
INVARIANTS OF STABLY TRIVIAL VECTOR BUNDLES WITH CONNECTION

SERGIU MOROIANU

ABSTRACT. We define a Chern–Simons invariant of connections on stably trivial vector bundles
over smooth manifolds, taking values in 3-forms modulo closed forms with integral cohomology
class. We show an additivity property of this invariant for connections defined on a direct sum of
bundles, under a certain block-diagonality condition on the curvature. As a corollary, we deduce
an obstruction for conformally immersing a n-dimensional Riemannian manifold in a translation
manifold of dimension n+ 1.

1. INTRODUCTION

By a striking result of Chern and Simons [3], the Chern–Simons invariant of a compact oriented
Riemannian 3-manifold (X, g) conformally immersed in the flat Euclidean space R4 must van-
ish modulo Z, showing, for instance, that the real projective space RP 3 cannot be conformally
immersed in R4. This result was extended in a recent paper by Čap, Flood and Mettler [1] to
equiaffine immersions, a notion that we recall below. Motivated by those results, we prove in this
note a more general vanishing result for the Chern–Simons invariant of a stably trivial real vector
bundle with connection over an arbitrary smooth manifold (Theorem 12). When the bundle is the
tangent bundle of a Riemannian manifold, we derive an obstruction for conformal immersions as
hypersurfaces in translation manifolds:

Theorem 1. Let f : Xn → Y n+1 be a conformal immersion of an oriented Riemannian manifold
(X, g) of dimension n in a n + 1-dimensional translation manifold Y . Then, for every smooth
singular 3-cycle C ∈ C3(X,Z), the evaluation of CS(∇X) on C must vanish modulo integers:∫

C

CS(∇) ∈ Z.

The definition of a translation manifold is recalled in Section 7. We should stress that X is not
assumed to be parallelizable; to define the Chern–Simons invariant of ∇X it suffices that TY
be trivial, which entails that TX is stably trivial. As a consequence, we deduce, for instance,
that 3-dimensional lens spaces cannot be conformally embedded in any (possibly incomplete)
Riemannian 4-manifold with trivial global holonomy.
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We first review Chern–Simons invariants of trivial bundles using a principal-bundle-free formal-
ism, based on the calculus of matrix-valued forms. We then extend the definition to stably trivial
bundles with connection; prove the additivity property; and finally deduce various obstructions
to immersions into translation manifolds. In the Appendix we show that a certain 3-form on
the general linear group, constructed in terms of the Maurer–Cartan form, is integral, and we
compute the Riemannian Chern–Simons invariant of 3-dimensional lens spaces.

For several reasons, we do not treat here higher-dimensional Chern–Simons forms: first, because
a large part of the current interest in Chern–Simons invariants seems to concentrate in dimension
3; secondly, since the tangent bundle of oriented manifolds is trivial in dimension 3, but in general
not stably trivial in higher dimensions; and thirdly, because there are technical difficulties in
extending the additivity property (Lemma 5) beyond dimension 3. With these limitations, the
paper is essentially self-contained, and could hopefully also be used as an efficient introduction
to the subject, free of the customary reliance on the topology of classifying spaces.

2. MATRIX-VALUED FORMS

Let X be a smooth manifold. Denote by Mkk′ the space of real matrices with k rows and k′

columns, and let X ×Mkk′ → X be the trivial vector bundle. A matrix-valued form on X is a
section in the tensor product bundle Λ∗X ⊗R Mkk′ . For k = k′ = 1 this is the usual algebra of
differential forms on X .

Besides the evident associative product (denoted below by concatenation)

(ΛpX ⊗Mkk′)× (ΛqX ⊗Mk′k′′) 7→ Λp+qX ⊗Mkk′′ ,

there are two other natural operations on matrix-valued forms.

First, we have the first-order differential operator d, the exterior differential on X twisted by the
trivial connection (also denoted d) on the trivial vector bundle Mkk′:

d : ΛpX ⊗Mkk′ → Λp+1X ⊗Mkk′ , d(α⊗ A) = (dα)⊗ A+ (−1)pαdA.

Here α ∈ ΛpX is a form and A : X → Mkk′ is a section in X ×Mkk′ . The operator d has the
signed Leibniz property

d(uv) = d(u)v + (−1)deg(u)ud(v),

where, by definition, the degree of a matrix-valued form u ∈ ΛpX ⊗Mkk′ is deg(u) = p.

The second natural operation is the trace, defined when k = k′:

tr : ΛpX ⊗ glk(R)→ ΛpX, tr(α⊗ A) = αtr(A).

Although matrix-valued forms do not form a super-commutative algebra, their trace has the sign-
commutation property

tr(uv) = (−1)pqtr(vu).

for every u ∈ ΛpX ⊗Mkk′ and v ∈ ΛqX ⊗Mk′k.
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Combining these two operations, it is useful to note the identity

d(tr(u)) = tr(d(u)).

The same properties hold for complex matrix-valued forms. We shall distinguish between the two
cases by a subscript in the complex trace trC, in order to distinguish it from its real counterpart.

3. CHERN–SIMONS FORMS AND INVARIANTS

Let E be a topologically trivial real vector bundle of rank n with connection ∇ over X . Once
we fix a frame in E, we write ∇ = d + ω for some matrix-valued 1-form ω, and we define the
Chern–Simons 3-form by

cs(ω) = − 1
16π2 tr

(
ωdω + 2

3
ω3
)
∈ Λ3(X).

