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Abstract. This is a survey of recent results about bipotentials representing mul-
tivalued operators. The notion of bipotential is based on an extension of Fenchel’s
inequality, with several interesting applications related to non associated constitutive
laws in non smooth mechanics, such as Coulomb frictional contact or non-associated
Drücker-Prager model in plasticity.

Relations betweeen bipotentials and Fitzpatrick functions are described. Selfdual
lagrangians, introduced and studied by Ghoussoub, can be seen as bipotentials
representing maximal monotone operators. We show that bipotentials can represent
some monotone but not maximal operators, as well as non monotone operators.

Further we describe results concerning the construction of a bipotential which
represents a given non monotone operator, by using convex lagrangian covers or
bipotential convex covers. At the end we prove a new reconstruction theorem for
a bipotential from a convex lagrangian cover, this time using a convexity notion
related to a minimax theorem of Fan.

Mathematics Subject Classifications: 49J53; 49J52; 26B25.

1. Introduction

In the generalized standard material theory of Halphen and Son [21]
any constitutive law of a standard material relates a strain rate variable
x ∈ X with a stress-like variable y ∈ Y by using a dissipation potential
φ.
X and Y are topological, locally convex, real vector spaces of dual

variables x ∈ X and y ∈ Y , with the duality product 〈·, ·〉 : X × Y →
R. The dissipation potential φ is a convex and lower semicontinuous
function defined on X and the associated constitutive law is given by
one the following equivalent conditions:
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(a) y ∈ ∂φ(x), where ∂φ is the subdifferential of φ in the sense of
Convex Analysis,

(b) x ∈ ∂φ∗(y), where φ∗ is the Fenchel dual of φ with respect to the
duality product,

(c) φ(x) + φ∗(y) = 〈x, y〉 .

The constitutive laws of standard materials are also called associated
laws. From the mathematical viewpoint such laws are cyclically mono-
tone operators. However, there are many non-associated constitutive
laws, described by a multivalued operator T : X → 2Y which is not

cyclically monotone, in some cases not even monotone.
A possible way to study non-associated constitutive laws by using

convex analysis, proposed first in [33], consists in constructing a ”bipo-
tential” function b of two variables, which physically represents the
dissipation. See definition 3.1 and the section 3 for the introduction
into the subject of bipotentials.

A bipotential function b is bi-convex, satisfies an inequality gener-
alizing Fenchel’s one, namely ∀x ∈ X, y ∈ Y, b(x, y) ≥ 〈x, y〉, and a
relation involving partial subdifferentials of b with respect to variables
x, y. In the case of associated constitutive laws the bipotential has the
expression b(x, y) = φ(x)+φ∗(y) (section 3). The graph of a bipotential
b is simply the set M(b) ⊂ X × Y of those pairs (x, y) such that
b(x, y) = 〈x, y〉.

A maximal cyclically monotone operator T : X → 2Y is represented
by a lower semicontinuous and convex ”potential” function φ, by a well
known theorem of Rockafellar. More general, we say that the bipotential
b represents the multivalued operator T if the graph of T equals M(b).

There are already many applications of bipotentials to mechan-
ics. Among them we cite: Coulomb’s friction law [34], surveyed here
in section 9.2, non-associated Drücker-Prager [35] (section 9.1) and
Cam-Clay models [36] in soil mechanics, cyclic plasticity ([34],[3]) and
viscoplasticity [24] of metals with non linear kinematical hardening
rule, Lemaitre’s damage law [2], the coaxial laws ([39],[44]), details in
sections 8.2 and 9.3.

The notion of a bipotential associated to a multivalued operator
is interesting also from a mathematical point of view. We show that
bipotentials are related to Fitzpatrick functions associated to a maxi-
mally monotone operator. Selfdual lagrangians introduced and studied
by Ghoussoub [18] can be seen as bipotentials representing maximal
monotone operators (section 5). In section 7 we describe a result from
[11] which implies that some monotone non maximal operators can be
represented by bipotentials.
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Other examples of bipotentials come from inequalities. For exam-
ple, the Cauchy-Bunyakovsky-Schwarz inequality can be recast as: if
X = Y is a Hilbert space then the function b : X × X → R defined
by b(x, y) = ‖x‖‖y‖ is a bipotential. More general, some inequalities
involving eigenvalues of real symmetric matrices can be put in a similar
form, thus providing more non trivial examples of bipotentials.

In order to better understand the bipotential approach, in [10], [11]
we solved two key problems: (a) when the graph of a given multivalued
operator can be expressed as the set of critical points of a bipotentials,
and (b) a method of construction of a bipotential associated (in the
sense of point (a)) to a multivalued, typically non monotone, operator.

At the end of this paper we prove a a new reconstruction theorem
for a bipotential from a convex lagrangian cover, this time using a
convexity notion related to a minimax theorem of Fan.

2. Notations and first definitions

X and Y are topological, locally convex, real vector spaces of dual
variables x ∈ X and y ∈ Y , with the duality product 〈·, ·〉 : X × Y →
R. The topologies of the spaces X,Y are compatible with the duality
product, that is: any continuous linear functional on X (resp. Y ) has
the form x 7→ 〈x, y〉, for some y ∈ Y (resp. y 7→ 〈x, y〉, for some x ∈ X).

