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Abstract

We consider a mathematical model which describes the equilibrium of an elastic
beam in contact with two obstacles. The contact is modeled with a normal
compliance type condition in such a way that the penetration is allowed but
is limited. We state the variational formulation of the problem and prove an
existence and uniqueness result for the weak solution. Then, we provide an
alternative approach to the model, based on the control variational method.
Necessary and sufficient optimality conditions are derived, together with an
approximation property. Finally, we extend our results to some versions of
the model which describe the contact with a single obstacle, including a time-
dependent case.
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1 Introduction

The control variational method for differential equations was introduced in [1, 15].
A comprehensive presentation for this new variational method, together with various
examples and applications, may be found in the recent monograph [9]. The main
new idea in this method is to perform the minimization of the energy of the system
via the optimal control theory, which represents an extension of the arguments via
the calculus of variations, used in the classical variational method. This new general
framework is very flexible and may offer several different solutions for the same prob-
lem, as shown in [16]. It is relevant both from the theoretical and the numerical point
of view. In particular, it replaces the solution of nonlinear differential equations of
order four by the solution of linear equations of lower order and, moveover, it provides
regularity results.

The interest in contact problems involving beams lies in the fact that their math-
ematical analysis may provide insight into the possible types of behaviour of the
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solutions and on occasions leads to decoupling of some of the equations, thus sim-
plifying the approach. Moreover, one may use such models as tests and benchmarks
for computer schemes meant for simulation of complicated multidimensional contact
problems. Models, analysis and simulations of contact problems for beams can be
found in [3, 7, 8, 12] and the references therein.

The aim of this paper is to illustrate the use of the control variational method in
the study of various models that describe the equilibrium of an Euler-Bernoulli beam
in possible contact with one or two obstacles. First, we consider a mathematical
model describing the process of contact of a beam in the presence of two obstacles.
We model the contact with normal compliance in such a way that the penetration is
limited, which gives one of the traits of novelty of this paper. The Signorini unilateral
condition represents a particular case of our contact condition and can be recovered
from it. In the variational formulation, the problem leads to an elliptic variational
inequality whose unique solvability is obtained by arguments of monotone operators.
A second trait of novelty of the paper consists in the fact that, besides the use of
the standard arguments above, we analyse the model by using the control variational
method. During the analysis we develop arguments that can be useful in the study
of various models of contact for beams, both in the elliptic and in the evolutionary
case. We provide examples of such kind of models which describe the contact of a
beam with a single obstacle, including a time-dependent model with adhesion.

The rest of the paper is structured as follows. In Section 2 we present the model
of the contact problem with two obstacles. Then, in Section 3 we list the assumptions
on the data, derive the variational formulation and prove an existence and uniqueness
result. In Section 4 we analyze the model via the control variational method; this
analysis leads us to provide existence, characterization and approximation results.
In Section 5 we continue the study with three models describing the contact with
a single obstacle. The first two models are time-independent; for them we present
results related to our approach, including a regularity poperty. The third model
is time-dependent and describes the adhesive contact problem with a deformable
obstacle.

2 The model

The physical setting and the process are as follows. An elastic beam occupies in the
reference configuration the interval [0, L] of the Ox axis, is clamped at its left end and
the right end is free. The beam is acted upon by an applied force of (linear) density
f = f(x) where x is the spatial variable. For x ∈ [0, L], denote by u = u(x) the
vertical displacement of the beam and, when the meaning is clear, we do not indicate
explicitly the dependence of various variables on x. The beam may arrive in contact
with two obstacles S1 and S2, situated at a distance g1 ≤ 0 and g2 ≥ 0 on the Ox
axis, respectively. The obstacles are deformable and, therefore, the penetrations are
allowed, but are limited. The physical setting is depicted in Fig. 2.1.
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Fig. 2.1. A beam in potential contact with two obstacles.

We use the Euler-Bernoulli model for the beam and we denote A = EI, where I
is the beam’s moment of inertia and E its Young modulus. We have

d2

dx2

(
A

d2u

dx2

)
= f + ξ (2.1)

which is the classical equilibrium equation of the beam, in which ξ represents the
contact force.

Next, since the penetration is limited, the vertical displacement satisfies the uni-
lateral constraint

k1 ≤ u ≤ k2, (2.2)

where k1 and k2 are functions of x which satisfy k1 ≤ g1 and k2 ≥ g2. When
g1 < u < g2 then there is no contact between the beam and the obstacles and
therefore the contact force vanishes. Thus

g1 < u < g2 =⇒ ξ = 0. (2.3)

When u ≤ g1 the beam is in contact with the obstacle S1. In this case the obstacle
reacts with a normal force ξ directed upward, ξ ≥ 0. We assume that the reaction ξ
satisfies

k1 < u ≤ g1 =⇒ ξ = −p1(g1 − u), (2.4)

u = k1 =⇒ ξ ≥ −p1(g1 − u), (2.5)

where p1 : IR+ → IR is a given nonpositive function. Condition (2.4) shows that when
k1 < u ≤ g1, then the reaction ξ is uniquely determined by the penetration g1 − u.
Also, condition (2.5) implies that when u = k1, then the reaction is not uniquely
determined, but is submitted to the restriction ξ ≥ −p1(u−g1). Such conditions show
that the contact follows a normal compliance condition up to the limit k1 and then,
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when this limit is reached, the contact follows a Signorini-type unilateral condition
with the gap k1. For this reason we refer to the contact condition (2.4), (2.5) as a
normal compliance contact condition with finite penetration and unilateral constraint,
and we conclude that the obstacle S1 has an elastic-rigid behavior.