Denote by Ω = dω + ω2 ∈ Λ2(X, glnR) the matrix-valued curvature 2-form of ∇ in the fixed
frame. One can alternately describe the Chern–Simons form as

cs(ω) = − 1
16π2 tr

(
ωΩ− 1

3
ω3
)
.

A standard computation gives

d(cs(ω)) = − 1
16π2 tr(Ω2) ∈ Λ4(X).

Definition 2. A complex k-form ω ∈ Λk(X)⊗RC on a smooth manifold X is said to be integral
if it is closed, and its cohomology class belongs to the image of the natural map Hk(X,Z) →
Hk(X,C). The space of integral k-forms on X is denoted Λk

Z(X).

Equivalently, ω ∈ Λk
Z(X) if and only if

∫
C
ω ∈ Z for every oriented smooth singular k-cycle C

with integer coefficients.

In a different trivialization obtained by (right-)multiplying the given frame in E by a map a :
X → GLn(R), the connection 1-form becomes ω′ = a−1ωa + a−1da. By an easy computation
using the properties of matrix-valued forms, the associated Chern–Simons form changes into

(1) cs(a−1ωa+ a−1da) = cs(ω) + 1
48π2 tr

(
(a−1da)3

)
− 1

16π2 d(daa−1ω) ∈ Λ3(X).

The form a−1da is the pull-back by a of the Maurer–Cartan form µ ∈ Λ1(GLn(R), glnR). It
is a fact, detailed in Appendix A for the sake of completeness, that for every n ≥ 3, the form
1

48π2 tr(µ3) is closed, defines an integral cohomology class on GLn(R), and its evaluation on the
3-homology cycle SO(3) ⊂ GLn(R) equals −1, thus motivating the choice of the normalization
constant. Equation (1) thus shows that cs(ω′) agrees with cs(ω) up to an integral 3-form. It
follows that the class of cs(ω) modulo Λ3

Z(X) gives rise to a well-defined element CS(∇) ∈
Λ3(X)/Λ3

Z(X), independent of the trivialization, that we call the Chern–Simons invariant of ∇.
Whenever the first Pontriaghin form tr(Ω2) of ∇ vanishes, cs(ω) is closed, and its cohomology
class is independent of the choice of trivialization up to an integral class.
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3.1. Vanishing results. The vanishing of a Chern–Simons invariant means that it is represented
by a closed Chern–Simons form whose associated de Rham cohomology class is integral, i.e., it
lives in the image of the natural map H3(X,Z)→ H3(X,C). The above discussion ensures that
the vanishing of a Chern–Simons invariant is independent of the choice of trivialization used for
defining the connection 1-form, so it is a property of the connection, rather than of the connection
form in some trivialization.

Here are some evident instances of vanishing results:

Lemma 3. (1) The Chern–Simons invariant of a trivial connection vanishes.
(2) The Chern–Simons form of a flat connection on a trivial vector bundle of rank 1 vanishes.
(3) If ω ∈ Λ1(X) defines an involutive distribution ker(ω) ⊂ TX of codimension 1 in X ,

i.e., ω ∧ dω = 0, then the Chern–Simons form of the connection d + ω on the trivial
bundle R×X vanishes.

Proof. By definition, in a parallel frame, the connection 1-form of a trivial connection vanishes,
so both terms in the Chern–Simons form vanish as well.

If the rank of the bundle is 1, the term ω3 vanishes identically by anti-symmetry. The term ωΩ
also vanishes if the curvature is 0, proving the second claim.

The third claim is similar, in that the term Ω = dω does not need to vanish anymore, however
the Frobenius integrability condition implies ωΩ = 0. �

3.2. Complex Chern–Simons forms and invariants. For trivial complex vector bundles en-
dowed with a C-linear connection, more or less the same definition makes sense using the com-
plex trace, resulting in a complex-valued 3-form on X . In that case, the form 1

24π2 trC(µ3) is
integral on GLn(C) by Lemma 17, so the natural normalization constant for the Chern–Simons
invariant is in this case 1/8π2:

csC(ω) = − 1
8π2 trC

(
ωdω + 2

3
ω3
)
∈ Λ3(X)⊗R C.

This form has the same invariance properties as its real counterpart, eventually defining a class
in CSC(∇) ∈ (Λ3(X) ⊗ C)/Λ3

Z(X) independent of trivializations, called the complex Chern–
Simons invariant of∇.

Since every complex vector bundle has a subjacent real structure, it is natural to inquire about
a possible relationship between the real and the complex Chern–Simons invariants of a trivial
complex vector bundle with complex connection. This relation is simply:

Lemma 4. CS(∇) = <(CSC(∇)).

Proof. For A ∈ EndC(Cn) define AR ∈ EndR(Cn) to be the image of A through the natural
inclusion EndC(Cn) ↪→ EndR(Cn). It is evident that the inclusion is an algebra map, and that
tr(AR) = 2<(trC(A)). Then (

ωdω + 2
3
ω3
)
R =

(
ωRdωR + 2

3
ω3
R
)
.
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The different normalization constants in the definitions of cs and csC account for the factor 2
relating the real and the complex traces. �

By tensoring with C, every trivial real vector bundle E with connection gives rise to a complex
vector bundleEC endowed with a complex connection. Any trivialization ofE will induce a com-
plex trivialization of E⊗R C, and the connection forms in E and EC are the same gln(R)-valued
1-form ω. From the difference in normalization constants, it follows that cs(ω) = 1

2
csC(ω).