We use the notation: R̄ = R ∪ {+∞}.
Given a function φ : X → R̄, the domain domφ is the set of points

x ∈ X with φ(x) ∈ R. The polar of φ, or Fenchel conjugate, φ∗ : Y → R̄

is defined by: φ∗(y) = sup {〈y, x〉 − φ(x) | x ∈ X}.
We denote by Γ(X) the class of convex and lower semicontinuous

functions φ : X → R̄. The class of functions φ ∈ Γ(X) with domφ 6= ∅
is denoted by Γ0(X). The class of convex and lower semicontinuous
φ : X → R is denoted by Γ(X,R).

For any convex and closed set A ⊂ X, its indicator function, χA, is
defined by

χA(x) =

{

0 if x ∈ A
+∞ otherwise

DEFINITION 2.1. The graph of an operator T : X → 2Y is the
set G(T ):

G(T ) = {(x, y) ∈ X × Y : y ∈ T (x)}
To a graph M ⊂ X × Y we associate the multivalued operators:

X ∋ x 7→ m(x) = {y ∈ Y | (x, y) ∈M} ,

Y ∋ y 7→ m∗(y) = {x ∈ X | (x, y) ∈M} .
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The domain of the graph M is dom(M) = {x ∈ X | m(x) 6= ∅}. The
image of the graph M is the set im(M) = {y ∈ Y | m∗(y) 6= ∅}.
DEFINITION 2.2. The subdifferential of a function φ : X → R̄ in
a point x ∈ domφ is the (possibly empty) set:

∂φ(x) = {u ∈ Y | ∀z ∈ X 〈z − x, u〉 ≤ φ(z) − φ(x)} .

In a similar way is defined the subdifferential of a function ψ : Y → R̄

in a point y ∈ domψ, as the set:

∂ψ(y) = {v ∈ X | ∀w ∈ Y 〈v,w − y〉 ≤ ψ(w) − ψ(y)} .

With these notations and definitions we have the Fenchel inequality.

THEOREM 2.3. Let φ : X → R̄ be a convex lower semicontinuous
function. Then:

(i) for any x ∈ X, y ∈ Y we have φ(x) + φ∗(y) ≥ 〈x, y〉;
(ii) for any (x, y) ∈ X × Y we have the equivalences:

y ∈ ∂φ(x) ⇐⇒ x ∈ ∂φ∗(y) ⇐⇒ φ(x) + φ∗(y) = 〈x, y〉 .

DEFINITION 2.4. An operator T : X → 2Y is monotone if for any
((x, y), (x′, y′) ∈ G(T ) we have

〈x− x′, y − y′〉 ≥ 0

A graph M ⊂ X × Y is monotone if it is the graph of a monotone op-
erator. The graph is maximal monotone (or the associated operator
is maximal monotone) if for any monotone graph M ′ ⊂ X × Y such
that M ⊂M ′ we have M = M ′.

An operator T : X → 2Y is cyclically monotone if its graph G(T )
is cyclically monotone. A graph M is cyclically monotone if for
all integer m > 0 and any finite family of couples (xj , yj) ∈ M, j =
0, 1, . . . ,m,

〈x0 − xm, ym〉 +

m
∑

k=1

〈xk − xk−1, yk−1〉 ≤ 0. (1)

A cyclically monotone graph M is maximal if it does not admit a strict
prolongation which is cyclically monotone.

3. Bipotentials

DEFINITION 3.1. A bipotential is a function b : X × Y → R̄ with
the properties:
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(a) b is convex and lower semicontinuous in each argument;

(b) for any x ∈ X, y ∈ Y we have b(x, y) ≥ 〈x, y〉;

(c) for any (x, y) ∈ X × Y we have the equivalences:

y ∈ ∂b(·, y)(x) ⇐⇒ x ∈ ∂b(x, ·)(y) ⇐⇒ b(x, y) = 〈x, y〉 . (2)

The graph of b is

M(b) = {(x, y) ∈ X × Y | b(x, y) = 〈x, y〉} . (3)

An equivalent definition of a bipotential comes out from the follow-
ing proposition.

PROPOSITION 3.2. A function b : X ×Y → R̄ is a bipotential if and
only if the following conditions are satisfied:

(A) b is convex and lower semicontinuous in each argument and for any
x ∈ X, y ∈ Y we have b(x, y) ≥ 〈x, y〉;

(B1) for any y ∈ Y , if the function z ∈ X 7→ (b(z, y) − 〈z, y〉) has a
minimum, then the minimum equals 0;

(B2) for any x ∈ X, if the function p ∈ Y 7→ (b(x, p) − 〈x, p〉) has a
minimum, then the minimum equals 0.

Proof. Condition (A) is the same as conditions (a),(b) from definition
3.1. All we have to prove is: if the function b satisfies condition (A) then
condition (c) from definition 3.1 is equivalent with (B1) and (B2).

Assume (A) and take x ∈ X, y ∈ Y such that x ∈ ∂b(x, ·)(y). This
is equivalent with: x is a minimizer of the function

z ∈ X 7→ (b(z, y) − 〈z, y〉)

Therefore the statement x ∈ ∂b(x, ·)(y) ⇐⇒ b(x, y) = 〈x, y〉 is equiv-
alent with (B1). In the same way we prove that y ∈ ∂b(·, y)(x) ⇐⇒
b(x, y) = 〈x, y〉 is equivalent with (B2).