A similar situation arise when u > g2, i.e. when the beam arrives in contact
with the obstacle S2. In this case the obstacle reacts with a normal force ξ directed
downward, ξ ≤ 0. The equilibrium equation is still (2.1) and the reactive normal
force ξ satisfies

g2 ≤ u < k2 =⇒ ξ = −p2(u− g2), (2.6)

u = k2 =⇒ ξ ≤ −p2(u− g2), (2.7)

where p2 : IR+ → IR is a given nonnegative function. Conditions (2.6) and (2.7) show
that the contact with S2 follows a normal compliance condition up to the limit k2

and then, when this limit is reached, the contact follows a Signorini-type unilateral
condition with the gap k2. We conclude that the obstacle S2 has an elastic-rigid
behavior, too.

Details on the normal compliance contact condition as well as on the Signorini
contact condition can be found in [5, 11] and the reference therein. Note that a
contact condition similar to that used above, which combine the normal compliance
condition and the Signorini condition, was used in [6], in the study of a dynamic
frictionless contact problem with elastic-viscoplastic materials.

We restate now conditions (2.3)–(2.7) in a different way, which will be more conve-
nient for the variational analysis of the problem. To this end, we consider the function
p : IR → IR given by

p(r) =





p1(g1 − r) if r ≤ g1,

0 if g1 < r < g2,

p2(r − g2) if g2 ≤ r.

(2.8)

It is easy to see that conditions (2.3), (2.4) and (2.6) may be written, in an equivalent
form, as follows:

k1 < u < k2 =⇒ ξ = −p(u). (2.9)

Also, conditions (2.5) and (2.7) may be written as

u = k1 =⇒ ξ + p(u) ≥ 0, (2.10)

u = k2 =⇒ ξ + p(u) ≤ 0, (2.11)

respectively. Finally, since the beam is rigidly attached at its left we impose the
condition

u(0) =
du

dx
(0) = 0 (2.12)

and, since no moments act on the free end of the beam, we have

d2u

dx2
(L) =

d3u

dx3
(L) = 0. (2.13)
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We collect the equations and conditions above to obtain the classical formulation
of the contact problem.

Problem P . Find a displacement field u : [0, L] → R which satisfies conditions (2.1),
(2.2), (2.9)–(2.11) in (0, L), together with the boundary conditions (2.12) and (2.13).

The variational analysis of the contact problem P will be provided in Sections
3 and 4 by using arguments of variational inequalities and the control variational
method, respectively.

3 Existence and uniqueness

We turn now to derive a weak or variational formulation of Problem P . To this end
we assume in what follows that

A ∈ L∞(0, L), ∃m > 0 such that A(x) ≥ m a.e. x ∈ (0, L), (3.1)

f ∈ L2(0, L), (3.2)

g1 ≤ 0, g2 ≥ 0, (3.3)

k1 ∈ L2(0, L), k1(x) ≤ g1 a.e. x ∈ (0, L), (3.4)

k2 ∈ L2(0, L), k2(x) ≥ g2 a.e. x ∈ (0, L). (3.5)

Also, the normal compliance functions p1 : IR+ → IR and p2 : IR+ → IR satisfy





(a) There exists L1 > 0 such that
|p1(r)− p1(s)| ≤ L1 |r − s| ∀ r, r ∈ R+.

(b) (p1(r)− p1(s)) · (r − s) ≤ 0 ∀ r, s ∈ R+.

(c) p1(r) ≤ 0 ∀ r ≥ 0 and p1(0) = 0.

(3.6)





(a) There exists L2 > 0 such that
|p2(r)− p2(s)| ≤ L2 |r − s| ∀ r, r ∈ R+.

(b) (p2(r)− p2(s)) · (r − s) ≥ 0 ∀ r, s ∈ R+.

(c) p2(r) ≥ 0 ∀ r ≥ 0 and p2(0) = 0.

