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Consider a simple connected undirected graph G = (V,E), where V represents
the vertex set and E represents the edge set, respectively. A subset D of V is
called doubly resolving set if for every two vertices x, y ofG, there are two vertices
u, v ∈ D such that d(u, x) − d(u, y) 6= d(v, x) − d(v, y). A doubly resolving set
with minimum cardinality is called minimal doubly resolving set. This minimum
cardinality is denoted by ψ(G).

In this paper, we find the minimal doubly resolving set for necklace graph
Nen , n ≥ 2. Also, we prove that ψ(Nen) = 3 for n ≥ 2.
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1. INTRODUCTION AND PRELIMINARY RESULTS

The concept of resolving set has been introduced by Slater [8] and also
independently by Harary and Melter [4]. This concept has different applicati-
ons in the areas of network discovery and verification [1], robot navigation [7],
and chemistry.

Consider a simple connected undirected graph G = (V,E), where V
and E denote the sets of vertices and edges of G, respectively. Let d(x, y)
denote the distance between vertices x and y. A vertex v of graph G is
said to resolve two vertices x and y of G if d(v, x) 6= d(v, y). A vertex set
W = {w1, w2, . . . , wk} of G is a resolving set or locating set of G if every
two distinct vertices of G are resolved by some vertex of W. The k-tuple
r(v,W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the vector of metric coordi-
nates of v with respect to W . A resolving set of minimum cardinality is called
metric basis of G. The cardinality of metric basis, denoted by β(G), is called
metric dimension of G.

Cáceres et al. [2] introduced “doubly resolving sets” by showing its con-
nection with metric dimension of the Cartesian product G�G of the graph G.
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These sets constitute a useful tool for obtaining upper bounds on the metric
dimension of graphs. Vertices x, y of the graph G of order at least 2, are said to
doubly resolve vertices u, v of G if d(u, x)−d(u, y) 6= d(v, x)−d(v, y). A vertex
set D of G is a doubly resolving set of G if every two distinct vertices of G
are doubly resolved by some two vertices of D, that is, if there are no two dis-
tinct vertices of G with the same difference between their corresponding metric
coordinates with respect to D. The minimal doubly resolving set is a doubly
resolving set with minimum cardinality. The cardinality of minimum doubly
resolving set is denoted by ψ(G). The problem of minimal doubly resolving
set is NP-hard [5]. The minimal doubly resolving sets for Hamming and Prism
graphs has been obtained in [6] and [3], respectively.

Note that β(G) ≤ ψ(G) always. Since if x, y doubly resolve u, v, then
d(u, x) − d(v, x) 6= 0 or d(u, y) − d(v, y) 6= 0, and hence x or y resolve u, v,
which follows that a doubly resolving set is also a resolving set. In [9], the
metric dimension of necklace graph, β(Nen), has been determined. In this
paper, we determine the minimal doubly resolving sets for necklace graph.

2. THE MINIMAL DOUBLY RESOLVING SETS
FOR NECKLACE GRAPH Nen

In this section, we will find the minimal doubly resolving set for the
necklace graph Nen . The necklace graph Nen , for n ≥ 2, consists of the vertex
set V = {v0, v1, . . . , vn+1, u1, u2, . . . , un} and the edge set E = {vivi+1, uiui+1,
viui : 1 ≤ i ≤ n−1}∪{v0v1, v0u1, v0vn+1, vnvn+1, vn+1un, vnun}. The following
Figure 1 displays the necklace graph Nen .

Fig. 1 – The necklace graph Nen .

It has been proved [9], that for n ≥ 2, β(Nen)=

{
2, if n is even;

3, if n is odd.

We will find here the minimal doubly resolving sets for necklace graphs.
Also we will prove that ψ(Nen) = 3 for n ≥ 2. Therefore the necklace graph
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is interesting to consider in the sense that, its metric dimension depends on
parity of n, that is, whether n is even or odd, but the cardinality of minimal
doubly resolving set is independent on the parity of n. Since ψ(Nen) ≥ β(Nen),

thus for n ≥ 2, ψ(Nen) ≥

{
2, if n is even;

3, if n is odd.

Define Si(v0) = {w ∈ V : d(v0, w) = i} be the set of vertices in V at
distance i from v0. For Nen with n ≥ 4, we can easily find the sets Si(v0)
which are given in Table 1.

