
UNIFORMIZATION OF S2 AND FLAT SINGULAR SURFACES

SERGIU MOROIANU

Abstract. We construct flat metrics in a given conformal class with prescribed singu-
larities of real orders at marked points of a closed real surface. The singularities can be
small conical, cylindrical, and large conical with possible translation component. Along
these lines we give an elementary proof of the uniformization theorem for the sphere.

1. Uniformization in genus 0 and holomorphic structures on conformal
surfaces

Let (Σ, g) be a closed, possibly unorientable Riemannian manifold of dimension 2. For
background material on surfaces we refer the reader to [1]. The Gaussian curvature κg :
Σ → R of the metric g is the sectional curvature function of the tangent planes to Σ. If
f ∈ C∞(Σ, R) is any smooth function, an elementary computation shows that the Gaussian
curvatures of the conformal metrics g and g′ := e−2fg are related by

(1) κg′ = e2f (κg −∆gf)

where ∆g = d∗d is the Laplacian on functions with respect to the metric g. By the Gauss-
Bonnet theorem, ∫

Σ

κg|µg| = 2πχ(Σ)

where χ(Σ) is the Euler characteristic of Σ, while |µg| is the volume density. On the other
hand, denoting by 〈·, ·〉 the scalar product in L2(Σ, |µg|) and by 1Σ the constant function
1 on Σ, we have ∫

Σ

∆f |µg| = 〈∆f, 1Σ〉 = 〈df, d1Σ〉 = 0.

Thus in the conformal class of g there exist flat metrics only if χ(Σ) = 0, i.e., Σ is a torus
or a Klein bottle.

Theorem 1. Let (Σ, g) be a possibly unorientable closed Riemannian manifold of dimen-
sion 2. In the conformal class of g there exist flat metrics (and then they are unique up to
dilations) if and only if χ(Σ) = 0.

Proof. The necessity of χ(Σ) = 0 was seen above, so assume χ(Σ) = 0. The Gauss-Bonnet
theorem says that the function κg is of average 0, or equivalently that it is orthogonal in L2

sense on the constant function 1. But ∆ is self-adjoint and Fredholm in L2, so its image is
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the orthogonal complement of its kernel. Moreover, φ ∈ ker(∆) if and only if φ is constant.
Thus κg lives in the image of the Laplace operator, therefore we can find f ∈ C∞(Σ),
unique up to an additive constant, such that κg = ∆f or equivalently κe−2f g = 0. �

In dimension 2, the Newlander-Nirenberg theorem states any almost complex structure
on a surface is integrable, since the Nijenhuis tensor vanishes identically. As a corollary
of Theorem 1 we obtain an elementary proof of this fact. For this, notice that an almost
complex structure in dimension 2 is precisely an orientation together with a conformal
class.

Corollary 2. Let Σ be an (open) oriented smooth surface with a conformal structure [g].
Then there exist a holomorphic atlas on Σ compatible with the given conformal structure.

Proof. Fix g ∈ [g] and p ∈ Σ. Choose a positively oriented chart φ near p, φ(p) = 0 and
construct a metric h on the torus T := R2/Z2 which coincides with the push-forward φ∗g
near 0 + Z2, by using a partition of unity. By Theorem 1, h is conformally flat, so there
exists f ∈ C∞(T) such that e−2fh is flat. Then the geodesic exponential map exp[0] with

respect to e−2fh is a local isometry between T[0]T and T. It follows that e−2φ∗fg is isometric
near p to the euclidean space R2 with its standard metric. This isometry is conformal with
respect to the initial metric g. Since p was arbitrary, we have found an atlas consisting
of conformal maps. The changes of charts are positively oriented conformal maps between
domains of R2 = C with the euclidean metric, i.e., holomorphic. �

The idea of the above proof can be succinctly stated as follows: since by Theorem 1
every torus is conformally flat, it follows that every surface is locally conformally flat.

2. Singular flat surfaces

Let (r, σ) ∈ (0,∞)× [0, 2π) be the polar coordinates on R2. We distinguish the following
flat singular metrics near r = 0:

• The small conical metric of angle α > 0:

dr2 +
( α

2π

)2

r2dσ2.

• The cylindrical metric of circumference l, also called conical of angle 0:

dr2

r2
+

(
l

2π

)2

dσ2.

• The large conical metric of angle α < 0:

dr2

r4
+
( α

2π

)2 dσ2

r2
.