This simple proposition justifies the introduction of strong bipoten-
tials, which are particular cases of bipotentials. Conditions (B1S) and
(B2S) appeared first time as relations (51), (52) [30],

DEFINITION 3.3. A function b : X×Y → R̄ is a strong bipotential

if it satisfies the conditions:
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(a) b is convex and lower semicontinuous in each argument;

(B1S) for any y ∈ Y inf {b(z, y) − 〈z, y〉 : z ∈ X} ∈ {0,+∞};

(B2S) for any x ∈ X inf {b(x, p) − 〈x, p〉 : p ∈ Y } ∈ {0,+∞}.

4. Operators representable by a bipotential

DEFINITION 4.1. The non empty set M ⊂ X × Y is a BB-graph

(bi-convex, bi-closed) if for all x ∈ dom(M) and for all y ∈ im(M)
the sets m(x) and m∗(y) are convex and closed.

The following theorem (theorem 3.2 [10]) gives a necessary and
sufficient condition for the existence of a bipotential associated to a
constitutive law M .

THEOREM 4.2. Given a non empty set M ⊂ X × Y , there is a
bipotential b such that M = M(b) if and only if M is a BB-graph.

The bipotential mentioned in the previous theorem is denoted by
bM and it has the expression:

bM (x, y) = 〈x, y〉 + χM (x, y) (4)

In the case of a maximal cyclically monotone graph M , by Rock-
afellar theorem ([32] Theorem 24.8.) there is an unique separable bipo-
tential associated to M ( see section 6 for the definition of separable
bipotentials). With the bipotential given by (4) we have two different
bipotentials representing the same graph. Therefore, in the larger class
made of all bipotentials, in general there is no unicity of the bipotential
representing a given BB-graph.

For any BB-graph M , a bipotential b is admissible if M ⊂ M(b).
Then we obviously have b(x, y) ≤ bM (x, y) for any (x, y) ∈ X × Y . In
this sense bM is the greatest admissible bipotential for the BB-graph
M .

5. Fitzpatrick functions; selfdual lagrangians

Let X be a reflexive Banach space and X∗ its topological dual. The
duality product between X and X∗ is the function π : X ×X∗ → R,
defined by π(x, x∗) = 〈x, x∗〉 = x∗(x).
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The space X ×X∗ is in duality with itself by the duality product

〈(x, x∗), (y, y∗)〉 = 〈x, y∗〉 + 〈y, x∗〉

Fitzpatrick functions have been introduced in [14]. More on Fitz-
patrick functions can be found in [4] and in the book [5].

DEFINITION 5.1. The Fitzpatrick function associated to a graph
M ⊂ X ×X∗ is the function fM : X ×X∗ → R ∪ {+∞} given by the
Fenchel dual of bM . Equivalently, fM is given by:

fM(x, x∗) = sup {〈a, x∗〉 + 〈x, a∗〉 − 〈a, a∗〉 : (a, a∗) ∈M}

PROPOSITION 5.2. (Properties of the Fitzpatrick function) Let M ⊂
X × X∗ be a graph. Then the associated Fitzpatrick function fM has
the properties:

(a) fM is convex and lower semicontinuous,

(b) the graph M is maximal monotone if and only if:

(b1) for any (x, x∗) ∈ X ×X∗ we have fM(x, x∗) ≥ 〈x, x∗〉 and

(b2) we have equality fM (x, x∗) = 〈x, x∗〉 if and only if (x, x∗) ∈M .

(c) if M is a BB-graph then the function

gM (x, x∗) =

{

fM(x, x∗) , (x, x∗) ∈ domM × imM
+∞ otherwise

is a strong bipotential.

Proof. By construction any Fitzpatrick function is convex and lower
semicontinuous. For proving (b) it is enough to use the following char-
acterization of maximal monotone graphs: M is maximal monotone if
and only if

(i1) for any (x, x∗) ∈ X ×X∗ we have

inf {〈x− a, x∗ − a∗〉 : (a, a∗) ∈M} ≤ 0

(i2) (x, x∗) ∈M if and only if

inf {〈x− a, x∗ − a∗〉 : (a, a∗) ∈M} = 0

The Fitzpatrick function associated to the graph M can be written as:

fM (x, x∗) = 〈x, x∗〉 − inf {〈x− a, x∗ − a∗〉 : (a, a∗) ∈M}
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Therefore (b1), (b2) follow from (i1), (i2) respectively.
In order to prove (c) we have to check (B1S), (B2S) definition 3.3.

Let x ∈ domM . Then

inf {gM (x, x∗) − 〈x, x∗〉 : x∗ ∈ imM} =

= − inf {〈x− a, x∗ − a∗〉 : (a, a∗) ∈M , x∗ ∈ imM} = 0

The proof of (B2S) is similar.

Further we describe selfdual lagrangians, with the notations from
Ghoussoub [18]. See the mentioned paper and the references therein,
especially [19] [20] for more informations on the variational theory
associated to selfdual lagrangians. Here we point out that selfdual
lagrangians are particular cases of bipotentials.

DEFINITION 5.3. Let X be a reflexive Banach space. To any function
L ∈ Γ0(X ×X∗) we associate the following operators:

(i) δL : X → 2X∗

defined by:

δL(x) = {x∗ ∈ X∗ : (x, x∗) ∈ ∂L(x, x∗)}

(here ∂L(x, x∗) is the subdifferential of L),

(ii) ∂̄L : X → 2X∗

defined by:

∂̄L(x) = {x∗ ∈ X∗ : L(x, x∗ = 〈x, x∗〉}

DEFINITION 5.4. A function L ∈ Γ0(X × X∗) is a selfdual la-

grangian if L = L∗.

