
Control of nonlinear PDE’s

Abstract

This research project summarises two types of control problems for
some nonlinear PDE’s. The first of them discussed in Sections 1–3 deals
with the Navier–Stokes system controlled by a finite-dimensional external
force. The second group of problems deals with the magnetohydrodynam-
ics system and other related equations with a localised control. In both
cases, we give a precise formulation of the problems we wish to study and
describe some expected results.

1 Feedback control by a finite-dimensional body
force

Let us consider the Navier–Stokes system
{

∂tu + 〈u,∇〉u− ν∆u +∇u = f(t, x),
div u = 0,

(1)

where u and p are unknown velocity field and pressure, ν is the kinematic
viscosity, and f is an external force. Suppose that the space variable x belongs
to the torus Td with d = 2 or 3, and denote by V the space of H1-smooth
divergence-free vector fields on Td. Let us assume that the right-hand side
of (1) is represented in the form

f(t, x) = h(t, x) + η(t, x), (2)

where h is a given function and η is a control taking on values in a finite-
dimensional subspace E ⊂ V . Equations (1), (2) are supplemented with the
initial condition

u(0, x) = u0(x), (3)

where u0 ∈ V . It was proved in the recent papers [AS05, AS06, Shi06, Shi07]
that if E sufficiently large, then problem (1)–(3) is controllable in the following
sense.

Controllability : For any T > 0 and ε > 0, any vector-fields û, u0 ∈ V , and any
finite-dimensional space F ⊂ V there is a control η ∈ C∞(0, T ; E) such
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that the problem (1)–(3) has a unique solution u(t, x) (in an appropriate
functional class), which satisfies the relations

‖u(T, ·)− û‖1 < ε,

PF u(T, ·) = PF û,

where ‖ · ‖1 is the H1 norm and PF : V → V stands for the orthogonal
projection onto F .

Our first goal is to study

Problem I : Feedback stabilisation to a given bounded solution.

In other words, given an initial function u0 ∈ V and a time-bounded solu-
tion û(t, x) of problem (1), (2) with η ≡ 0, we wish to construct an operator
K : V → E such that problem (1)–(3) with η = K(u) has a unique solu-
tion u(t, x), which satisfies the condition

‖u(t, ·)− û(t, ·)‖1 → 0 as t → +∞. (4)

Feedback stabilisation to a given stationary solution was studied in the pa-
per [BT04], which establishes the existence of a linear stabiliser K with range in
a finite-dimensional space depending on the stationary solution. Furthermore,
it follows from the existence of finitely many determining modes (see [FP67])
that for any ν > 0 one can construct a finite-dimensional feedback control K
with range in a space Eν such that (4) holds for any bounded solution û. Our
goal is to establish a similar result with a control space not depending on ν.
This result would be important in ergodic theory for stochastic Navier–Stokes
equations.

2 Finite-dimensional boundary control

Let us consider the Navier–Stokes system (1) supplemented with the boundary
condition

u
∣∣
∂D

= η(t, x), (5)

where η is a control function. This problem is rather well understood in the
case when there are no further restrictions on η. In particular, it was proved
in [Cor96, CF96, FÈ99] (see also the references in [Cor07]) that problem (1), (5)
is globally exactly controllable. Furthermore, feedback stabilisation was studied
in [Fur01, Fur04, BLT061, Ray06, Ray07]. Our aim here is to investigate the
problem of controllability by a finite-dimensional control force.

Problem II : Approximate controllability.

We wish to find a finite-dimensional space E ⊂ L2(∂D) (not depending on ν)
such that for any ε > 0, T À 1 and any divergence-free vector fields u0, û ∈ H1

vanishing on the boundary there is a solution u(t, x) of (1) defined on the interval
[0, T ] such that

u(t, ·)
∣∣
∂D

∈ E for any t ∈ [0, T ].
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3 Exact controllability

Let us return to problem (1), (2). It is well known that in the case of torus
(both 2D or 3D), this problem is exactly controllable by an external force η
supported in a given open subset ω ⊂ Td; see [Cor96, CF96, FÈ99]. We wish to
investigate

Problem III : Exact controllability by a finite-dimensional body force.