(3.7)

We remark that the assumptions (3.6) and (3.7) on p1(·) and p2(·) are fairly gen-
eral. The main severe restriction comes from condition (a) which requires that the
functions are Lipschitz continuous. From mechanical point of view, condition (b) ex-
press the fact that the magnitude of the reaction force increases with the penetration.
One standard example is provided by the functions

p1(r) = −µ1 r+, p2(r) = µ2 r+

where µ1 > 0 and µ2 > 0 are stiffness coefficients and r+ denotes the positive part of
r, i.e. r+ = max {0, r}. Clearly these functions satisfy assumptions (3.6) and (3.7),
respectively.
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It is easy to see that, under assumptions (3.6) and (3.7), the function p defined by
(2.8) is a Lipschitz continuous monotone function which vanishes at the origin, i.e. it
satisfies 




(a) There exists L̃ > 0 such that

|p(r1)− p(r2)| ≤ L̃ |r1 − r2| ∀ r1, r2 ∈ R.

(b) (p(r1)− p(r2)) · (r1 − r2) ≥ 0 ∀ r1, r2 ∈ R.

(b) p(0) = 0.

(3.8)

Here, the Lipschitz constant L̃ is given by L̃ = max {L1, L2}, where L1 and L2 are
the Lipschitz constants of the functions p1 and p2, respectively.

In what follows we use standard notation for Lp and Sobolev spaces and the
subscripts x and xx will represent the first and the second derivatives with respect
to x, respectively. We introduce the closed subspace of H2(0, L) given by

V = { v ∈ H2(0, L) : v(0) = vx(0) = 0 }, (3.9)

and, below, we denote by 0V the zero element of V . We note that there exists c > 0
such that ‖v‖L2(0,L) ≤ c ‖vx‖L2(0,L) for all v ∈ H1(0, L) satisfying v(0) = 0, thus,

‖v‖H2(0,L) ≤ c ‖vxx‖L2(0,L) ∀ v ∈ V. (3.10)

We consider now the inner product on V given by

(u, v)V = (uxx, vxx)L2(0,L), (3.11)

and let ‖ · ‖V be the associated norm. Using (3.10) we find that ‖ · ‖H2(0,L) and ‖ · ‖V

are equivalent norms on V and, therefore, (V, (·, ·)V ) is a real Hilbert space.
In addition, we consider the bilinear form a : V × V → R, the functional j :

V × V → R, and the set of admissible displacement fields K, defined by

a(u, v) =

∫ L

0

A uxxvxx dx ∀ u, v ∈ V, (3.12)

j(u, v) =

∫ L

0

p(u) v dx ∀u, v ∈ V, (3.13)

K = { v ∈ V : k1 ≤ v ≤ k2 in (0, L) }. (3.14)

We note that by (3.1) and (3.8) it follows that the integrals in (3.12) and (3.13) are
well-defined; moreover, by conditions (3.4) and (3.5) it follows that K is nonempty
since, for instance,

0V ∈ K. (3.15)

Assume now that u is a regular solution of Problem P . Then (2.2) implies that
u ∈ K. Let v be an arbitrary element in K. It follows from (2.1) that

∫ L

0

d2

dx2

(
A

d2u

dx2

)
(v − u) dx =

∫ L

0

f (v − u) dx +

∫ L

0

ξ (v − u) dx

6



and, performing two integrations by parts and using the boundary conditions (2.12),
(2.13) yields

∫ L

0

Auxx(vxx − uxx) dx =

∫ L

0

f (v − u) dx +

∫ L

0

ξ (v − u) dx. (3.16)

On the other hand, using (2.9)–(2.11) and the definition of K we deduce that

ξ(v − u) ≥ −p(u)(v − u) in (0, L),

which implies that

∫ L

0

ξ (v − u) dx ≥ −
∫ L

0

p(u)(v − u) dx. (3.17)

We combine now (3.16) and (3.17), then we use notation (3.12) and (3.13) to
obtain the following variational formulation of Problem P .

Problem PV . Find a displacement field u such that

u ∈ K, a(u, v − u) + j(u, v − u) ≥ (f, v − u)L2(0,L) ∀ v ∈ K. (3.18)

We have the following existence and uniqueness result, which provides the unique
weak solvability of the contact problem P .

Theorem 1. Assume that (3.1)–(3.7) hold. Then there exists a unique solution
u∗ ∈ V to the variational problem PV .

Proof. Let P : V → V be the operator given by

(Pu, v)V = a(u, v) + j(u, v) ∀ v ∈ V. (3.19)

We use assumption (3.1), definition (3.11) and the properties (3.8) of the function p
to see that P is a strongly monotone Lipschitz continuous operator on V . Moreover,
by (3.2) it follows that there exists a unique element f̃ ∈ V such that

(f̃ , v)V = (f, v)L2(0,L) ∀ v ∈ V. (3.20)

Also, from assumptions (3.4) and (3.5) it follows that K is a nonempty closed convex
subset of V . We use now a standard result on elliptic variational inequality to see
that there exists a unique element u∗ ∈ V such that

u∗ ∈ K, (Pu∗, v − u∗)V ≥ (f̃ , v − u∗)V ∀ v ∈ K. (3.21)

Theorem 1 is now a consequence of (3.19)–(3.21).
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4 Analysis via the control variational method