4. STABLE CHERN–SIMONS INVARIANTS

Let E1, E2 be two trivial vector bundles (real or complex) over X with connections ∇1,∇2. We
say that a connection∇ on E := E1 ⊕ E2 extends∇1 and ∇2 if

Π1∇Π1 = ∇1, Π2∇Π2 = ∇2(2)

where Π1,Π2 are the projectors on E1, respectively E2, in E. If we fix trivializations of E1 and
E2, we write∇1 = d + ω1, ∇2 = d + ω2, and therefore∇ = d + ω, where

ω =

[
ω1 A
B ω2

]
.

Here A, respectively B are some matrix-valued 1-forms of suitable dimensions. Denote by R the
curvature of ∇, and by Ω its matrix-valued 2-form in the fixed trivialization. For i, j ∈ {1, 2}
denote by Rij the Ej → Ei component of the curvature:

Rij = ΠiRΠj.

Lemma 5. If R12 = 0 and R21 = 0, then in the real case

cs(ω) = cs(ω1) + cs(ω2),

while in the complex case csC(ω) = csC(ω1) + csC(ω2).

The proof is formally the same in both cases, so we disregard the subscript C in the trace when-
ever the bundles are complex.

Proof. Compute the various ingredients of the curvature and of the Chern–Simons form of ω as
follows:

ω2 =

[
ω2
1 + AB ω1A+ Aω2

Bω1 + ω2B ω2
2 +BA

]
Ω =

[
dω1 + ω2

1 + AB dA+ ω1A+ Aω2

dB +Bω1 + ω2B dω2 + ω2
2 +BA

]
ωΩ =

[
ω1dω1 + ω3

1 + ω1AB + AdB + ABω1 + Aω2B ∗
∗ Bω1A+BdA+BAω2 + ω2dω2 + ω3

2 + ω2BA

]
ω3 =

[
ω3
1 + ω1AB + ABω1 + Aω2B ∗

∗ Bω1A+ ω2BA+ ω3
2 +BAω2

]
.
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We have omitted the off-diagonal terms in ωΩ and in ω3, replacing them with the symbol ∗, as
they are eventually irrelevant for the trace. From the above, we compute the traces appearing in
the Chern–Simons form:

tr(ω3) = tr(ω3
1) + tr(ω3

2) + 3tr(ω1AB) + 3tr(ω2BA)

tr(ωΩ) = tr(ω1Ω1) + tr(ω2Ω2) + tr(AdB) + tr(BdA) + 3tr(ω1AB) + 3tr(ω2BA)

cs(ω) = cs(ω1) + cs(ω2) + tr[A(dB +Bω1 + ω2B)] + tr[B(dA+ ω1A+ Aω2)].

We now recognise in the last two terms the off-diagonal terms in the curvature: Ω21 = dB +
Bω1 +ω2B, Ω12 = dA+ω1A+Aω2. These terms vanish by hypothesis, proving our claim. �

A similar result appears in [6] for the Simons invariants of complete metrics of constant positive
sectional curvature. Note also a related multiplicative statement for Cheeger-Simons differential
characters in [2, Theorem 4.7].

As a consequence, we get an additivity property of Chern–Simons invariants of trivial bundles
with connections. More specifically, if E1, E2 are trivial bundles with connections and ∇ is a
connection on E := E1 ⊕ E2 extending ∇1 and ∇2 as in (2), then, whenever the curvature
endomorphism of∇ is diagonal with respect to the splitting, we have

CS(∇) = CS(∇1) + CS(∇2) mod Λ3
Z(X).

We shall prove a stable version of the above identity shortly. Let us recall that a stably trivial
vector bundle is a bundle which admits a trivial complement in a trivial bundle. More precisely,
E is stably trivial if there exists E ′ trivial with E ⊕ E ′ also trivial.

Proposition 6. Let E → X be a stably trivial real (respectively complex) vector bundle with
connection ∇E , and E ′ a trivial complement (i.e., such that E ⊕ E ′ is trivial) endowed with a
trivial connection∇′. Then the invariant CS(∇⊕∇′) (respectively CSC(∇⊕∇′)) is independent
of the choice of (E ′,∇′).

Proof. We only treat the real case, the proof in the complex case being formally identical. Choose
another trivial complement E ′′ with trivial connection∇′′ such that E ⊕ E ′′ is trivial.

Notice that∇⊕∇′⊕∇′′ is the direct sum connection onE⊕E ′⊕E ′′ with respect to the splitting
in the direct sum of the trivial bundles E ⊕ E ′ and E ′′, so in particular its curvature is diagonal
with respect to this splitting. We use Lemma 5 to deduce that, once we fix trivializations of
E ⊕ E ′ and of E ′′,

cs(∇⊕∇′ ⊕∇′′) = cs(∇⊕∇′) + cs(∇′′).
But the last term vanishes by Lemma 3 since ∇′′ is trivial, hence we have proved the equality
cs(∇ ⊕ ∇′ ⊕ ∇′′) = cs(∇ ⊕ ∇′) in the chosen trivializations. Passing to the residue modulo
Λ3

Z(X), we get CS(∇⊕∇′ ⊕∇′′) = CS(∇⊕∇′).