The conical metric of negative angle can be seen near r = ∞ (i.e., in a neighborhood of ∞
in CP 1) by changing variables r 7→ 1

r
as

dr2 +
( α

2π

)2

r2dσ2.
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These types of singularities can be conveniently described simultaneously as follows: recall
that the standard metric on R2 in polar coordinates takes the form dr2+r2dσ2 (in particular
the conical metric of angle α = 2π is in fact non-singular).

Lemma 3. Let θ ∈ R. The singular flat metric near r = 0

dr2 + r2dσ2

r2θ

is conical of angle 2π(1− θ), and moreover of circumference 2π if θ = 1.

The (immediate) proof consists of re-writing the metric in the variable

R =


r1−θ

1−θ
if θ < 1;

r, if θ = 1;
θ−1
r1−θ if θ > 1.

3. Uniformization of the sphere and of the projective plane

It is a classical fact, which we wish to partly clarify in this note, that in any given
conformal class on a surface Σ there exist metrics of constant Gaussian curvature, of sign
depending on the Euler characteristic of Σ. The case of χ(Σ) = 0 was explained in Theorem
1. For Σ of negative Euler characteristic the hyperbolic metric is moreover unique in each
conformal class. We will not prove this here. Instead we will give a self-contained treatment
of the positive case.

Let first Σ be a sphere with a conformal class [g]. Note that, in contrast to Teichmüller
theory, a spherical metric in the conformal class [g] is by no means unique, in fact such
metrics are parametrized by the cosets

PSL2(C)/SO3

of conformal transformations of the standard sphere CP1 modulo isometries, which form
a real manifold of dimension 3. This non-uniqueness is the main reason of failure of
variational methods in proving the existence of spherical metrics.

Fix a smooth cut-off function φ : [0,∞) → [0,∞) with compact support in [0, ε/2] and
which is 1 on [0, ε/4].

Lemma 4. For any φ as above, the function ∆(φ(r) log(r)) ∈ C∞c (R2 \ {0}) has compact
support in the [ε/4, ε/2]-annulus, and satisfies∫

Σ

∆(φ(r) log(r))µR2 = 2π

where ∆ is the flat Laplacian on R2.
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Proof. In polar coordinates, ∆ = −r−1∂rr∂r − r−2∂2
σ and the volume form is rdrdσ. The

assertion on the support holds evidently. Thus∫
Σ

∆(φ(r) log(r))|µg| =
∫ 2π

0

dσ

∫ ∞

0

(−r−1∂rr∂r)(φ(r) log(r))rdr

=− 2π

∫ ∞

0

∂rr∂r(φ(r) log(r))dr

=− 2πr∂r(φ(r) log(r))|∞0
=2π. �

Theorem 5. Let Σ be a topological sphere with a smooth structure and a conformal class
[g]. There exist in [g]

• Euclidean metrics, i.e., complete flat metrics outside one marked point p with cone
angle −2π;

• Spherical metrics.

Proof. Since g is locally conformally flat, we may assume without loss of generality that g
is flat near a fixed point p. Let (x, y) be flat orthogonal coordinates near p = (0, 0), and
(r, σ) ∈ (0, ε) × [0, 2π) polar coordinates, such that g = dr2 + r2dσ2 near r = 0. By the
Gauss-Bonnet formula,

∫
Σ

κgµg = 4π. Using Lemma 4, we deduce∫
Σ

(κg − 2∆(φ(r) log r)))µg = 0.

The function κg−2∆(φ(r) log r)) is smooth with compact support on Σ\{p}, in particular
it is smooth on Σ. Any function of mean zero on a closed Riemannian manifold lives in
the image of the Laplacian, i.e., there exists f ∈ C∞(Σ) with ∆f = κg − 2∆(φ(r) log r),
or equivalently by (1), such that the metric g′ := e−2f−4φ(r) log rg is flat on its domain of
definition Σ \ {p}. Near p = 0, we have by setting R := r−1:

g′ = e−2f dr2 + r2dσ2

r4
= e−2f (dR2 + R2dσ2).

The conformal factor f is smooth on Σ, so e−2f is bounded above and below by positive
constants. It follows that near the singularity, the flat metric g′ is quasi-isometric to the
Euclidean metric dR2 + R2dσ2, so in particular g′ is complete. Since Σ is by hypothesis a
sphere, it follows that Σ \ {p} is simply-connected. Therefore Σ \ {p} is isometric to any of
its tangent planes (which we identify with R2) by the geodesic exponential map, denoted
Φ. This proves the first statement.