The following is a slight reformulation of lemma 2.1 and proposition
2.1 [18]

PROPOSITION 5.5. If L is a selfdual lagrangian such that for some
x0 ∈ X the function L(x0, ·) is bounded on the balls of X∗, then L is a
strong bipotential and we have M(L) = G(∂̄L) = G(δL). Moreover, in
this case for any x∗ ∈ X∗ there exists x̄ ∈ X such that x∗ ∈ δL(x̄) and

L(x̄, x∗) − 〈x̄, x∗〉 = inf {L(x, x∗) − 〈x, x∗〉 : x ∈ X} = 0
Proof. As mentioned before, from lemma 2.1 [18] we get that for

any selfdual lagrangian L we have ∂̄L = δL. By definition any selfdual
lagrangian is convex, lower semicontinuous and for any (x, x∗) ∈ X×X∗

we have L(x, x∗) ≥ 〈x, x∗〉, as a consequence of the Fenchel inequality
in X ×X∗. The fact that L is a strong bipotential (conditions (BS1),
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(BS2) definition 3.3), as well as the final part of the conclusion are
straightforward reformulations of the conclusion of Proposition 2.1 [18].

The following proposition is an application of lemma 3.1 and propo-
sition 3.1 [18].

PROPOSITION 5.6. Let M ⊂ X×X∗ be a maximal monotone graph.
Then there exists a selfdual lagrangian LM such that G(δ̄LM ) = M .

Proof. Let fM be the Fitzpatrick function of M . Then, according to
lemma 3.1 [18] the Fitzpatrick function fM satisfies the hypothesis of
proposition 3.1 [18]. Therefore the selfdual lagrangian defined by

LM (x, x∗) = inf

{

1

2
fM (x1, x

∗

1) +
1

2
f∗M (x2, x

∗

2) +
1

8
‖x1 − x2‖2+

+
1

8
‖x∗1 − x∗2‖2 : (x, x∗) =

1

2
(x1, x

∗

1) +
1

2
(x2, x

∗

2)

}

mentioned in the proof of the proposition 3.1 [18] as “the proximal
average” between fM and f∗M is the one needed.

6. Separable bipotentials

If φ : X → R is a convex, lower semicontinuous potential, consider the
multivalued operator ∂φ (the subdifferential of φ). The graph of this
operator is the set

M(φ) = {(x, y) ∈ X × Y | φ(x) + φ∗(y) = 〈x, y〉} . (5)

M(φ) is maximal cyclically monotone [32] Theorem 24.8. Conversely, if
M is closed and maximally cyclically monotone then there is a convex,
lower semicontinuous φ such that M = M(φ).

To the function φ we associate the separable bipotential

b(x, y) = φ(x) + φ∗(y).

Indeed, the Fenchel inequality can be reformulated by saying that the
function b, previously defined, is a bipotential. More precisely, the point
(b) (resp. (c)) in the definition of a bipotential corresponds to (i) (resp.
(ii)) from Fenchel inequality.

The bipotential b and the function φ have the same graph, that is
M(b) = M(φ).
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7. Bipotentials for monotone, non maximal graphs

The following two results are from the paper [11] (theorem 3.1 and
proposition 3.2).

In the theorem below it is shown that intersections of two maximal
monotone graphs are sometimes representable by a bipotential. There-
fore there exist bipotentials b with M(b) monotone, but not maximal.

THEOREM 7.1. Let b1 and b2 be separable bipotentials associated re-
spectively to the convex and lower semicontinuous functions φ1, φ2 :
X → R ∪ {+∞}, that is

bi(x, y) = φi(x) + φ∗i (y)

for any i = 1, 2 and (x, y) ∈ X×Y . Consider the following assertions:

(i) b = max(b1, b2) is a strong bipotential and M(b) = M(b1)∩M(b2).

(ii’) For any y ∈ domφ∗1 ∩ domφ∗2 and for any λ ∈ [0, 1] we have

(λφ1 + (1 − λ)φ2)
∗ (y) = λφ∗1(y) + (1 − λ)φ∗2(y) (6)

(ii”) For any x ∈ domφ1 ∩ domφ2 and for any λ ∈ [0, 1] we have

(λφ∗1 + (1 − λ)φ∗2)
∗ (x) = λφ1(x) + (1 − λ)φ2(x) (7)

Then the point (i) is equivalent with the conjunction of (ii’), (ii”), (for
short: (i) ⇐⇒ ( (ii’) AND (ii”) ) ).

In the proof of this theorem we make use of a minimax result by
Sion [43]. Notice that in section 12, we use another minimax result of
Fan [29] in the proof of theorem 12.4.

The following Proposition shows that in the particular case of X
reflexive Banach space and Y = X∗ the necessary and sufficient condi-
tions (ii’), (ii”) from Theorem 7.1 can be expresses by inf-convolutions.

PROPOSITION 7.2. Let X be a reflexive Banach space and Y = X∗.
Consider φ1, φ2 ∈ Γ0(X), and for any α, β ∈ (0, 1), α + β = 1, define
f1, f2 ∈ Γ0(X) by f1(x) = αφ1(x/α), f2(x) = βφ2(x/β), for any x ∈ X.
Suppose that for any x ∈ domφ1 ∩ domφ2 and for any α, β ∈ (0, 1),
α+β = 1 the subdifferential of the inf-convolution f1 � f2 is not empty.
Then the function b introduced in Theorem 7.1 is a strong bipotential if
and only if for any x ∈ domφ1 ∩ domφ2 we have ∂φ1(x)∩∂φ2(x) 6= ∅.
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8. Bipotentials and inequalities

A source of interesting bipotentials is provided by inequalities. Here we
discuss about the Cauchy-Bunyakovsky-Schwarz inequality and about
an inequality of Fan concerning eigenvalues of symmetric matrices.

