_{n+2-i}, u_{n+2-i}\}$	
$2k, (k \ge 2)$	k+1	$\{v_{k+1}, u_{k+1}\}$	
$2k+1, (k \ge 2)$	k+1	$\{v_{k+1}, u_{k+1}, v_{k+2}, u_{k+2}\}$	

It can be easily seen that $S_i(v_0) = \emptyset$ for $i \ge k+2$. Note that the sets $S_i(v_0)$, defined above can be used to determine the distance between two arbitrary vertices in V in the following way.

As symmetry of N_{e_n} displays the following fact that $d(v_i, v_j) = d(v_0, v_{j-i})$, $d(u_i, u_j) = d(v_0, v_{j-i})$ for j > i. If n = 2k where $k \ge 2$, we have

$$d(v_i, u_j) = \begin{cases} d(v_0, v_{|i-j|}) + 1, & |i-j| \le k, \ 1 \le i, j \le n; \\ d(v_0, v_{|i-j|}), & |i-j| > k, \ 1 \le i, j \le n; \\ d(v_0, v_{n+1-j}), & i = n+1; \\ d(v_0, v_j), & i = 0. \end{cases}$$

If n = 2k + 1 where $k \ge 2$, we have

$$d(v_i, u_j) = \begin{cases} d(v_0, v_{|i-j|}) + 1, & |i-j| \le k+1, \ 1 \le i, j \le n; \\ d(v_0, v_{|i-j|}), & |i-j| > k+1, \ 1 \le i, j \le n; \\ d(v_0, v_{n+1-j}), & i = n+1; \\ d(v_0, v_j), & i = 0. \end{cases}$$

Consequently, if we know the distance $d(v_0, w)$ for every $w \in V$ then we can reconstruct the distance between every two vertices from V.

LEMMA 2.1. For $n = 2k, k \ge 2, \psi(N_{e_n}) > 2$.

Proof. We know that $\psi(N_{e_n}) \geq 2$ and thus we should prove that every subset D of vertex set V with |D| = 2 is not a doubly resolving set for N_{e_n} .

In Table 2, one can find all possible types of such set D and the corresponding non-doubly resolving pair of vertices from V.

TABLE 2

Non-doubly resolved pairs of N_{e_n} for $n = 2k, k \ge 2$

D	Non-doubly resolved pair
$\{v_0, v_i; \ 1 \le i \le k\} \cup \{v_0, u_i; \ 1 \le i \le k\}$	
$\cup \{v_{n+1}, v_i; \ k+1 \le i \le n\} \cup \{v_{n+1}, u_i; \ k+1 \le i \le n\}$	$\{u_k, u_{k+1}\}$
$\{v_0, v_i; \ k+1 \le i \le n-1\} \cup \{v_0, u_i; \ k+1 \le i \le n-1\}$	$\left \left\{ u_k, u_{i+1} \right\} \right $
$\{v_0, v_n\} \cup \{v_0, u_n\} \cup \{v_0, v_{n+1}\}$	$\left\{ u_1, v_1 \right\}$
$\{v_{n+1}, v_1\} \cup \{v_{n+1}, u_1\}$	$\{u_n, v_n\}$
$\{v_{n+1}, v_i; \ 2 \le i \le k\} \cup \{v_{n+1}, u_i; \ 2 \le i \le k\}$	$\{u_{k+1}, u_{i-1}\}$
$\{v_i, v_j; \ 1 \le i, j \le n, \ i \ne j\} \cup \{u_i, u_j; \ 1 \le i, j \le n, \ i \ne j\}$	$\{v_{k+1}, u_{k+1}\}$
$\{v_i, u_j; \ 1 \le i, j \le k\} \cup \{v_i, u_j; \ k+1 \le i, j \le n\}$	$\{v_0, v_{n+1}\}$
$\{v_i, u_j; \ 1 \le i \le k, \ k+1 \le j \le n\}$	$\left \left\{ v_{k+1}, u_k \right\} \right $
$\{v_i, u_j; \ k+1 \le i \le n, \ 1 \le j \le k\}$	$\{v_k, u_{k+1}\}$

Let us prove, for example, the vertices v_{k+1}, u_k are not doubly resolved by any two vertices to the set $\{v_i, u_j; 1 \le i \le k, k+1 \le j \le n\}$. We have