Similarly, fixing trivializations of E ⊕E ′′ and of E ′, we have cs(∇⊕∇′ ⊕∇′′) = cs(∇⊕∇′′),
and we deduce that independently of trivializations, CS(∇⊕∇′ ⊕∇′′) = CS(∇⊕∇′′).

We deduce the equality CS(∇⊕∇′) = CS(∇⊕∇′′). �
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Definition 7. The Chern–Simons invariant CS(∇) of a stably trivial vector bundle E with con-
nection∇ is defined as the class CS(∇⊕∇′) ∈ Λ3(X)/Λ3

Z(X), for any trivial vector bundle E ′

endowed with a trivial connection ∇′ such that E ⊕ E ′ is trivial. (By Proposition 6, that class is
independent of the choices involved.)

5. CONFORMAL INVARIANCE

If (X3, g) is a parallelizable compact 3-Riemanian manifold, the Chern–Simons invariant of the
Levi-Civita connection is known to be conformally invariant [3]. We extend this result when the
tangent bundle TX is only stably trivial as follows:

Proposition 8. Let (Xn, g) be a Riemannian manifold of dimension n with stably trivial tangent
bundle, and ∇ its Levi-Civita connection. Fix a trivial complement of rank k, L, to TX , with
its trivial connection d, and a global frame s in the trivial bundle TX ⊕ L over X . Let ω ∈
C∞(X, gln+k) be the connection 1-form of ∇⊕ d in the fixed framing. Then the Chern–Simons
3 form cs(ω) is conformally invariant up to exact forms on X .

Proof. Let f ∈ C∞(X) be a conformal factor, ∇t the connection associated to the conformal
metric gt = e2tfg, and ωt ∈ C∞(X, gln+k) the connection 1 form in the fixed framing. An easy
computation valid for for every 1-parameter variation of the Chern–Simons form gives:

∂tcs(ωt)|t=0 = tr(ω̇tdωt + ωtdω̇t + 2ω̇tω
2
t )|t=0

= dtr(ω̇ω) + 2tr(ω̇(dω + ω2)).

The first term is exact. In the second term, dω+ω2 is the matrix of the curvature of the connection
∇ ⊕ d in the fixed framing s. A direct application of Koszul’s formula shows, in our case of
conformal variations, that the variation of the Levi-Civita connection is

∂t(∇t
UV ) = U(f)V + V (f)U − g(U, V )∇f,

in particular it is independent of t. So ω̇ is the matrix in the fame s of the block-diagonal
endomorphism (with respect to the splitting TX ⊕ L)[

∂t(∇t)|t=0 0
0 0

]
One can compute tr(ω̇(dω + ω2)) in any local basis, that we now choose to be compatible with
the splitting:

tr(ω̇(dω + ω2)) = tr
(
∂t(∇t)|t=0R

)
where R is the curvature endomorphism of ∇. So the bundle L does not contribute at all to this
term. In any orthonormal frame {ej} on X ,

∂t(∇t)|t=0 = df ⊗ I +
∑
i

ei ⊗
(
df ⊗ ei − ej ⊗∇f

)
R = 1

4

∑
j,k,α,β

Rjkαβe
j ∧ ek ⊗

(
eα ⊗ eβ − eβ ⊗ eα

)
.
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Using the anti-symmetry of the Riemann curvature coefficients, we get tr((∇f ⊗ I)R) = 0. The
remaining term gives ∑

i,j,k,l

Rjkil∂l(f),

which vanishes by the first Bianchi identity. �

6. VANISHING RESULTS

Theorem 9. Let E → X be a stably trivial vector bundle endowed with a connection ∇E .
Assume that there exists a line bundle L→ X with a flat connection∇L, and a trivial connection
∇ on the bundle E ⊕ L such that

∇E = ΠE∇ΠE, ∇L = ΠL∇ΠL,

where ΠE and ΠL = 1− ΠE are the projectors on the E, respectively L factors in E ⊕ L. Then
CS(∇E) = 0.

Proof. The conditions of Lemma 5 are clearly satisfied since∇ is trivial. Moreover, CS(∇) = 0
by the same reason. Also, CS(∇L) = 0 by Lemma 3. It follows from Lemma 5 that CS(∇E) =
0. �

From this, we recover some classical, and some more recent, vanishing results modulo Z.

Corollary 10 (Chern–Simons [3]). Let f : X3 → R4 be a conformal immersion of an oriented
Riemannian compact 3-fold (X, g) in the flat Euclidean space R4, and ω the connection 1-form
of the Levi-Civita connection of g in some global frame on X . Then∫

X

cs(ω) ∈ Z.

Proof. First, assume that f is an isometric immersion. The tangent bundle of every orientable
3-manifold is trivial [9], so it makes sense to consider the Chern–Simons form for the Levi-Civita
connection in some trivialization. The pull-back of TR4 through the isometric immersion is the
direct sum of TX (since the map f∗ is injective on each tangent space) and of the normal line
bundle NX . This last bundle is trivial together with its induced connection, since it admits a
parallel section (the unit normal vector field compatible with the orientations on TX and TR4).
Moreover, the connection induced on TX by projecting the trivial connection on f ∗TR4 is the
Levi-Civita connection. Hence for every trivialization of TX we obtain by Theorem 9 that
cs(ω) ∈ Λ3

Z(X). By pairing with the fundamental homology class [X] ∈ H3(X,Z) we get the
conclusion in the case where f is isometric.