In this section we indicate an alternative approach to the problem PV , based on
optimal control arguments. Everywhere below we assume that (3.1)–(3.7) hold. We
denote by l the inverse of A, i.e. l = A−1, and note that, by condition (3.1), it
follows that l ∈ L∞(0, L). Also, let ϕ : R → R be a primitive of p, ϕ′ = p, and let
z ∈ H2(0, L) be the solution of the problem

d2z

dx2
= f in (0, L), z(L) =

dz

dx
(L) = 0. (4.1)

We start by introducing the following optimal control problem:

min
[u,h]∈K×L2(0,L)

{ 1

2

∫ L

0

lh2 dx +

∫ L

0

ϕ(u) dx
}

, (4.2)

uxx = lz + lh in (0, L). (4.3)

The solvability of the optimal problem (4.2)–(4.3) and its link with the variational
problem PV is given by the following result.

Theorem 2. Assume that (3.1)–(3.7) hold. Then, problem (4.2)–(4.3) has a unique
optimal pair [u∗, h∗] ∈ K × L2(0, L). Moreover, u∗ satisfies the variational inequality
(3.18).

Proof. Note that the cost functional in (4.2) is strictly convex (as ϕ′ = p and p is
monotone, see (3.8)(b)) and coercive in h. Therefore, the existence and the uniqueness
of the optimal pair [u∗, h∗] ∈ K × L2(0, L) follows from standard arguments.

We consider now admissible variations of the form u∗+λ(v−u∗) and h∗+λ(k−h∗)
in which λ is an arbitrary element of [0, 1], v is an arbitrary element of K, and
k ∈ L2(0, L) is such that

vxx = lz + lk in (0, L). (4.4)

Since [u∗, h∗] is the optimal pair of the problem (4.2)–(4.3), it follows that

1

2

∫ L

0

l(h∗)2 dx +

∫ L

0

ϕ(u∗) dx

≤ 1

2

∫ L

0

l(h∗ + λ(k − h∗))2 dx +

∫ L

0

ϕ(u∗ + λ(v − u∗)) dx.

We divide this inequality by λ > 0 and then we pass to the limit as λ → 0 to obtain

0 ≤
∫ L

0

lh∗(k − h∗) dx +

∫ L

0

p(u∗)(v − u∗) dx.
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Next, we replace h∗ and k by using (4.3) and (4.4), respectively, and operate integra-
tions by part in the resulting inequality, by using (4.1). As a result we obtain

0 ≤
∫ L

0

(Au∗xx − z)(vxx − u∗xx) dx +

∫ L

0

p(u∗)(v − u∗) dx

=

∫ L

0

Au∗xx(vxx − u∗xx) dx +

∫ L

0

p(u∗)(v − u∗) dx−
∫ L

0

f(v − u∗) dx

and, using the notation (3.12) and (3.13) it follows that

a(u∗, v − u∗) + j(u∗, v − u∗) ≥ (f, v − u∗)L2(0,L),

which concludes the proof.

A simple calculation implies that

1

2

∫ L

0

lh2 dx +

∫ L

0

ϕ(u) dx =
1

2

∫ L

0

A(uxx − lz)2 dx +

∫ L

0

ϕ(u) dx

=
1

2

∫ L

0

A(uxx)
2 dx +

∫ L

0

ϕ(u) dx−
∫ L

0

fu dx +
1

2

∫ L

0

lz2 dx

which shows that, up to a constant (provided by the last term), the cost functional
in (4.2) represents the usual energy associated to Problem PV . We conclude from
here that the classical variational approach is a special case of the control variational
method presented above.

Next, we approximate the control problem with the optimization problem

min
[u,h]∈K×L2(0,L)

{ 1

2

∫ L

0

lh2 dx +

∫ L

0

ϕ(u) dx +
1

2ε

∫ L

0

(uxx − lh− lz)2 dx
}

, (4.5)

in which ε > 0. We have the following existence, uniqueness and convergence result.

Theorem 3. Assume that (3.1)–(3.7) hold. Then, for each ε > 0, the problem (4.5)
has a unique minimizer [uε, hε] ∈ K × L2(0, L). Moreover, as ε → 0, the following
convergences hold:

uε → u∗ strongly in V, hε → h∗ strongly in L2(0, L).