(i) $d(v_i, v_{k+1}) = d(v_0, v_{k+1-i}) = k + 1 - i$,

(ii)
$$d(v_i, u_k) = d(v_0, v_{k-i}) + 1 = k - i + 1$$

(iii)
$$d(u_j, v_{k+1}) = d(v_0, v_{j-k-1}) + 1 = j - k - 1 + 1 = j - k,$$

(iv)
$$d(u_j, u_k) = d(v_0, v_{j-k}) = j - k.$$

From (i), (ii), (iii) and (iv), we have $d(v_i, v_{k+1}) - d(v_i, u_k) = d(u_j, v_{k+1}) - d(u_j, u_k) = 0$, that is, $\{v_i, u_j; 1 \le i \le k, k+1 \le j \le n\}$ is not a resolving set of N_{e_n} . Similarly, we can consider all other types of D from Table 2 and verify their corresponding non-doubly resolved pairs of vertices. \Box

LEMMA 2.2. For $n = 2k, k \ge 2, \psi(Ne_n) = 3$.

Proof. From Lemma 2.1, it is clear that $\psi(N_{e_n}) \geq 3$. Consider the following table which shows the vectors of metric coordinates of vertices of N_{e_n} with respect to the set $D^* = \{v_0, v_k, v_{k+1}\}$ in a special way.

Starting from Table 3, note that $v_0 \in D^*$ therefore the first metric coordinate of a vector from $S_i(v_0)$ with respect to D^* is equal to i. It is easy to check that for each $i \in \{1, 2, \ldots, k+1\}$, there do not exist two vertices $x, y \in S_i(v_0)$ such that all coordinates of the vector $r(x, D^*) - r(y, D^*)$ are equal to 0. Also, it can be easily seen that for each $i, j \in \{1, 2, \ldots, k+1\}$, $i \neq j$, there do not exist two vertices $x \in S_i(v_0)$ and $y \in S_j(v_0)$ such that all coordinates of the vector $r(x, D^*) - r(y, D^*)$ are equal to i - j. In this way,

the set $D^* = \{v_0, v_k, v_{k+1}\}$ becomes the minimal doubly resolving set for N_{e_n} with $n = 2k, k \ge 2$ and hence Lemma 2.2 holds. \Box

coordinates for Ne_n , $n = 2n$, $n \ge 1$		
i	$S_i(v_0)$	$D^* = \{v_0, v_k, v_{k+1}\}$
0	v_0	(0, k, k+1)
1	v_1	(1, k - 1, k)
	u_1	(1, k, k+1)
	v_{n+1}	(1, k+1, k)
$2 \leq i \leq k$	v_i	(i,k-i,k+1-i)
	u_i	(i, k+1-i, k+2-i)
	v_{n+2-i}	(i, k+2-i, k+1-i)
	u_{n+2-i}	(i, k+3-i, k+2-i)
k+1	v_{k+1}	(k+1, 1, 0)
	u_{k+1}	(k+1,2,1)

TABLE 3 Vectors of metric coordinates for N_{e_n} , $n = 2k, k \ge 2$

LEMMA 2.3. For n = 2k + 1, $k \ge 2$, $\psi(N_{e_n}) = 3$.

Proof. For n odd we have $3 = \beta(N_{e_n}) \leq \psi(N_{e_n})$. Consider the following Table 4 which shows the vectors of metric coordinates of vertices of N_{e_n} with respect to the set $D^* = \{v_0, v_1, v_{k+2}\}$ in a special way.

TABLE 4

Vectors of metric coordinates for N_{e_n} , n = 2k + 1, $k \ge 2$

i	$S_i(v_0)$	$D^* = \{v_0, v_1, v_{k+2}\}$
0	v_0	(0,1,k+1)
1	v_1	(1,0,k+1)
	u_1	(1,1,k+2)
	v_{n+1}	(1,2,k)
$2 \le i \le k$	v_i	(i, i-1, k+2-i)
	u_i	$\left \begin{array}{c} (i,i,k+3-i) \end{array} \right $
	v_{n+2-i}	(i, i+1, k+1-i)
	u_{n+2-i}	(i, i+1, k+2-i)
k+1	v_{k+1}	(k+1,k,1)
	u_{k+1}	(k+1, k+1, 2)
	v_{k+2}	(k+1, k+1, 0)
	u_{k+2}	(k+1, k+2, 1)