In general, replace g by the pull-back of the euclidean metric through f . Since f is conformal,
this metric is conformal to g, so the Chern–Simons invariant does not change. �
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A notion more general than isometric immersions is that of equiaffine immersions, see [8]. Recall
that a connection on the tangent bundle of a manifold Xn is called equiaffine (or unimodular) if
it preserves a volume form. Equivalently, an equiaffine connection induces the trivial connection
on the top form bundle ΛnX . Yet another way of defining it would be to ask that the global
holonomy group be a subgroup of SLn. An equiaffine immersion of a manifold endowed with
a torsion-free equiaffine connection ∇TX is by definition an immersion f : X → Rm together
with a complement E ′ of TX inside f ∗TRm, such that for the projector ΠTX defined by E ′, the
connection on TX induced from f ∗∇R4 is precisely∇:

∇ = ΠTXf
∗∇R4

ΠTX .

A generalization of the result of Chern and Simons was recently found for equiaffine immersions:

Theorem 11 (Čap-Flood-Mettler [1]). Let X3 be a compact oriented 3-fold with a torsion-free
connection ∇ on TX which preserves a volume form. If (X,∇) admits an equiaffine immersion
in R4 then ∫

X

cs(∇) ∈ Z.

The proof in [1] is based on a notion of “flat embeddings” of principal bundles with structure
groupG inside some larger Lie group G̃. Theorem 11 is in fact a particular case of a more general
vanishing result:

Theorem 12. Let Xn be a smooth manifold, and∇X a connection on TX . Assume that:

(1) the local holonomy of∇X is a subgroup of SLn(R);
(2) there exists an immersion f : X → Y in a manifold Y n+1 and a trivial connection ∇Y

on TY ;
(3) there exists a rank-1 complement E of TX inside f ∗TY such that

∇X = ΠTXf
∗(∇Y )ΠTX ,

where ΠTX : f ∗TY → TX is the projection on the first factor in f ∗TY = TX ⊕ E.

Then the Chern–Simons invariant CS(∇X) vanishes.

Proof. The connection induced by∇X on the form bundle ΛnX has holonomy in the group {1},
hence it is flat and the line bundle ΛnX is trivial. Let thus µX be a parallel volume form on X
for ∇X , and choose a nonzero section e in E such that µX ∧ e is parallel for the trivial connec-
tion f ∗(∇Y ) on Λn+1f ∗TY . (The section vn+1 is unique up to a locally constant multiplicative
factor.) Since∇X = ΠTXf

∗(∇Y )ΠTX , it follows that ΠEf
∗∇Y e = 0, implying that the induced

connection on the line bundle E
∇E = ΠEf

∗(∇Y )ΠE

is flat. The conclusion follows now from Theorem 9. �

Theorem 11 follows from Theorem 12 by taking X to be compact, 3-dimensional and oriented
(so in particular parallelizable), Y = R4 equipped with is standard flat connection, and E the
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normal line bundle. Since in Theorem 11 the connection ∇X is assumed to preserve a global
volume form, the global holonomy group of ∇X must be a subgroup of SL3(R). On an oriented
3-manifold X , a 3-form belongs to Λ3

Z(X) if and only if its integral on X belongs to Z.

Note that the method of proof in [1] relies on mapping the principal frame bundle of X into
a principal bundle with total space a larger Lie group; this method does not generalise in an
obvious way to the setting of Theorem 12.

7. APPLICATIONS TO CONFORMAL IMMERSIONS IN TRANSLATION MANIFOLDS

We conclude this note with an obstruction to conformal immersions in translation manifolds.

7.1. Translation manifolds. By definition, a translation manifold structure on a topological
manifold Y denotes an atlas T whose transition maps consist of Euclidean translations. Since
translations are oriented isometries of Rn, Y is oriented and inherits from the Euclidean space
a flat Riemannian metric gY . This metric has trivial holonomy on Y , a parallel global frame
being defined at any p ∈ Y by the preimage through any chart in T near p of the standard frame
on Rn. Since translations preserve the standard frame, this is well-defined independently of the
chart in T. Conversely, a Riemannian manifold with trivial global holonomy must in particular
be parallelizable (because one can fix a global parallel frame) and locally isometric to Rn (since
flat). Out of all local isometries with Rn, select those that map the fixed parallel frame onto the
standard frame of Rn, obtaining in this way a translation manifold structure.

In real dimension 2 there exists a related notion of translation surface, which means a com-
pact Riemann surface endowed with a holomorphic 1-form α. Outside the zero locus of α, the
translation surface has a natural translation atlas whose charts consist of local primitives of α,
and a flat metric defined by <(α ⊗ α), with conical singularities at the zero locus, with angle
an integer multiple of 2π. According to our definition, the complement of the zero locus of α
in a translation surface is a translation manifold of dimension 2. Note, however, that a general
translation manifold cannot always be compactified by adding some conical points. Note also
that translation manifolds are oriented and flat, but the converse does not hold. A free quotient of
Rn by a discrete subgroup of isometries is a translation manifold if and only if all group elements
are translations. In general, a translation manifold is not required to be complete, so it need not
immerse in some quotient of Rn.