Let us describe this problem in more details. We fix a function h and a con-
stant T > 0 and denote by BT the set of points û that are representable in
the form û = v(T, ·), where v(t, x) is a solution of (1) with f = h. For any
divergence-free smooth vector field u0 and any û ∈ BT , we seek a control η(t)
with range in a finite-dimensional space E ⊂ L2(Td,Rd) such that the solu-
tion of (1)–(3) is defined on the time interval [0, T ] and satisfies the relation
u(T, ·) = û. Note that in the case of the Euler system (ν = 0), the exact con-
trollability does not hold. Namely, it is proved in [Shi08] that the complement of
the set of accessibility AT (u0) from a given initial point u0 is everywhere dense
in the phase space. Since the Euler equations are time-reversible, the set BT

coincides with the phase space and therefore is much bigger than AT (u0). Due
to regularising property of the Navier–Stokes dynamics, the set BT is a proper
subset of the space of smooth functions, and the property of exact controllability
becomes much more delicate.

The important point of the three problems described above is that their
solution will certainly use the structure of nonlinear term, and the corresponding
properties are not likely to hold for the linearised Navier–Stokes system.

4 Exact boundary controllability

In [FÈ99], the global exact boundary controllability is established for both the
Navier-Stokes and Boussinesq equations. This is a striking result because,
when the control is distributed inside, only local exact controllability results
are known for the Navier-Stokes and Boussinesq equations (see [Im98, Im01,
FCGIP04, HPS05, HPS061]). Similar results of local exact internal controlla-
bility are established for the magnetohydrodynamic (MHD) equations as well
(see [BHPS03, BHPS05, HPS062, HPS07]). The key ingredient of the proofs
consists in appropriate Carleman estimates for the adjoint linearized equations.
The MHD equations describe the motion of a viscous incompressible conduct-
ing fluid in a magnetic field and consist in a subtle and elegant coupling of the
Navier-Stokes equations of viscous incompressible fluid flow and the Maxwell

3



equations of electromagnetic field:




∂ty + 〈y,∇〉 y − 〈B,∇〉B − ν∆y +∇p +∇( 1
2 B)2 = f,

∂tB + (y,∇)B − 〈B,∇〉 y + η curl(curl B) = 0,

div y = 0, div B = 0.

(6)

Here y and B are the velocity and magnetic fields, p is the pressure, ν is the
kinematic viscosity, η is the magnetic resistivity and f is an external force.

Inspired by [FÈ99], we expect to obtain a global exact boundary controlla-
bility result for the MHD system by following a strategy made up by three steps:
1. One establishes a local exact controllability result for the MHD equations on
the torus Td (with d = 2 or 3). 2. One proves the approximate controllability
for the MHD equations on Td. 3. Combining the first two results, we obtain the
global exact controllability for the MHD system on Td. By a periodic extension
procedure, one reduces the global exact boundary controllability for the MHD
equations in bounded domains to the global exact controllability for the MHD
equations on the torus. So we have to investigate the following problems.

Problem IV : Local exact controllability for the MHD system on the torus.

More specifically, let (ŷ, B̂, p̂) be a solution of equations (6), considered on Td

with d = 2 or 3. Let ω be an open subset of Td and T > 0. We expect that the
following assertion is true. If the target solution (ŷ, B̂, p̂) is sufficiently regular,
then there is ε > 0 such that for any y0, B0 ∈ (H1(Td))d with div y0=div B0=0
which satisfy

‖y0 − ŷ(·, 0)‖(H1(Td))d + ‖B0 − B̂(·, 0)‖(H1(Td))d ≤ ε

there exist (u, v) ∈ (L2(Td× (0, T )))2d and (y,B, p, q) ∈ (H2,1(Td× (0, T )))2d×
(L2(0, T ; H1(Td)))2 such that





∂ty + 〈y,∇〉 y − 〈B,∇〉B − ν∆y +∇p +∇( 1
2 B2) = f + χωu,

∂tB + 〈y,∇〉B − 〈B,∇〉 y + η curl(curlB) +∇q = χωv,

div y = 0, div B = 0,

y(·, 0) = y0, B(·, 0) = B0,

(7)

and
y(·, T ) = ŷ(·, T ), B(·, T ) = B̂(·, T ).