TABLE 1

Si(v0) for Nen

n i Si(v0)

1 {v1, u1, vn+1}
2 ≤ i ≤ k {vi, ui, vn+2−i, un+2−i}

2k, (k ≥ 2) k + 1 {vk+1, uk+1}
2k + 1, (k ≥ 2) k + 1 {vk+1, uk+1, vk+2, uk+2}

It can be easily seen that Si(v0) = ∅ for i ≥ k + 2. Note that the
sets Si(v0), defined above can be used to determine the distance between two
arbitrary vertices in V in the following way.

As symmetry ofNen displays the following fact that d(vi, vj) = d(v0, vj−i),
d(ui, uj) = d(v0, vj−i) for j > i. If n = 2k where k ≥ 2, we have

d(vi, uj) =


d(v0, v|i−j|) + 1, |i− j| ≤ k, 1 ≤ i, j ≤ n;

d(v0, v|i−j|), |i− j| > k, 1 ≤ i, j ≤ n;

d(v0, vn+1−j), i = n+ 1;

d(v0, vj), i = 0.

If n = 2k + 1 where k ≥ 2, we have

d(vi, uj) =


d(v0, v|i−j|) + 1, |i− j| ≤ k + 1, 1 ≤ i, j ≤ n;

d(v0, v|i−j|), |i− j| > k + 1, 1 ≤ i, j ≤ n;

d(v0, vn+1−j), i = n+ 1;

d(v0, vj), i = 0.

Consequently, if we know the distance d(v0, w) for every w ∈ V then we can
reconstruct the distance between every two vertices from V .

Lemma 2.1. For n = 2k, k ≥ 2, ψ(Nen) > 2.

Proof. We know that ψ(Nen) ≥ 2 and thus we should prove that every
subset D of vertex set V with |D| = 2 is not a doubly resolving set for Nen .
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In Table 2, one can find all possible types of such set D and the corresponding
non-doubly resolving pair of vertices from V .

TABLE 2

Non-doubly resolved pairs of Nen for n = 2k, k ≥ 2

D Non-doubly resolved pair

{v0, vi; 1 ≤ i ≤ k} ∪ {v0, ui; 1 ≤ i ≤ k}
∪{vn+1, vi; k + 1 ≤ i ≤ n} ∪ {vn+1, ui; k + 1 ≤ i ≤ n} {uk, uk+1}
{v0, vi; k + 1 ≤ i ≤ n− 1} ∪ {v0, ui; k + 1 ≤ i ≤ n− 1} {uk, ui+1}
{v0, vn} ∪ {v0, un} ∪ {v0, vn+1} {u1, v1}
{vn+1, v1} ∪ {vn+1, u1} {un, vn}
{vn+1, vi; 2 ≤ i ≤ k} ∪ {vn+1, ui; 2 ≤ i ≤ k} {uk+1, ui−1}
{vi, vj ; 1 ≤ i, j ≤ n, i 6= j} ∪ {ui, uj ; 1 ≤ i, j ≤ n, i 6= j} {vk+1, uk+1}
{vi, uj ; 1 ≤ i, j ≤ k} ∪ {vi, uj ; k + 1 ≤ i, j ≤ n} {v0, vn+1}
{vi, uj ; 1 ≤ i ≤ k, k + 1 ≤ j ≤ n} {vk+1, uk}
{vi, uj ; k + 1 ≤ i ≤ n, 1 ≤ j ≤ k} {vk, uk+1}

Let us prove, for example, the vertices vk+1, uk are not doubly resolved

by any two vertices to the set {vi, uj ; 1 ≤ i ≤ k, k + 1 ≤ j ≤ n}. We have

(i) d(vi, vk+1) = d(v0, vk+1−i) = k + 1− i,

(ii) d(vi, uk) = d(v0, vk−i) + 1 = k − i+ 1,

(iii) d(uj , vk+1) = d(v0, vj−k−1) + 1 = j − k − 1 + 1 = j − k,

(iv) d(uj , uk) = d(v0, vj−k) = j − k.

From (i), (ii), (iii) and (iv), we have d(vi, vk+1)−d(vi, uk) = d(uj , vk+1)−
d(uj , uk) = 0, that is, {vi, uj ; 1 ≤ i ≤ k, k + 1 ≤ j ≤ n} is not a resolving set

of Nen . Similarly, we can consider all other types of D from Table 2 and verify

their corresponding non-doubly resolved pairs of vertices. �

Lemma 2.2. For n = 2k, k ≥ 2, ψ(Nen) = 3.