Proof. Let ε > 0. The existence of a unique minimizer [uε, hε] for (4.5) follows from
arguments similar to those used in Theorem 2. Clearly [u∗, h∗] is admissible for (4.5)
and, moreover, we have the inequality

1

2

∫ L

0

lh2
ε dx +

∫ L

0

ϕ(uε) dx (4.6)

+
1

2ε

∫ L

0

((uε)xx − lhε − lz)2 dx ≤ 1

2

∫ L

0

l(h∗)2 dx +

∫ L

0

ϕ(u∗) dx.
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Denote by rε the function defined by

rε =
1

ε

(
(uε)xx − lhε − lz

)
(4.7)

and note that this equality implies that

(uε)xx = lhε + lz + εrε. (4.8)

Recall also that ϕ is bounded from below by an affine functional. Then, using (4.6)–
(4.8) it follows that

{hε} is a bounded sequence in L2(0, L), (4.9)

{ε 1
2 rε} is a bounded sequence in L2(0, L), (4.10)

{uε} is a bounded sequence in V, (4.11)

εrε → 0 in L2(0, L), (4.12)

as ε → 0. It follows from (4.9) and (4.11) that there exists a pair [ĥ, û] ∈ L2(0, L)×V
such that, passing to subsequences, again denoted {hε} and {uε}, we have

hε → ĥ weakly in L2(0, L), (4.13)

uε → û weakly in V. (4.14)

Inequality (4.6), the convergences (4.13), (4.14) and the weak lower semicontinuity of
convex functions yield

1

2

∫ L

0

l(ĥ)2 dx +

∫ L

0

ϕ(û) dx ≤ 1

2

∫ L

0

l(h∗)2 dx +

∫ L

0

ϕ(u∗) dx. (4.15)

Moreover, by (4.12) it follows that the pair [û, ĥ] satisfies (4.3). Therefore, [û, ĥ] is
an admissible pair for the control problem (4.2), (4.3) and, in addition, (4.15) shows
that it is optimal. The uniqueness of the optimal control, guaranteed by Theorem 2,
implies that ĥ = h∗ and û = u∗. Thus, by (4.13) and (4.14) and lower semicontinuity
arguments we have

lim inf
ε→0

1

2

∫ L

0

l(hε)
2 dx ≥ 1

2

∫ L

0

l(h∗)2 dx,

lim inf
ε→0

∫ L

0

ϕ(uε) dx ≥
∫ L

0

ϕ(u∗) dx

and, taking into account (4.15), we obtain that

1

2

∫ L

0

l(hε)
2 dx → 1

2

∫ L

0

l(h∗)2 dx as ε → 0. (4.16)
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A well known convergence criterion in Hilbert spaces combined with (4.16), (4.13)

and equality ĥ = h∗ implies that hε → h∗ strongly in L2(0, L) as ε → 0. We use now
(4.8), (4.12) and equality u∗xx = lh∗ + lz to obtain that that uε → u∗ strongly in V as
ε → 0 . Since the limit is unique, we deduce that the strong convergences above are
valid for the whole sequences {hε} and {uε}, which concludes the proof.

A characterization of the optimal pair of the control problem (4.2), (4.3) is pro-
vided by the following result.

Theorem 4. Assume that (3.1)–(3.7) hold. Then, the element [u∗, h∗] ∈ K ×
L2(0, L) is the optimal pair of the control problem (4.2), (4.3) if and only if there
exists r∗ ∈ L2(0, L) such that

0 ≤
∫ L

0

lh∗(k − h∗) dx +

∫ L

0

p(u∗)(v − u∗) dx +

∫ L

0

r∗(vxx − lk − lz) dx (4.17)

for all k ∈ L2(0, L) and v ∈ K.

Proof. We take admissible variations of the form uε + λ(v − uε), hε + λ(k − hε),
where λ is an arbitrary element of [0, 1], v belongs to K and k ∈ L2(0, L), and obtain

1

2

∫ L

0

lh2
ε dx +

∫ L

0

ϕ(uε) dx +
1

2ε

∫ L

0

((uε)xx − lhε − lz)2 dx

≤ 1

2

∫ L

0

l[hε + λ(k − hε)]
2 dx +

∫ L

0

ϕ(uε + λ(v − uε)) dx

+
1

2ε

∫ L

0

(
(uε)xx + λ(v − uε)− l(hε + λ(k − hε)− lz

)2
dx.

Then, we divide the previous inequality by λ > 0 and pass to the limit as λ → 0. As
a result we find that

0 ≤
∫ L

0

lhε(k−hε) dx+

∫ L

0

p(uε)(v−uε) dx+

∫ L

0

rε(vxx−(uε)xx−lk+lhε) dx. (4.18)

We use (4.18), (4.7) and inequality −ε|rε|2 ≤ 0 to deduce that

0 ≤
∫ L

0

lhε(k − hε) dx +

∫ L

0

p(uε)(v − uε) dx +

∫ L

0

rε(vxx − lk − lz) dx. (4.19)

Now, we use (3.15) and test in (4.19) with v = 0V and k = −z + w, where w is an
arbitrary element in L2(0, L) which satisfies |w|L2(0,L) ≤ 1. We infer that

0 ≤
∫ L

0

lhε(w − z − hε) dx +

∫ L

0

p(uε)uε dx−
∫ L

0

rεlw dx.

As the first two terms are bounded for ε > 0, Theorem 3 and the continuity of p(·)
yield that the sequence {rε} is bounded in L2(0, L) as w is arbitrary in the unit ball
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of L2(0, L). Then, there exists an element r∗ ∈ L2(0, L) and a subsequence of the
sequence {rε}, again denoted {rε}, which converge weakly to r∗ in L2(0, L).