Here χω is the characteristic function of ω.

Problem V : Approximate controllability for the MHD system on the torus.
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Let us describe the problem in more details. Let (ŷ, B̂, p̂) be a solution of (6),
considered on Td, and let ω be an open subset of Td. We shall try to show
that, if (ŷ, B̂, p̂) is sufficiently regular, then for any y0, B0 ∈ (H1(Td))d with
div y0 = div B0 = 0 and any ε > 0, there exist T = T (ε) and the vector
functions (u, v) ∈ (L2(Td × (0, T )))2d and (y, B, p, q) ∈ (H2,1(Td × (0, T )))2d ×
(L2(0, T ; H1(Td)))2 which satisfy equations (7) and

‖y(·, T )− ŷ(·, T )‖(H1(Td))d + ‖B(·, T )− B̂(·, T )‖H1(Td))d ≤ ε.

Moreover, we have
lim
ε→0

T (ε) = 0.

Problem VI : Global exact controllability for the MHD equations in bounded
domains.

More specifically, let Ω be a bounded open set of Rd (d = 2 or 3) with a
sufficiently smooth boundary ∂Ω, and let T > 0 be a fixed time. Consider a
solution (ŷ, B̂, p̂) of equations (6), viewed as equations in Ω× (0, T ). We expect
to show that, if (ŷ, B̂, p̂) is sufficiently regular, then for any y0, B0 ∈ (H1(Ω))d

with div y0 = div B0 = 0 there exist (α, β) ∈ (L2(0, T ; (H3/2(∂Ω))d))2 and
(y,B, p) ∈ (H2,1(Ω× (0, T )))2d × L2(0, T ;H1(Ω)) which satisfy equation (6) in
Ω× (0, T ), the boundary conditions

y = α, B = β on ∂Ω× (0, T ),

the initial conditions

y(·, 0) = y0, B(·, 0) = B0 in Ω,

and the final conditions

y(·, T ) = ŷ(·, T ), B(·, T ) = B̂(·, T ) in Ω.

5 Feedback stabilization

We study stabilization for fluid dynamics equations (Navier-Stokes, magneto-
hydrodynamics, Boussinesq). As an example we consider controlled MHD sys-
tem (6).

Given a stationary solution (ŷ, B̂) we search for a feedback controller (linear
or nonlinear)

(u(t), v(t)) = K(y(t), B(t)),

such that the system becomes stable around the stationary state. One of the
reasons for taking controllers localized in subdomains is the fact that one may
extend the results to boundary controllers by the usual technique of considering
the problem in a larger domain.
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Feedback stabilization results for Navier-Stokes equations were obtained in
[Bar03, BLT061, BLT062, BT04, Fur01, Fur04, Lef082]. Results concerning local
feedback stabilization for the MHD system were obtained in [Lef081].

There are several issues concerning the stabilization of Navier-Stokes type
systems:

Problem VII : The study of the domain of attraction for Navier-Stokes equa-
tions controlled by feedback stabilization laws. The study of the existence
of global linear feedback stabilizers, either internal or boundary.

Problem VIII : Stabilization of the system with different boundary condi-
tions.

Various boundary conditions for the velocity field of the fluid may be en-
countered in practice, the most usual being the nonslip boundary condition

y = 0

and Navier-slip boundary conditions

3∑

i,j=1

Ni

(
∂yi

∂xj
+

∂yj

∂xi

)
Tj = 0, y ·N = 0,

where N is the outer normal vector to the boundary and T is a generic tangent
vector. The problems in different boundary settings need separate treatment,
especially when deriving Carleman type observability inequalities.

Problem IX : Stabilization in unbounded domains, particularly in channels.

Problem X : Investigation of the stabilization properties and the domain of
stabilization by using very particular laws of feedback, more realistic from
the applications point of view.
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