The isometry Φ : R2 → Σ \ {p} interchanges compact sets, it is therefore continuous,
together with its inverse, at the point at infinity in the 1-point compactifications of the
two spaces, which are CP1, respectively the initial surface Σ.

Now observe that Φ is an isometry with respect to the metric g′, it is therefore conformal
with respect to g outside p, or equivalently holomorphic with respect to the holomorphic
structure from Corollary 2.
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In conclusion, we have constructed a homeomorphism Φ : CP1 → Σ which is smooth
and bi-holomorphic outside a point p. The singularity at p is removable by continuity, thus
Φ is globally bi-holomorphic. The desired spherical metric is obtained by push-forward of
the standard metric on CP1 via Φ. �

The first statement is more precise - albeit in a particular case - than the corresponding
statement from Theorem 10, since we do not get here any translation component in the
cone of angle −2π.

A similar approach works for RP2:

Theorem 6. Let Σ be a surface homeomorphic to RP2 with a smooth structure and a
conformal class [g]. There exist in [g]

• Cylindrical metrics, i.e., complete flat metrics outside one marked point p with cone
angle 0;

• Spherical metrics.

Proof. We will use the notation and ideas of Theorem 5.
We choose a metric g ∈ [g] which is flat near p and flat complex coordinates z so that

g = |dz|2 near p. By Gauss-Bonnet and Lemma 4, the smooth function on Σ defined
by κg − ∆(φ(r) log r) is of zero mean, hence it lives in the image of ∆, say ∆f = κg −
∆(φ(r) log r). Thus by (1), the metric e−2f−2φ(r) log rg is flat on the topological Möbius band
Σ \ {p}. This metric is quasi-isometric to r−2|dz|2 hence it is complete. It follows that its
universal cover is isometric to a quotient of R2 by some non-orientable infinite cyclic group
of isometries. Such a group is conjugated to a group generated by γ : z 7→ z̄ + a, a ∈ R∗

+.
The same reasoning holds for the standard metric on RP2, namely RP2 \{p0} is isometric

to R2/〈γ0〉 for γ0 : z 7→ z̄ + a0, a0 ∈ R∗
+; after multiplying one of the two metrics by a

constant, it follows that Σ \ {p} and RP2 \ {p0} are isometric. Any choice of isometry
Φ : RP2 \ {p0} → Σ \ {p} will preserve closed and bounded sets (i.e., neighborhoods of
p, p0) i.e., Φ extends to the one-point compactifications as a homeomorphism from Σ to
RP2. Moreover, Φ is conformal from the spherical metric on RP2 \ {p0} to (Σ \ {p}, g), so
we deduce that p is a removable singularity and Φ is a global conformal map from RP2 to
Σ, in particular smooth. The push-forward of the standard metric from RP2 to Σ is the
desired spherical metric. �

4. Conformally conical metrics

To classify flat singular metrics we extend slightly the notion of conical metric of integer
negative angle. A partial isometry of a metric space Σ is an isometry from a subset of Σ
onto its image in Σ.

Definition 7. Let l > 0 and θ ∈ Z, θ ≥ 2. On the universal cover of C∗ consider the deck
transformation γ corresponding to the generator S1 of π1(C∗), and the partial isometry
τl given by the translation with l ∈ R. A metric on a surface Σ singular near p is called
conical of angle 2π(1 − θ) and translation component l if it is isometric near p with the

quotient of C̃∗ by the partial isometry τlγ
1−θ.
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Geometrically, we can construct such a metric by considering the branched Riemann
cover of the function z1−θ, cut along a pre-image of the positive half-line and glue back after
translating by l. The resulting surface is well-defined near infinity, where the translation
makes sense.

Theorem 8. Let f be a real harmonic function in a neighborhood of 0 ∈ R2, and g a
conical metric on R2 near 0, of angle α = 2π(1− θ).

• If the angle α is positive, or not an integer multiple of 2π, then e−2fg is also conical
of angle α.

• If α = 0 and g is cylindrical of circumference l, then e−2fg is also cylindrical of
circumference e−f(0)l.

• If α is a negative multiple of 2π, then e−2fg is also conical of angle α and translation
l for some explicit l.

Proof. If α = 2π (i.e., θ = 0) there is nothing to prove, since any smooth flat metric is
conical of angle 2π. Assume therefore θ 6= 0. Let F (z) be the unique holomorphic function
with real part f , and imaginary part vanishing at 0. Note that e−2f = |e−F |2.