7.2. Obstructions to conformal immersions in translation manifolds.

Proof of Theorem 1. By Proposition 8, the Chern–Simons form in a fixed frame is conformally
invariant up to exact forms on X , so we can assume that the metric on X is chosen such that the
immersion in Y is isometric. Having trivial holonomy means that we can find a global frame on
Y parallel for ∇Y ; clearly in this case the Chern–Simons invariant of ∇Y vanishes (Lemma 3).
By Theorem 12, CS(∇X) ≡ 0 mod Λ3

Z(X) so by integration along C we get an integer. �
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In dimension n = 3 we obtain:

Corollary 13. If an oriented Riemannian compact 3-fold (X, g) immerses in a 4-dimensional
translation manifold, then ∫

X

CS(∇g) ∈ Z.

7.3. Examples. The Chern–Simons invariant of the real projective space RP 3 = SO(3) equals
1/2 + Z. More generally, the Riemannian Chern–Simons invariant of the lens space Lp;a,b (see
Appendix B) with its spherical metric equals −1/p (Proposition 18). Lens spaces are locally
isometric to S3 ↪→ R4. They also admit immersions in R4, which however do not respect the
conformal class. Despite these facts, it follows from Corollary 13 and the computation in Ap-
pendix B that lens spaces cannot be conformally immersed in any Riemannian 4-manifold with
trivial holonomy.

APPENDIX A. DE RHAM COHOMOLOGY OF THE GENERAL LINEAR GROUP

We relegated to this section the proof of the fact, crucial for the definition of Chern–Simons
invariants, that the closed 3-form 1

48π2 tr(µ3), constructed from the Maurer–Cartan form on
GL+

n (R), is integral for every n. (This is standard for n = 3.) We prove at the same time
the analogous result for the form 1

24π2 trC(µ3) on GLn(C).

A.1. Retraction onto the maximal compact subgroups. The general linear group GLn(C)
retracts onto U(n) by the deformation

Φ : [0, 1]×GLn(C)→ GLn(C), Φs(A) = (AA∗)−s/2A.

The restriction of Φ to GLn(R)+ defines a deformation retraction of GLn(R)+ onto SO(n).
Thus the inclusions U(n) ↪→ GLn(C) and SO(n) ↪→ GLn(R)+ induce isomorphisms in
(co)homology.

A.2. Cohomology classes constructed from the Maurer–Cartan form. Let G ⊂ GLn(R)
be a linear Lie group. The Maurer–Cartan 1-form µ = g−1dg ∈ Λ1(G) ⊗ glnR is defined by
µg(V ) = g−1V for g ∈ G, V ∈ TgG. It satisfies the equation

dµ = µ2

which is equivalent to the vanishing of the curvature of the unique connection on the trivial
G-bundle over a point. It follows that the form tr(µ3) is closed:

dtr(µ3) = tr
(
d(µ3)

)
= tr

(
d(µ)µ2)− µd(µ)µ+ µ2d(µ)

)
= 3tr

(
d(µ)µ2)

)
= 3tr(µ4) = 0.

The last equality holds because on one hand, µ4 = µ3µ = µµ3, while on the other hand, from
the trace property, tr(µ3µ) = −tr(µµ3).

The case where G is a subgroup in GLn(C) is entirely similar, the only difference being that in
that case, trC(µ3) is a complex-valued closed 3-form on G.
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Note that the Maurer–Cartan form µ on G ⊂ GLn(R) coincides with the pullback to G of the
Maurer–Cartan form of the group GLn(R) itself. A similar statement holds for complex linear
groups.

A.3. Right regular representation of the quaternion algebra. The field K of quaternions is
isomorphic to C2 as complex vector spaces, by the identification z1 + z2j ↔ (z1, z2). This
isomorphism is an isometry when we endow K with the Hermitian inner product

〈q1, q2〉C = C(q1q2),

where C(z1 + z2j) := z1 denotes the complex part of the quaternion z1 + z2j. K is also isometric
to R4 as real vector spaces by the identification (a, b, c, d) ↔ a + bi + cj + dk, with respect to
the scalar product 〈q1, q2〉 = <(q1q2).

Define a R-algebra morphism

R : K→ EndK(K), R(q)v := vq.

By composing R with the chain of inclusion maps EndK(K) ↪→ EndC(K) ↪→ EndR(K), we
get R-algebra maps RC : K → EndC(K), respectively RR : K → EndR(K). Since R(q) is an
isometry for |q| = 1, by restricting to the Lie group of unit-length quaternions we get Lie group
morphisms

RC : S3 → U(2), RR : S3 → O(4), RC(q) = RR(q) = (v 7→ vq).

Furthermore, the group morphism det ◦RC : S3 → S1 factors through the abelianization of
S3, which is {±1}. Since S3 is connected, it follows that RC, respectively RR, take values in
SU(2), respectively SO(4). In fact RC : S3 → SU(2) turns out to be an isomorphism, while
RR : S3 ↪→ SO(4) is an embedding.

A.4. 3-homology of SO(n) and U(n). Let e1 denote the first element in the standard basis of
Rn.

Lemma 14. The Lie group SO(4) is the semidirect product of the subgroups SO(3) = Stab(e1)
acting on RR(S3).