Starting from Table 4, note that $v_0 \in D^*$ therefore the first metric coordinate of a vector from $S_i(v_0)$ with respect to D^* is equal to *i*. It is easy to check that for each $i \in \{1, 2, ..., k + 1\}$, there do not exist two vertices $x, y \in S_i(v_0)$ such that all coordinates of the vector $r(x, D^*) - r(y, D^*)$ are equal to 0. Also, it can be easily seen that for each $i, j \in \{1, 2, ..., k + 1\}$,

 $i \neq j$, there do not exist two vertices $x \in S_i(v_0)$ and $y \in S_j(v_0)$ such that all coordinates of the vector $r(x, D^*) - r(y, D^*)$ are equal to i - j. In this way, the set $D^* = \{v_0, v_1, v_{k+2}\}$ becomes the minimal doubly resolving set for N_{e_n} with $n = 2k + 1, k \geq 2$ and hence Lemma 2.3 holds. \Box

A total enumeration technique shows that $\psi(N_{e_n}) = 3$ for n = 2, 3. The sets $\{v_0, v_1, v_2\}$ and $\{v_0, v_1, v_3\}$ are the minimal doubly resolving sets for N_{e_2} and N_{e_3} , respectively. Combining this fact with Lemma 2.2 and Lemma 2.3, we get the following main theorem of this section.

THEOREM 2.1. Let N_{e_n} be the necklace graph, $n \geq 2$. Then $\psi(N_{e_n}) = 3$.

3. CONCLUSION

In this paper, we determined the minimal doubly resolving set and its cardinality for necklace graph N_{e_n} . This family of graphs is interesting to consider, in the sense, that its metric dimension $\beta(N_{e_n})$ depends on the parity of n. On the other hand $\psi(N_{e_n}) = 3$ for every n.

Acknowledgments. The research for this article was supported by Jazan University Grant No. 000114/7/37, by the Slovak Science and Technology Assistance Agency under the contract No. APVV-15-0116 and by VEGA 1/0233/18.

REFERENCES

- Z. Beerliova, F. Eberhard, T. Erlabach, A. Hall, M. Hoffmann, M. Mihalák and L.S. Ram, Network discovery and verification. IEEE J. Sel. Area. Commun. 24 (2006), 2168–2181.
- [2] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs. SIAM J. Discrete Math. 21 (2007), 423–441.
- [3] M. Čangalović, J. Kratica, V. Kovačević-Vujčić and M. Stojanović, Minimal doubly resolving sets of prism graphs. Optimization 62 (2013), 1037–1043.
- [4] F. Harary and R.A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976), 191–195.
- [5] J. Kratica, V. Kovačević-Vujčić and M. Čangalović, Computing minimal doubly resolving sets of graphs. Comput. Oper. Res. 36 (2009), 2149–2159.
- [6] J. Kratica, V. Kovačević-Vujčić, M. Cangalović and M. Stojanović, *Minimal doubly resolving sets and the strong metric dimension of Hamming graphs*. Appl. Anal. Discrete Math. 6 (2012), 63–71.
- [7] K. Liu and N. Abu-Ghazaleh, Virtual coordinate backtracking for void traversal in geographic routing. In: T. Kunz and S.S. Ravi (Eds.), Lecture Notes on Computer Science 4104 (2006), 46–59.

6

- [8] P.J. Slater, *Leaves of trees.* Proc. of the 6th Southeastern Conference on Combinatorics, Graph theory and Computing. Congr. Numer. 14 (1975), 549–559.
- [9] I. Tomescu and M. Imran, *R-sets and metric dimension of necklace graphs*. Appl. Math. Inf. Sci. 9 (2015), 63–67.

Received 7 March 2016

Jazan Universty, Faculty of Computer Science & Information Systems, Jazan, KSA ahmadsms@gmail.com

Technical University, Department of Applied Mathematics and Informatics, 042 00 Košice, Slovak Republic martin.baca@tuke.sk

> GC University, Abdus Salam School of Mathematical Sciences, Lahore, Pakistan sabasultan09@gmail.com