8.1. Cauchy bipotential

Let X = Y be a Hilbert space and let the duality product be equal to
the scalar product. Then we define the Cauchy bipotential by the
formula

b(x, y) = ‖x‖ ‖y‖.
Let us check the Definition (3.1) The point (a) is obviously satisfied.
The point (b) is true by the Cauchy-Bunyakovsky-Schwarz inequal-
ity. We have equality in the Cauchy-Bunyakovsky-Schwarz inequality
b(x, y) = 〈x, y〉 if and only if there is λ > 0 such that y = λx or one of
x and y vanishes. This is exactly the statement from the point (c), for
the function b under study.

The graph of the Cauchy bipotential is not monotone.

8.2. Hill bipotential

Let S(n) be the space of n × n real symmetric matrices. There is a
bipotential expressing that two matrices X and Y have a simultaneous
ordered spectral decomposition, [44]. In Mechanics, a constitutive law
between two tensors implying that they admit the same eigenvectors is
said to be coaxial [39], [44].

The space S(n) is endowed with the scalar product

〈X,Y 〉 = tr (XY )

Consider the function b : S(n) × S(n) → R with the expression

b(X,Y ) = λ1(X)λ1(Y ) + ...+ λn(X)λn(Y )

where for any X ∈ S(n) λ1(X) ≥ λ2(X) ≥ ... ≥ λn(X) are the
eigenvalues of X ordered from the largest to the smallest. With the
help of this function we can write one of Fan’s inequalities [28] as: for
any X,Y ∈ S(n) we have

b(X,Y ) ≥ 〈X,Y 〉

with equality if and only if X and Y have the same eigenvectors with
preservation of the order of the eigenvalues.
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In [44] is proved that for n = 3 the function b is a bipotential, called
Hill bipotential due to applications dealt with by Hill in mechanics.
A similar proof, involving majorization, can be done for the case of a
general n. The graph of the Hill bipotential is not monotone.

9. Bipotentials in non smooth mechanics

A simple example of a monotone operator in non smooth mechanics
is provided by the following model of plasticity of metals. X = Y is
the space of n × n real symmetric traceless matrices with the pairing

〈x, y〉 = tr xy and the associated norm ‖x‖ =| 〈x, y〉 | 12 . Let c be a non
negative constant. The plasticity operator is defined by

Tp (0) = K = {y ∈ Y | ‖y‖ ≤ c }
otherwise

Tp (x) =
x

‖x‖
In plasticity, x is the plastic strain rate tensor, y is the deviatoric stress
tensor and c is the yield stress. The closed convex set K is the plastic

domain and the irreversible or plastic deformations varies when x 6= 0.
The plastic model is not limited to the metals but can be used also for
soil materials.

A more involved example is the associated Drücker-Prager model

where the variable x is the plastic strain rate tensor and y is the
stress tensor (both seen as elements of S(n)). With usual notations,
the tensors x and y are split into their deviatoric and spheric parts:

x = xd +
1

3
xhI, y = yd + yhI

where I is the identity operator, xh = tr (x) and yh = 1
3tr (y). As the

decomposition is unique, we can write in short x = (xd, xh), y = (yd, yh)
and the duality pairing is 〈x, y〉 = tr (xdyd) + xhyh.

The convex cone parameterized by the friction angle ϕ ∈
(

0, π
2

)

,

the cohesion stress c > 0, and r = 3
√

2/
√

9 + 12 tan2 ϕ ([7]), with the

vertex at v =
c

tanϕ
I, given by

K = {y ∈ Y | ||yd|| ≤ r(c− yh tanϕ)}
is called the plastic domain.

The multivalued operator corresponding to the associated Drücker-
Prager model is defined by: TDP (0) = K, if xh = r||xd|| tanϕ then

TDP (x) =

{

y ∈ Y | ∃η ≥ 0, y = v + η

(

xd

‖xd‖
− 1

rc
v

)}

,
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if xh > r||xd|| tanϕ then TDP (x) = {v}, otherwise TDP (x) = ∅.

9.1. Drücker-Prager non associated plasticity

The non associated Drücker-Prager model is characterized, as
previously, by the friction angle ϕ ∈

(

0, π
2

)

, the cohesion stress c >

0, and r = 3
√

2/
√

9 + 12 tan2 ϕ but also by a new parameter, the
dilatancy angle θ ∈ [0, ϕ). Once again, X = Y = S(n) and we use the
splitting into deviatoric and spheric parts. The associated multivalued
operator is Tna defined by: Tna (0) = K, if xh = r||xd|| tan θ then

Tna (x) =

{

y ∈ Y | ∃η ≥ 0, y = v + η

(

xd

‖xd‖
− 1

rc
v

)}

,

if xh > r||xd|| tan θ then Tna (x) = {v} otherwise Tna (x) = ∅.
If we put θ = ϕ then we recover the operator TDP of the associated

Drücker-Prager model defined above.
The non-associated Drücker-Prager law y ∈ Tna(x) is equivalent

with the following differential inclusion:

x +
1

3
(xh + r ‖x‖ (tan φ − tan θ)) ∈ ∂χK(y)

According to [9] [39] [25], this inclusion can be written as bp(x, y) =
〈x, y〉, for the bipotential

bp(x, y) = χK(y) + χKp
(x) +

c

tan φ
xh +

+ r ‖x‖ (tan φ − tan θ)

(

yh − c

tan φ

)

The last term in this expression is a coupling term which gives the
implicit character to the constitutive law.