Proof. For every n ≥ 2 consider the principal fibre bundle with structure group SO(n − 1) =
Stab(e1)

SO(n)

π
��

SO(n− 1)

Sn−1

(3)

where π(A) = Ae1. When n = 4, the embedding

s : S3 → SO(4), s(q) = RR(q−1)(4)

is a global section in the fibration π, giving rise to a product decomposition of manifolds

SO(4) = s(S3) · SO(3).
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For clarity, this means that the every element in the group SO(4) can be written uniquely as the
product of elements of the subgroups s(S3) = RR(S3), respectively SO(3). This decomposition
is in fact a semidirect product since RR(S3) is normal in SO(4). Indeed, SO(3) = Stab(e1) is
also the image through Ad of S3, and

Ada−1RR(q)Ada = RR(Ada−1(q)). �

By the Künneth formula, H3(SO(4),Z) is hence generated by the two 3-cycles of the subgroups
s(S3) and SO(3), the latter being embedded in SO(4) in the lower right corner.

Lemma 15. For n ≥ 5, the map H3(SO(n − 1),Z) → H3(SO(n),Z) induced by inclusion is
surjective.

Proof. Represent any 3-homology class on SO(n) by a smooth singular 3-cycle C. By dimen-
sional reasons, π ◦C must avoid at least a point p ∈ Sn−1. Let (Φt)0≤t≤1 be a deformation retract
of S \ {p} onto −p. Using a connection in the fibration (3), we lift the retraction horizontally, to
define a retraction by deformation of π−1(S \ {p}) to the fiber over −p, hence to SO(n − 1). It
follows that the cycle C is cohomologous to a cycle in SO(n− 1) ⊂ SO(n), as claimed. �

The case of GLn(C) is similar but simpler, using the principal fibration

U(n)

π
��

U(n− 1)

S2n−1

(5)

For n = 2 this fibration is trivial because it admits the section sC = RC ◦ inv as in (4), inducing
a product decomposition

U(2) = sC(S3) · U(1),

which turns out to be a semidirect product decomposition of U(2) = U(K) as U(1) = Stab(1)
acting by conjugation on RC(S). It follows by Künneth that H3(U(2),Z) is infinite cyclic, with
generator the cycle s(S3). For larger n, the lacunarity of the Leray-Serre homology spectral
sequence of the fibration (5) shows that the inclusion U(n−1) ↪→ U(n) induces an isomorphism
in H3, so for every n the 3-homology of U(n) is generated by the cycle S3.

A.5. Integrality.

Lemma 16. For every N , the form 1
48π2 tr(µ3) belongs to Λ3

Z(GL+
n (R)).

Proof. Since SO(n) is a deformation retract of GL+
n (R), we have to check that the evaluation of

1
48π2 tr(µ3) on every 3-cycle with integer coefficients in SO(n) is integral. This is trivially true
(for dimensional reasons) when n ≤ 2.

For every n ≥ 3 we have the cycle consisting of (a triangulation of) the subgroup SO(3) ↪→
SO(n) embedded diagonally in the right lower corner. One checks immediately that the restric-
tion of µ to SO(3) is the Maurer–Cartan form of that subgroup, composed with the diagonal
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inclusion of spaces of matrices gl(3) ↪→ gl(n). This inclusion is moreover compatible with the
trace maps. We now claim that

(6) tr(µ3)|SO(3) = −48vol,

where vol is the standard volume form on S3. To see this, consider the adjoint representation

Ad : S3 → GL(K), Adq(v) = qvq−1.(7)

It decomposes into the trivial representation on R (which is the center of K) and a orthogonal
representation on the span over R of the imaginary quaternions {i, j, k}, identified with R3, that
we denote by Ad : S3 → SO(3). The group morphism Ad is surjective, a 2 : 1 covering map
with kernel {±1}, inducing an isomorphism ad : R3 → so(3) at the level of Lie algebras. The
group S3 ⊂ K with its standard bi-invariant metric admits an orthonormal frame (I, J,K) of
left-invariant vector fields defined at q ∈ S3 by Iq = qi ∈ TqS3 ⊂ K, etc. In this basis, the map
ad takes the form

ad(I) =

0 0 0
0 0 −2
0 2 0

 , ad(J) =

 0 0 2
0 0 0
−2 0 0

 , ad(K) =

0 −2 0
2 0 0
0 0 0

 .
From this, we compute

tr(ad(I)ad(J)ad(K)) = −8, tr(ad(I)ad(K)ad(J)) = 8.

Note that tr(µ3) is left-invariant, so it is a multiple (to be determined) of the standard volume
form induced from S3 by the 2 : 1 covering map (7). Moreover, from the above identities,
Ad∗tr(µ3)(I, J,K) = 48. Together, these two facts end the proof of (6).

When n = 3, the cycle SO(3) clearly generates H3(SO(3),Z).