Next, we pass to the limit in (4.19) and use Theorem 3 combined with the
continuity of p(·) in order to obtain the necessity of (4.17). The sufficiency of this
condition follows by choosing [v, k] admissible for the optimal control problem (4.2),
(4.3). Then, we have

0 ≤
∫ L

0

lh∗(k − h∗) dx +

∫ L

0

p(u∗)(v − u∗) dx

and, using the definition of the subdifferential ∂ϕ(u∗), we conclude the proof.

The inequality (4.19) gives the first order optimality condition for the approxi-
mating optimization problem (4.5) and this condition is necessary and sufficient, too.
Note that the function r∗ ∈ L2(0, L) is the Lagrange multiplier associated to the state
equation (4.3). Similar arguments have been used in [2] in order to derive first order
optimality conditions in the study of abstract control problems for evolution equa-
tions. Note also that conditions (4.17) or (4.19) express the fact that the gradient of
the minimized functional (4.5) (or (4.2)), is zero (or has a certain orientation with
respect to the constraints) at the minimizer. This information may be exploited in
gradient algorithms for the corresponding minimization problems. We conclude that
the control variational method provides new possibilities for constructing approxima-
tion methods for boundary value problems.

5 Versions of the model and related results

In this section we present three versions of the model and state results similar to those
presented in the previous section, obtained by using the control variational method.
The physical setting is similar to that described in Section 2. The difference arise
from the fact that now we have a single obstacle, denoted S, situated at a distance
g ≤ 0 from the Ox axis, as shown in Fig. 5.1. Formally, this physical setting can be
recovered from the physical setting depicted in Fig. 2.1 by taking S1 = S, g1 = g,
g2 = ∞.

-

6

x
LO g

? ? ?
6

6

f

S

Fig. 5.1. A beam in potential contact with a single obstacle.
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The first two models are time-independent. In the first one we assume that the
contact is modeled with the classical normal compliance condition, i.e. the pene-
tration is not limited. Therefore, the classical formulation of the problem is the
following.

Problem P nc. Find a displacement field u : [0, L] → R such that

d2

dx2

(
A

d2u

dx2

)
= f + ξ in (0, L), (5.1)

u > g =⇒ ξ = 0, u ≤ g =⇒ ξ = −p1(g − u) in (0, L), (5.2)

u(0) =
du

dx
(0) = 0, (5.3)

d2u

dx2
(L) =

d3u

dx3
(L) = 0. (5.4)

Here, p1 : IR+ → IR is a given nonpositive function which describes the reaction
of the obstacle.

In the second model we assume that the penetration is not allowed and, therefore,
the contact is described with the Signorini condition. The classical formulation of the
problem is the following.

Problem P Sig. Find a displacement field u : [0, L] → R such that

d2

dx2

(
A

d2u

dx2

)
= f + ξ in (0, L), (5.5)

u ≥ g, ξ ≥ 0, ξ(g − u) = 0 in (0, L), (5.6)

u(0) =
du

dx
(0) = 0, (5.7)

d2u

dx2
(L) =

d3u

dx3
(L) = 0. (5.8)

We turn to the variational formulation to Problems P nc and P Sig. To this end we
assume that A and f satisfy (3.1) and (3.2), respectively, and p1 satisfies (3.6). Also,
we consider the function p : IR → IR given by

p(r) =

{
p1(g − r) if r ≤ g,

0 if r > g.
(5.9)

We use the space V , (3.9), the bilinear form (3.12) and the function (3.13) where p
is now given by (5.9). Also, we consider the set

K = { v ∈ V : v ≥ g in (0, L) }. (5.10)

Then, the variational formulation of problems P nc and P Sig can be obtained by
using the arguments presented in Section 3 and are the following.
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Problem P nc
V . Find a displacement field u such that

u ∈ V, a(u, v) + j(u, v) = (f, v)L2(0,L) ∀ v ∈ V. (5.11)

Problem P Sig
V . Find a displacement field u such that

u ∈ K, a(u, v − u) ≥ (f, v − u)L2(0,L) ∀ v ∈ K. (5.12)

Note that Problem P nc
V can be recovered from Problem PV by taking g1 = g,

k1 = −∞, g2 = k2 = ∞ and p2 ≡ 0. Also, Problem P Sig
V can be recovered from

Problem PV by taking g1 = k1 = g, g2 = k2 = ∞ and p2 ≡ 0. Therefore, we conclude
that the control variational method in Section 4 works and can be used to provide
the existence of the solutions of problems P nc

V and Problem P Sig
V , respectively. In

particular, in the study of Problem P nc
V we introduce the optimal control problem

min
[u,h]∈V×L2(0,L)

{ 1

2

∫ L

0

lh2 dx +

∫ L

0

ϕ(u) dx
}

, (5.13)

uxx = lz + lh in (0, L), (5.14)

u(0) = ux(0) = 0. (5.15)

Here, again, l = A−1 and ϕ : R → R is such that ϕ′ = p and z ∈ H2(0, L) is the
solution of the problem

d2z

dx2
= f in (0, L), z(L) =

dz

dx
(L) = 0. (5.16)

The solvability of the optimal problem (5.13)–(5.15) and its link with the varia-
tional problem P nc

V is given by the following result.