Case 1. Assume θ /∈ N∗ = {1, 2, . . .}. By Lemma 3 the conical metric takes the form
dr2+r2dσ2

r2θ = |z−θdz|2, so

e−2fg = |e−F z−θdz|2.
We would like to find a new complex coordinate u near z = 0 so that e−2fg = |u−θdu|2.
We look for u of the form u = zh(z) with h(z) holomorphic near 0, h(0) 6= 0 so that

e−F z−θdz = u−θdu.

Writing e−F (z) =
∑∞

n=0 anz
n, and v(z) := h1−θ(z) =

∑∞
n=0 vnz

n a simple calculation shows
that the coefficients of v are uniquely determined by those of e−F :

v +
z

1− θ
v′ = e−F (z),

or equivalently vn = 1−θ
1−θ+n

an. The resulting Taylor series for v is clearly convergent for

small |z| since F is holomorphic near 0. Moreover v0 6= 0 since a0 = e−F (0) 6= 0, thus there

exists h := e
log(v)
1−θ with the property that g = |u−θdu|2 is conical of angle 2π(1− θ).

Case 2. Assume θ = 1. The conical metric of angle 0 (i.e., cylindrical) and circumference
l is

g =
(

l
2π

)2 ∣∣∣∣dz

z

∣∣∣∣2 .

We want to find u(z) near z = 0 so that

e−2fg = e−2f(0))
(

l
2π

)2 ∣∣∣∣du

u

∣∣∣∣2 .

We proceed as above by solving e−F (z)z−1dz = e−F (0)u−1du for u(z) = zev(z), or equivalently

eF (0)−F (z) = 1 + zv′(z).
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This equation determines uniquely a convergent series for v(z) with v(0) = 0.

Case 3. Assume now Z 3 θ ≥ 2, thus the angle is a negative integer multiple of 2π. We
claim that we can find a complex coordinate u near 0 so that

e−2fg =

∣∣∣∣(1 + cuθ−1)du

uθ

∣∣∣∣2 .

for some constant c depending on f . The strategy is to solve instead

e−F (z)dz

zθ
=

(1 + cuθ−1)du

uθ

with u = zh
1

1−θ (z) for some h(z) holomorphic, h(0) 6= 0. Setting e−F (z) =
∑∞

n=0 anz
n, the

equation to solve is∑
θ−1 6=n≥0

an

n + 1− θ
zn+1−θ + aθ−1 log z =

z1−θh(z)

1− θ
+ c log z +

c

1− θ
log h.

This equation has a solution only if c = aθ−1 = Res(z−θe−F (z)). With this value for c, we
would like to know that the solution h is holomorphic. By denoting A(z) the left-hand
side times (1− θ)z1−θ, we write

h(z) + czθ−1 log h(z) = A(z).

Note that A(0) = e−F (0) 6= 0. The holomorphic function Φ(h, z) := h + czθ−1 log h− A(z)
defined in a neighborhood of h = A(0), z = 0 has the property

Φ(A(0), 0) = 0,
∂Φ(A(0), 0)

∂h
= 1,

therefore by the implicit function theorem there exists h(z) holomorphic in z such that
Φ(h(z), z) = 0. The third case of the theorem follows from the next Lemma. The trans-
lation component is therefore 2π|Res(z−θe−F (z))|, where F is the holomorphic function of
real part f . �

Lemma 9. Let c ∈ C. The flat metric gc =
∣∣∣ (1+cuθ−1)du

uθ

∣∣∣2 is conical near u = 0 of angle

2π(1− θ) and translation component 2π|c|.

Proof. By changing variables z = αu with α ∈ C, |α| = 1 we see that gc is isometric
to gαθ−1c, hence we may assume c = il, l ∈ R, l > 0. Let X := {z ∈ C∗; |z| < ε}.
Starting from the half-line z > 0 define v := 1

1−θ
z

1
1−θ + il log z using the principal branch

of the logarithm. Since g = |dv2|, it follows that for arg(z) ≤ 2π, v is an isometry from

(X̃, gθ,c) to a neighborhood of infinity in the universal cover C̃∗ with its standard flat

metric. Moreover, for z ∈ X̃ we clearly have v(γz) = ρθ−1v(x) − 2πl for γ the generator
of the deck transformation group of X̃ → X (i.e., the lift of rotation by 2π), and ρ the

corresponding generator for C̃∗ → C∗. We see that γ is conjugated to u 7→ ρθ−1u − 2πl
via the partial isometry v. Thus X is isometric to the flat surface obtained from C̃∗ by
identifying two half-rays in the pre-image of the positive real axis in C̃∗ encompassing a
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sector of angle 2π(θ − 1) via the translation by 2πl (since for c 6= 0 this operation only
makes sense near infinity, we get an incomplete metric). �

5. Uniformization by flat singular metrics

Let Σ be a closed surface with a fixed conformal class [g]. Choose points p1, . . . , pN ∈ Σ
and real numbers αj, 1 ≤ j ≤ N .