For n = 4, we have seen that SO(4) is diffeomorphic to the Cartesian product of the submanifolds
SO(3) and s(S3), so H3(SO(4),Z) is free abelian with two generators, the extra one being the
subgroup s(S3), or equivalently1 RR(S3). The form R∗Rtr(µ3) is left-invariant, hence a constant
multiple of the standard volume form. Write R∗Rµ ∈ Λ1(S3, gl4(R)) in the standard basis of K
as R∗Rµ(V ) = RR(V ) for every V ∈ TS3. Since RR is multiplicative, for every permutation
σ ∈ Σ3,

RR(σ(I))RR(σ(J))RR(σ(K)) = RR(σ(I)σ(J)σ(K)) = RR(−sign(σ)) = −sign(σ)Id4,

where sign(σ) is the signature of the permutation σ, therefore tr ((R∗Rµ
3)(I, J,K)) = −24,

showing that

(8) tr(µ3)|RR(S3) = −24vol.

Finally, for n ≥ 5, by Lemma 15 the cycles SO(3) and s(S3) still generate2 H3(SO(n),Z). Since
vol(S3) = 2π2 and vol(SO(3)) = π2, it follows from (6) and (8) that 1

48π2 tr(µ3) evaluated on
these cycles equals −1, respectively 1. �

1The 3-cycles s(S3) and RR(S3) in SO(4) differ by the orientation-changing involution q 7→ q−1 of S3.
2Albeit not freely, but this is irrelevant for the sake of our argument.



INVARIANTS OF STABLY TRIVIAL VECTOR BUNDLES 15

Lemma 17. For every n, the form 1
24π2 trC(µ3) belongs to Λ3

Z(GLn(C)).

Proof. This is similar to the real case using the same arguments as above, only simpler since
for every n the homology space H3(GLn(C)) is free of rank 1, generated by the cycle S3 →
SU(2) ↪→ GLn(C). The matrix-valued form µ3 evaluated on the orthonormal frame {I, J,K}
equals 3! timesRC(I)RC(J)RC(K) = RC(IJK) = RC(−1) = −Id2, so trC(µ3)(I, J,K) = 12.
Since vol(S3) = 2π2, it follows that ∫

S3
trC(µ3) = −24π2. �

APPENDIX B. RIEMANNIAN CHERN–SIMONS INVARIANT OF LENS SPACES

Chern–Simons invariants of flat SU(2) connections on 3-dimensional lens spaces have been com-
puted by Kirk-Klassen [5]. Here we compute the real Chern–Simons invariant of the Levi-Civita
connection.

B.1. The sphere S3. The Chern–Simons form of the Levi-Civita connection ∇ on S3 in the
orthonormal frame (I, J,K) was computed in the original paper of Chern and Simons [3]:

cs(∇; (I, J,K)) = −1

2
vol.

We refer e.g. to [7] for the easy proof, which can also be derived from the results of the previous
sections. As a corollary, CS(∇) = 0 mod Z.

B.2. Lens spaces. The lens space Lp;q1,q2 is defined as the quotient of S3 ⊂ C2 by the cyclic
group Γ of order p generated by the isometry

(z1, z2) 7→ (e2πiq1/pz1, e
2πiq2/pz2)

for some integers p, q1, q2. If q1, q2 are both relatively prime to p, the action is free, so the lens
space Lp;q1,q2 is an oriented compact Riemannian 3-fold with constant sectional curvature 1.
Denote by π : S3 → Lp;q1,q2 the natural p : 1 covering map.

Proposition 18. The Chern–Simons invariant of the Levi-Civita connection for the standard
spherical metric on Lp;q1,q2 equals −1

p
mod Z.

Proof. The vector field I defined by right multiplication with i ∈ K is invariant by Γ, so its
orthogonal complement, the span of J and K, forms an invariant oriented real vector bundle of
rank 2 with inner product, which can therefore be naturally equipped with a complex line bundle
structure. Being Γ-invariant, this bundle descends to a complex line bundle E over Lp;q1,q2 .
Since H2(Lp;q1,q2 ,Z) = 0, the Chern class of E vanishes so E is trivial. A trivialization of E by
a global section U of length 1 defines a trivialization of the underlying real vector bundle by an
orthonormal frame (U, V ), where V is the rotation of U by angle π/2. Together with I , these
vector fields form an orthonormal frame on Lp;q1,q2 . Let a : S3 → SO(3) be the matrix relating
the pull-back of the frame (I, U, V ) to S3, denoted (π∗I, π∗U, π∗V ), and (I, J,K). Since I = π∗I
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is the first vector in both frames, the matrix a relating them is block-diagonal, orthogonal, with
1 in the upper left corner, hence a rotation in the bottom right corner. In other words, a factors
through SO(2), embedded in SO(3) as the stabilizer of e1.

Use now formula (1) to relate the Chern–Simons forms of the Levi-Civita connection on S3 in
the two trivializations (π∗I, π∗U, π∗V ) and (I, J,K).

Since the map a factors through the 1-dimensional subgroup SO(2), the 3-form tr((a−1da)3) =
a∗tr(µ3) vanishes. Moreover, by the Stokes formula,

∫
S3 dtr(daa−1ω) = 0. In conclusion,

(9)
∫
S3
cs(∇; (π∗I, π∗U, π∗V )) =

∫
S3
cs(∇; (I, J,K)) = −1.

Since π is an isometric covering map of degree p, we have the equality of 3-forms on S3

π∗cs(∇; (I, U, V )) = cs(∇; (π∗I, π∗U, π∗V )).

Hence the left-hand side of (9) equals p times the integral on Lp;q1,q2 of the Chern–Simons form
cs(∇; (I, U, V )), leading to ∫

Lp;q1,q2

cs(∇; (I, U, V )) = −1

p
. �
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