9.2. Coulomb’s dry friction law

Another interesting operator comes in relation with the unilateral con-
tact with dry friction or Coulomb’s friction model. T Consider two
bodies Ω1 and Ω2 which are in contact at a point M , with n the unit
vector normal to the common tangent plane and directed towards Ω1.
The space X = R

3 is the one of relative velocities between points of
contact of two bodies, and the space Y , identified also to R

3, is the one
of the contact reaction stresses. The duality product is the usual scalar
product. We put

(xn, xt) ∈ X = R × R
2, (yn, yt) ∈ Y = R × R

2 ,
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where xn is the gap velocity, xt is the sliding velocity, yn is the contact
pressure and yt is the friction stress. The friction coefficient is µ > 0.

The graph of the law of unilateral contact with Coulomb’s dry fric-
tion is the union of three sets, respectively corresponding to the ’body
separation’, the ’sticking’ and the ’sliding’.

M = {(x, 0) ∈ X × Y | xn < 0}∪ (8)

∪ {(0, y) ∈ X × Y | ‖ yt ‖≤ µyn}∪

∪
{

(x, y) ∈ X × Y | xn = 0, xt 6= 0, yt = µyn
xt

‖ xt ‖

}

It is well known that this graph is not monotone, then not cyclically
monotone.

This law can be written as the following differential inclusion ([33]
[34] [40] [39]):

(xn − µ ‖xt‖)n + xt ∈ ∂χKµ
(y)

Let us consider the conjugate cone of the Coulomb’s cone:

K∗

µ = {(xn, xt) ∈ X | µ ‖ xt ‖ +xn ≤ 0} .

We shall use also a second pair of conjugate cones:

K0 = {(yn, 0) ∈ Y | yn ≥ 0} , K∗

0 = {(xn, xt) ∈ X | xn ≤ 0} .

The graph of the law of unilateral contact with Coulomb’s dry
friction is the graph of the following bipotential, previously given in
[33]:

b(x, y) = µyn ‖ xt ‖ +χKµ
(y) + χK∗

0
(x) .

9.3. Coaxial laws

Consider the non monotone operator defined by Tiso (0) = R
n, other-

wise
Tiso (x) = {y ∈ Y | ∃λ > 0, y = λx}

An operator S : R
n → 2R

n

is strongly isotropic if its graph is contained
in the graph of Tiso. The graph of the non monotone operator Tiso is
the graph of the Cauchy bipotential.

The eigenvalues of any matrix x ∈ S(n) can be conventionally or-
dered from the largest to the smallest: λ1(x) ≥ λ2(x) ≥ . . . ≥ λn(x).
Two elements x, y ∈ S(n) are said coaxial if they have the same eigen-
vectors with preservation of the order of the eigenvalues: the largest
eigenvalue of x is associated to the eigenvector of y corresponding to
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the largest eigenvalue of y, and so on. An operator T : S(n) → 2S(n) is
coaxial ([12],[44]) if for any y ∈ T (x), y and x are coaxial. The graph of
any coaxial operator is contained in the non monotone operator defined
by TH (0) = S(n), otherwise

TH (x) = {y ∈ Y | x and y are coaxial}

We have seen in section 8.2 that the graph of a coaxial operator is
included in the graph of the Hill bipotential.

10. Numerical methods based on the bipotential framework

In applications bipotentials are interesting because of the associated
implicit normality rules. The properties of bipotentials allow to dis-
cretize an evolution problem into a series of minimization problems
concerning the associated bifunctional.

For example let us consider a body with reference configuration Ω,
with the boundary decomposition ∂Ω = Γ1∪Γ2∪Γ3. At a fixed moment
t we have imposed velocities u̇t on the part Γ1 of its boundary, imposed
forces ft on Γ2 and on Γ3 the body is in unilateral contact with friction
with a rigid foundation. The unit normal, pointing outwards, of the
boundary ∂Ω is denoted by n and for any stress field σ in Ω we denote
σn = σ n.

Suppose that the body is made by a plastic material described by a
bipotential bp dependent on the strain rate ε(u̇) and the stress σ. The
contact with friction is described by the bipotential bc. associated with
the Coulomb law.

For any pair (v, τ) of kinematically admissible velocity field v and
statically admissible stress field τ we introduce the bifunctional

B(v, τ) =

∫

Ω
bp(ε(v), τ) dx +

∫

Γ3

bc(−v, τn) ds −

−
∫

Γ1

τn · u̇t ds −
∫

Γ2

ft · v ds

Then, by using integration by parts and the properties of the bipoten-
tials which are involved, one can show that

B(v, τ) ≥ 0

and that B(u, σ) = 0 if (u, σ) is the pair formed by the velocity field
and associated stress field of the body at moment t.
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Therefore we may try to numerically minimize the bifunctional in
order to find the solution of the (quasistatic) evolution problem. Al-
ternatively, the bifunctional can be adapted in order to use a predic-
tor/corrector scheme.