Theorem 10. There exist on Y := Σ \ {p1, . . . , pN} a flat metric in the conformal class
of g with conical singularities of angles αj at pj, 1 ≤ j ≤ N if and only if

(2)
N∑

j=1

αj = 2πN − 2πχ(Σ).

If αj ∈ −2πN∗, the conical singularity at pj may have a translation component. The flat
metric is unique inside its conformal class up to homothety.

Remark 11. For αj positive and Σ orientable the result appears in Troyanov [2].

Proof. The necessity of (2) follows from Gauss-Bonnet, since by Lemma 4 every conical
point pj contributes 2πθj to the total curvature. Uniqueness up to homothety is a conse-
quence of the fact that harmonic functions on Σ must be constant.

Since any surface is locally conformally flat, we may assume that g is flat in an ε-
neighborhood of the marked points pj. Near each pj consider flat coordinates given for
instance by the geodesic exponential map, and then polar coordinates rj ∈ [0, ε), σj ∈
[0, 2π). Recall that ∆ is the Laplacian of the metric g on Σ. It follows from the Gauss-

Bonnet formula and Lemma 4 that for any reals θj, if we set Θ :=
∑N

j=1 θjφ(r) log(r), we
have ∫

Σ

(κg −∆Θ)|µg| = 2π

(
χ(Σ)−

N∑
j=1

θj

)
.

If we choose θj so that αj = 2π(1− θj) then condition (2) is equivalent to

(3)
N∑

j=1

θj = χ(Σ).

Thus with this choice, the smooth function κg −∆Θ on Σ has zero mean, therefore it lives
in the image of the Laplace operator of g. In other words, there exists f ∈ C∞(Σ) with

(4) κg = ∆(f + Θ).

This is equivalent to the flatness of the metric g′ := e−2f−2Θg on Y = Σ \ {p1, . . . , pN}.
We claim that g′ is conical with angles 2π(1− θj) at pj. In polar coordinates near pj the

initial metric is dr2 + r2dσ2, while Θ = θj log(r) for r < ε/4. This means that near pj, the
metric g′ takes the form

g′ = e−2f−2θj log r(dr2 + r2dσ2) = e−2f

(
dr2 + r2dσ2

r2θj

)
.
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From (4), the function f is harmonic near pj, while from lemma 3 the metric inside the
bracket is conical of angle 2π(1− θj). From Theorem 8 it follows that g′ is conical of angle
2π(1− θj), with possible translation component if θj is an integer greater than or equal to
2. �

It is not clear from the proof if translations do appear in the cones, or are simply a
byproduct of our method. To prove their existence we give an argument based on complex
analysis.

6. Link with Abelian differentials

Assume Σ is orientable, hence a compact complex curve.
For θj integers satisfying (3), the conclusion of Theorem 10 follows if we can find a

meromorphic 1-form µ ∈ M(Σ, Λ1,0(Σ)) (with respect to the holomorphic structure defined
by our fixed conformal structure) with prescribed zeros or poles of order θj at pj. Then
the symmetric tensor product

|µ|2 := 1
2
(µ⊗ µ̄ + µ̄⊗ µ)

is a flat conical metric on Σ\{p1, . . . , pN} with angles 2π(1−θj) at pj. More generally, the
absolute value of a meromorphic quadratic differential A ∈ M(Σ, Λ1,0(Σ)⊗Λ1,0(Σ)) is a flat
conical metric with angles integer multiples of π. Zeros or poles of order m correspond to
cone angles π(2−m). These facts are consequences of Theorem 8 since for any meromorphic
function ν(z), the real function log |ν(z)| is harmonic outside its zeros and poles.

For the flat conical metric |µ|2 defined by any Abelian differential µ, the translation
component in the cones of angle a negative integer multiple of 2π, respectively the circum-
ference of the cylinders, are given by the absolute value of the residues of µ at the singular
points. These residues are generically nonzero for meromorphic Abelian differential of third
kind.
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