Theorem 5. Assume that (3.1), (3.2) and (3.6) hold and let g ≤ 0. Then, problem
(5.13)–(5.15) has a unique optimal pair [u∗, h∗] ∈ H2(0, L)×L2(0, L) and, moreover,
u∗ satisfies (5.11).

The interest in the optimal control method also arises from the fact that it provides
regularity results. To illustrate this, we turn again to the optimal control problem
(5.13)−(5.15). We introduce the adjoint system and the adjoint state r ∈ H2(0, L)
given by

rxx = −p(u∗) in (0, L), (5.17)

r(L) = rx(L) = 0. (5.18)

Performing variations around the optimal pair (as in the proof of Theorem 2) and
some integration by parts, we find that

r + h∗ = 0 in (0, L). (5.19)
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Relation (5.19) expresses the fact that the gradient of the cost functional (5.13)
(as a function of h alone) is zero in the minimum point h∗ ∈ L2(0, L). The left-hand
side of (5.19) represents this gradient and can be used in the iterative procedures
(the gradient methods) for the solution of (5.13)–(5.15). By Theorem 5 we see that
the optimal control method above provides an alternative solution method for the
original problem (5.1)–(5.4), involving just the equations (5.14) and (5.17), that may
be integrated directly.

We also use relation (5.19) to note that h∗ has the same regularity as r, i.e.
h∗ ∈ H3(0, L). Here, we use the fact that p(·) is a Lipschitz continuous function and
the regularity of u∗, r from the state, respectively the adjoint equation. If l is smooth
enough, by (5.14) we also obtain that u∗ ∈ H5(0, L), which represents a regularity
property for the solution of Problem P nc

V .
We now turn to the analysis of Problem P Sig

V and, to this end, we introduce the
optimal control problem

min
h∈L2(0,L)

{ ∫ L

0

lh2dx
}

, (5.20)

subjected to (5.14), (5.15) and to the constraint

u ≥ g in (0, L). (5.21)

The solvability of this optimal problem and its link with the variational problem P Sig
V

is given by the following result.

Theorem 6. Assume that (3.1) and (3.2) hold and let g ≤ 0. Then, problem (5.20),

(5.14), (5.15), (5.21) has a unique optimal pair [û, ĥ] ∈ K × L2(0, L) and, moreover,
û satisfies (5.12).

More details in the study of the contact problems P nc and P Sig, including complete
proofs of Theorems 5 and 6 and can be found in [14].

We end this section with the description of a time-dependent model for contact
with a single obstacle. The physical setting is similar to that depicted in Fig. 5.1.
The difference arises from the fact that now there is no gap between the beam and
the foundation i.e. g = 0 and, moreover, the adhesion of the contact surfaces is taken
into account and is modelled by a time-dependent variable, the bonding field.

Let [0, T ] be the time interval of interest, T > 0. For x ∈ [0, L] and t ∈ [0, T ], we
denote by u = u(x, t) the vertical displacement of the beam, by β(x, t) the bonding
field and, below, we indicate the dependence of the variables on x and t. Following
[4], the bonding field describes the fractional density of active bonds on the contact
surface and, as a fraction, its values are restricted to 0 ≤ β(x, t) ≤ 1. When β(x, t) = 1
the adhesion is complete and all the bonds are active; when β(x, t) = 0 all the bonds
are inactive, severed, and there is no adhesion; when 0 < β(x, t) < 1 the adhesion
is partial and only a fraction β(x, t) of the bonds is active. We refer the reader to
the extensive bibliography on the modelling and analysis of contact problems with
adhesion in [4, 10, 11, 13].

The classical formulation of the problem is as follows.
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Problem P a. Find a displacement field u : [0, L] × [0, T ] → R such that, for all
t ∈ [0, T ],

∂2

∂x2

(
A(x)

d2u

dx2
(x, t)

)
= f(x, t) + ξ(x, t) for all x ∈ (0, L), (5.22)

u(x, t) > 0 =⇒ ξ(x, t) = −γ(x)β2(x, t)R(u(x, t))

u(x, t) ≤ 0 =⇒ ξ(x, t) = −p1(−u(x, t))

}
for all x ∈ (0, L), (5.23)

u(0, t) =
∂u

∂x
(0, t) = 0, (5.24)

∂2u

∂x2
(L, t) =

∂3u

∂x3
(L, t) = 0. (5.25)

Condition (5.23) represents the normal compliance condition with adhesion. Here
p1 is the normal compliance function, γ is a positive function and R is the truncation
operator given by

R(r) =





0 if r < 0,

r if 0 ≤ r ≤ l0,

l0 if r > l0.