Proof. From Lemma 2.1, it is clear that ψ(Nen) ≥ 3. Consider the fol-

lowing table which shows the vectors of metric coordinates of vertices of Nen

with respect to the set D∗ = {v0, vk, vk+1} in a special way.

Starting from Table 3, note that v0 ∈ D∗ therefore the first metric coor-

dinate of a vector from Si(v0) with respect to D∗ is equal to i. It is easy

to check that for each i ∈ {1, 2, . . . , k + 1}, there do not exist two vertices

x, y ∈ Si(v0) such that all coordinates of the vector r(x,D∗) − r(y,D∗) are

equal to 0. Also, it can be easily seen that for each i, j ∈ {1, 2, . . . , k + 1},
i 6= j, there do not exist two vertices x ∈ Si(v0) and y ∈ Sj(v0) such that all

coordinates of the vector r(x,D∗) − r(y,D∗) are equal to i − j. In this way,
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the set D∗ = {v0, vk, vk+1} becomes the minimal doubly resolving set for Nen

with n = 2k, k ≥ 2 and hence Lemma 2.2 holds. �

TABLE 3

Vectors of metric coordinates for Nen , n = 2k, k ≥ 2

i Si(v0) D∗ = {v0, vk, vk+1}
0 v0 (0, k, k + 1)

1 v1 (1, k − 1, k)

u1 (1, k, k + 1)

vn+1 (1, k + 1, k)

2 ≤ i ≤ k vi (i, k − i, k + 1− i)
ui (i, k + 1− i, k + 2− i)
vn+2−i (i, k + 2− i, k + 1− i)
un+2−i (i, k + 3− i, k + 2− i)

k + 1 vk+1 (k + 1, 1, 0)

uk+1 (k + 1, 2, 1)

Lemma 2.3. For n = 2k + 1, k ≥ 2, ψ(Nen) = 3.

Proof. For n odd we have 3 = β(Nen) ≤ ψ(Nen). Consider the following
Table 4 which shows the vectors of metric coordinates of vertices of Nen with
respect to the set D∗ = {v0, v1, vk+2} in a special way.

TABLE 4

Vectors of metric coordinates for Nen , n = 2k + 1, k ≥ 2

i Si(v0) D∗ = {v0, v1, vk+2}
0 v0 (0, 1, k + 1)

1 v1 (1, 0, k + 1)

u1 (1, 1, k + 2)

vn+1 (1, 2, k)

2 ≤ i ≤ k vi (i, i− 1, k + 2− i)
ui (i, i, k + 3− i)
vn+2−i (i, i+ 1, k + 1− i)
un+2−i (i, i+ 1, k + 2− i)

k + 1 vk+1 (k + 1, k, 1)

uk+1 (k + 1, k + 1, 2)

vk+2 (k + 1, k + 1, 0)

uk+2 (k + 1, k + 2, 1)

Starting from Table 4, note that v0 ∈ D∗ therefore the first metric coor-

dinate of a vector from Si(v0) with respect to D∗ is equal to i. It is easy

to check that for each i ∈ {1, 2, . . . , k + 1}, there do not exist two vertices

x, y ∈ Si(v0) such that all coordinates of the vector r(x,D∗) − r(y,D∗) are

equal to 0. Also, it can be easily seen that for each i, j ∈ {1, 2, . . . , k + 1},



128 Ali Ahmad, Martin Bača and Saba Sultan 6

i 6= j, there do not exist two vertices x ∈ Si(v0) and y ∈ Sj(v0) such that all

coordinates of the vector r(x,D∗) − r(y,D∗) are equal to i − j. In this way,

the set D∗ = {v0, v1, vk+2} becomes the minimal doubly resolving set for Nen

with n = 2k + 1, k ≥ 2 and hence Lemma 2.3 holds. �

A total enumeration technique shows that ψ(Nen) = 3 for n = 2, 3. The

sets {v0, v1, v2} and {v0, v1, v3} are the minimal doubly resolving sets for Ne2

and Ne3 , respectively. Combining this fact with Lemma 2.2 and Lemma 2.3,

we get the following main theorem of this section.

Theorem 2.1. Let Nen be the necklace graph, n ≥ 2. Then ψ(Nen) = 3.

3. CONCLUSION

In this paper, we determined the minimal doubly resolving set and its

cardinality for necklace graph Nen . This family of graphs is interesting to

consider, in the sense, that its metric dimension β(Nen) depends on the parity

of n. On the other hand ψ(Nen) = 3 for every n.
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