As applications we may cite the bound theorems of the limit analysis
([38], [8]) and the plastic shakedown theory ([41], [12], [9], [6]) which
can be reformulated by means of weak normality rules. The bipotential
method suggests new algorithms, fast and robust, as well as variational
error estimators assessing the accurateness of the finite element mesh
([22], [23], [37], [40], [7], [25], [26]). Such algorithms have been proposed
and used in applications to the contact mechanics [13], the dynamics
of granular materials ([15], [16], [17][42]), the cyclic plasticity of metals
[37] and the plasticity of soils ([1], [25]).

A very challenging subject seems to be the extension of the math-
ematical results of Ghoussoub [19] [20] for the particular case of self-
dual lagrangians, to general bipotentials, or at least to bipotentials
constructed from bipotential convex covers.

11. Construction of bipotentials

Let Bp(X,Y ) be the set of all bipotentials b : X×Y → R∪{+∞}. We
shall need the following notion of implicitly convex functions.

DEFINITION 11.1. Let Λ be an arbitrary non empty set and V a real
vector space. The function f : Λ× V → R̄ is implicitly convex if for
any two elements (λ1, z1), (λ2, z2) ∈ Λ × V and for any two numbers
α, β ∈ [0, 1] with α+ β = 1 there exists λ ∈ Λ such that

f(λ, αz1 + βz2) ≤ αf(λ1, z1) + βf(λ2, z2) .

In the following bipotential convex covers are defined, as in
definition 4.2 [11].

DEFINITION 11.2. A bipotential convex cover of the non empty
set M is a function λ ∈ Λ 7→ bλ from Λ with values in the set Bp(X,Y ),
with the properties:

(a) The set Λ is a non empty compact topological space,

(b) Let f : Λ ×X × Y → R ∪ {+∞} be the function defined by

f(λ, x, y) = bλ(x, y).
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Then for any x ∈ X and for any y ∈ Y the functions f(·, x, ·) :
Λ × Y → R̄ and f(·, ·, y) : Λ ×X → R̄ are lower semi continuous
on the product spaces Λ × Y and respectively Λ ×X endowed with
the standard topology,

(c) We have M =
⋃

λ∈Λ

M(bλ).

(d) the functions f(·, x, ·) and f(·, ·, y) are implicitly convex in the sense
of Definition 11.1.

This notion generalizes the one of a bi-implicitly convex la-

grangian cover. see Definitions 4.1 and 6.6 [10]. Here we shall give
only the definition of a convex lagrangian cover, without the bi-implicit
convexity hypothesis.

DEFINITION 11.3. Let M ⊂ X × Y be a non empty set. A convex

lagrangian cover of M is a function λ ∈ Λ 7→ φλ from Λ with values
in the set of lower semicontinuous and convex functions on X, with the
properties:

(a) The set Λ is a non empty compact topological space,

(b) Let f : Λ ×X × Y → R be the function defined by

f(λ, x, y) = φλ(x) + φ∗λ(y).

Then for any x ∈ X and for any y ∈ Y the functions f(·, x, ·) and
f(·, ·, y) are lower semicontinuous from Λ with values in the set of
lower semicontinuous and convex functions on X, endowed with
pointwise convergence topology,

(c) we have

M =
⋃

λ∈Λ

M(φλ) .

A bipotential convex cover λ ∈ Λ 7→ bλ such that for any λ ∈ Λ the
bipotential bλ is separable is a bi-implicitly convex lagrangian cover,
see Definitions 4.1 and 6.6 [10]. . For such covers the sets M(bλ)are
maximal cyclically monotone for any λ ∈ Λ.

General bipotential convex covers are not lagrangian. (see remark
6.1 [10] for a justification of the ”lagrangian” term). In the language of
convex analysis this means that in general the sets M(bλ) are not cycli-
cally monotone. An example is given in section 5 [11], of a bipotential
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convex cover of the graph of the Coulomb’s dry friction law, which is
made by monotone, but not maximally monotone graphs.

In sections 5 and 8 [10] it is explained that not any BB-graph admits
a convex lagrangian cover. Moreover, there are BB-graphs admitting
(up to reparametrization) only one convex lagrangian cover, as well as
BB-graphs which have infinitely many lagrangian covers. The problem
of describing the set of all convex lagrangian covers of a BB-graph
seems to be difficult.

DEFINITION 11.4. Let λ 7→ bλ be a bipotential convex cover of the
BB-graph M . To the cover we associate the function b : X × Y →
R ∪ {+∞} by the formula

b(x, y) = inf {bλ(x, y) : λ ∈ Λ}

We obtained in theorem 4.6 [11] the following result.

THEOREM 11.5. Let λ 7→ φλ be a bipotential convex cover of the BB-
graph M and b : X × Y → R defined as in definition 11.4. Then b is a
bipotential and M = M(b).

In the case of M = M(φ), with φ convex and lower semi continuous
(this corresponds to separable bipotentials), the set Λ has only one
element Λ = {λ} and we have only one potential φ. The associated
bipotential from Definition 11.4 is obviously

b(x, y) = φ(x) + φ∗(y) .

This is a bipotential convex cover in a trivial way; the implicit convexity
conditions are equivalent with the convexity of φ, φ∗ respectively.

12. One more construction result

For simplicity, in this section we shall work only with lower semicon-
tinuous convex functions φ with the property that φ ∈ Γ(X,R) and its
Fenchel dual φ∗ ∈ Γ(Y,R).

We reproduce here the following definition of convexity (in a gener-
alized sense), given by K. Fan [29] p. 42.