(5.26)

where l0 > 0 is the characteristic length of the bond, beyond which it does not offer
any additional traction (see, e.g., [10]). The introduction of the truncation operator R
is motivated mainly by mathematical reasons, but it is also related to the observation
that for some glues when the extension is more than l0, the glue extends plastically
without offering additional tensile traction. However, by choosing l0 very large, we
recover the case where the traction is linear in the extension. We note that when there
is contact (i.e. when u(x, t) ≤ 0), then condition (5.23) is similar to condition (5.2).
Nevertheless, when there is separation (i.e. when u(x, t) > 0), then (5.23) shows that
the adhesive normal traction in the point x at the moment t is γ(x)β2(x, t)R(u(x, t));
it is tensile and proportional, with proportionality coefficient γ(x), to the square of
the adhesion field, and to the vertical displacement, as long as it does not exceed the
bond length l0.

In [4, 10, 11, 13] the evolution of the bonding field is described by the equation

∂β

∂t
(x, t) = −(

γ(x)β(x, t)R2(u(x, t))− ε(x)
)
+

for all (x, t) ∈ (0, L)× (0, T )

in which ε is a positive coefficient and, again, r+ denotes the positive part of r.
Nevertheless, an examination of the results in these references shows that the study
of contact problems with adhesion is usually carried out by considering intermediate
problems in which the bonding field is known, followed by a fixed point argument.
For this reason, in Problem P a we consider β as given and note that this restrictive
assumption leads to a simplified contact model with adhesion. Its analysis via the
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control variational method has some interest in its own, since it lies the background
for more complicate problems in which the bonding field is unknown.

We turn now to derive a weak or variational formulation of Problem P a. To this
end we assume in what follows that A satisfies (3.1), p1 satisfies (3.6) and :

f ∈ W 1,∞(0, T ; L2(0, L)), (5.27)

γ ∈ L∞(0, L), γ(x) ≥ 0 a.e. x ∈ (0, L), (5.28)

β ∈ W 1,∞(0, T ; L2(0, L)), (5.29)

0 ≤ β(x, t) ≤ 1 a.e. x ∈ (0, L), ∀ t ∈ [0, T ]. (5.30)

In what follows we use the space (3.9) with the inner product (3.11) and the
associated norm ‖ · ‖V . In addition, we consider the bilinear form a : V × V → R
defined by (3.12), the function p : IR → IR given by

p(r) =

{
p1(−r) if r ≤ 0,

0 if r > 0,
(5.31)

and the functional j : [0, T ]× V × V → R defined by

j(t, u, v) =

∫ L

0

(
p(u(x)) + γ(x)β2(x, t)R(u(x))

)
v(x) dx ∀ u, v ∈ V.

Using (5.26) and (5.31) it is easy to see that the contact condition (5.23) can be
written into the equivalent form

ξ(x, t) = −p(u(x, t))− γ(x)β2(x, t)R(u(x, t)) for all x ∈ (0, T ) and t ∈ [0, T ].

Therefore, by a standard procedure based on two integrations by parts, we obtain the
variational formulation of Problem P a.

Problem P a
V . Find a displacement field u : [0, T ] → V such that

a(u(t), v) + j(t, u(t), v) = (f(t), v)L2(0,L) ∀ v ∈ V, t ∈ [0, T ]. (5.32)

For each t ∈ [0, T ], let us introduce the optimal control problem

min
[u(t),h(t)]∈V×L2(0,L)

{ 1

2

∫ L

0

l(x)h2(x, t) dx +

∫ L

0

ϕ(x, t, u(x, t)) dx
}

, (5.33)

uxx(x, t) = l(x)z(x, t) + l(x)h(x, t) for all x ∈ (0, L), (5.34)

u(0, t) = ux(0, t) = 0. (5.35)

Here, l(x) = A−1(x) and ϕ(x, t, ·) : R→ R is such that

∂ϕ

∂r
(x, t, r) = p(r) + γ(x)β2(x, t)R(r)
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for all x ∈ (0, L) and r ∈ IR. Moreover, z(·, t) ∈ H2(0, L) is the solution of the
problem

∂2z(x, t)

∂x2
= f(x, t) for all x ∈ (0, L), z(L, t) =

∂z

∂x
(L, t) = 0. (5.36)

The solvability of the optimal problem (5.33)–(5.35) and its link with the varia-
tional problem P a

V is given by the following result.

Theorem 7. Assume that (3.1), (3.6), (5.27)–(5.30) hold. Then, for each t ∈ [0, T ],

problem (5.33)–(5.35) has a unique optimal pair [ũ(t), h̃(t)] ∈ H2(0, L)×L2(0, L). The

functions ũ and h̃ belong to W 1,∞(0, T ; V ) and W 1,∞(0, T ; L2(0, L)), respectively, and,
moreover, ũ satisfies (5.32).

The proof of Theorem 7 follows from results similar to those used in Section 4
and, for this reason, is omitted.
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