DEFINITION 12.1. Let X, Y be two arbitrary non empty sets. The
function f : X × Y → R is convex on X in the sense of Fan if for
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any two elements x1, x2 ∈ X and for any two numbers α, β ∈ [0, 1] with
α+ β = 1 there exists a x ∈ X such that for all y ∈ Y :

f(x, y) ≤ αf(x1, y) + βf(x2, y).

With the help of the previous definition we introduce a new convex-
ity condition for a convex lagrangian cover.

DEFINITION 12.2. Let λ 7→ φλ be a convex lagrangian cover of the
BB-graph M , in the sense of definition 11.3. Consider the functions:

g : X × Λ ×X → R , h : Y × Λ × Y → R ,

given by g(x, λ, z) = φλ(x) − φλ(z), respectively h(y, λ, u) = φ∗λ(y) −
φ∗λ(u).

The cover is Fan bi-implicitly convex if for any x ∈ X, y ∈ Y ,
the functions g(x, ·, ·), h(y, ·, ·) are convex in the sense of Fan on Λ×X,
Λ × Y respectively.

Recall the following minimax theorem of Fan [29], Theorem 2. In
the formulation of the theorem words ”convex” and ”concave” have
the meaning given in definition 12.1 (more precisely f is concave if −f
is convex in the sense of the before mentioned definition).

THEOREM 12.3. (Fan) Let X be a compact Hausdorff space and Y
an arbitrary set. Let f be a real valued function on X × Y such that,
for every y ∈ Y , f(·, y) is lower semicontinuous on X. If f is convex
on X and concave on Y , then we have

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y) .

The difficulty of theorem 11.5 boils down to the fact the class of
convex functions is not closed with respect to the inf operator. Never-
theless, by using Fan theorem 12.3 we get the following general result.

THEOREM 12.4. Let Λ be a compact Hausdorff space and λ 7→ φλ ∈
Γ(X,R) be a convex lagrangian cover of the BB-graph M , with φ∗λ ∈
Γ(Y,R) for any λ ∈ Λ, such that:

(a) for any x ∈ X and for any y ∈ Y the functions Λ ∋ λ 7→ φλ(x) ∈ R

and Λ ∋ λ 7→ φ∗λ(y) ∈ R are continuous,
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(b) the cover is Fan bi-implicitly convex in the sense of definition 12.2.

Then the function b : X × Y → R defined by

b(x, y) = inf {φλ(x) + φ∗λ(y) | λ ∈ Λ}

is a bipotential and M = M(b).
Proof. For some of the details of the proof we refer to the proof of

theorem 4.12 11.5 in [10]. There are five steps in that proof. In order to
prove our theorem we have only to modify the first two steps: we want
to show that for any x ∈ dom(M) and any y ∈ im(M) the functions
b(·, y) and b(x, ·) are convex and lower semi continuous.

For (x, y) ∈ X × Y let us define the function xy : Λ ×X → R by

xy(λ, z) = 〈z, y〉 + φλ(x) − φλ(z) .

We check now that xy verifies the hypothesis of theorem 12.3. Indeed,
the hypothesis (a) implies that for any z ∈ X the function xy(·, z) is
continuous. Notice that

xy(λ, z) = 〈z, y〉 + g(x, λ, z) .

It follows from hypothesis (b) that the function xy is convex on Λ in
the sense of Fan.

In order to prove the concavity of xy on X, it suffices to show that
for any z1, z2 ∈ X, for any α, β ∈ [0, 1] such that α + β = 1, we have
the inequality

xy(λ, αz1 + βz2) ≤ αxy(λ, z1) + βxy(λ, z2)

for any λ ∈ Λ. This inequality is equivalent with

〈αz1 +βz2, y〉−φλ(αz1 +βz2) ≤ α (〈z1, y〉 − φλ(z1)+β (〈z2, y〉 − φλ(z2)

for any λ ∈ Λ. But this is implied by the convexity of φλ for any λ ∈ Λ.
In conclusion the function xy satisfies the hypothesis of theorem

12.3. We deduce that

min
λ∈Λ

sup
z∈X

xy(λ, z) = sup
z∈X

min
λ∈Λ

xy(λ, z) . (9)

Let us compute the two sides of this equality.
For the left hand side term of (9) we have:

min
λ∈Λ

sup
z∈X

xy(λ, z) = min
λ∈Λ

sup
z∈X

{〈z, y〉 + φλ(x) − φλ(z)} =

= min
λ∈Λ

{

φλ(x) + sup
z∈X

{〈z, y〉 − φλ(z)}
}

=
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= min
λ∈Λ

{φλ(x) + φ∗λ(y)} = b(x, y) .

For the right hand side term of (9) we have:

sup
z∈X

min
λ∈Λ

xy(λ, z) = sup
z∈X

min
λ∈Λ

{〈z, y〉 + φλ(x) − φλ(z)} =

= sup
z∈X

{

〈z, y〉 − max
λ∈Λ

{φλ(z) − φλ(x)}
}

.

Let x : X → R be the function

x(z) = max
λ∈Λ

{φλ(z) − φλ(x)} .

Then the right hand side term of (9) is in fact:

sup
z∈X

min
λ∈Λ

xy(λ, z) = x∗(y) .

Therefore we proved the equality:

b(x, y) = x∗(y) .

This shows that the function b is convex and lower semicontinuous in
the second argument.

In order to prove that b is convex and lower semicontinuous in the
first argument, replace φλ by φ∗λ in the previous reasoning.
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7. L. Bousshine, A. Chaaba, G. de Saxcé: Softening in stress-strain curve for
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