INVARIANTS OF STABLY TRIVIAL VECTOR BUNDLES WITH CONNECTION

SERGIU MOROIANU

ABSTRACT. We define a Chern—Simons invariant of connections on stably trivial vector bundles
over smooth manifolds, taking values in 3-forms modulo closed forms with integral cohomology
class. We show an additivity property of this invariant for connections defined on a direct sum of
bundles, under a certain block-diagonality condition on the curvature. As a corollary, we deduce
an obstruction for conformally immersing a n-dimensional Riemannian manifold in a translation
manifold of dimension n + 1.

1. INTRODUCTION

By a striking result of Chern and Simons [3], the Chern—Simons invariant of a compact oriented
Riemannian 3-manifold (X, g) conformally immersed in the flat Euclidean space R* must van-
ish modulo Z, showing, for instance, that the real projective space RP? cannot be conformally
immersed in R*. This result was extended in a recent paper by Cap, Flood and Mettler [1] to
equiaffine immersions, a notion that we recall below. Motivated by those results, we prove in this
note a more general vanishing result for the Chern—Simons invariant of a stably trivial real vector
bundle with connection over an arbitrary smooth manifold (Theorem 12). When the bundle is the
tangent bundle of a Riemannian manifold, we derive an obstruction for conformal immersions as
hypersurfaces in translation manifolds:

Theorem 1. Let f : X™ — Y™ ! be a conformal immersion of an oriented Riemannian manifold
(X, g) of dimension n in a n + 1-dimensional translation manifold Y. Then, for every smooth
singular 3-cycle C' € C5(X, Z), the evaluation of €&(V*) on C must vanish modulo integers:

/C €B(V) € Z.

The definition of a translation manifold is recalled in Section 7. We should stress that X is not
assumed to be parallelizable; to define the Chern—Simons invariant of VX it suffices that TY
be trivial, which entails that 7°X is stably trivial. As a consequence, we deduce, for instance,
that 3-dimensional lens spaces cannot be conformally embedded in any (possibly incomplete)
Riemannian 4-manifold with trivial global holonomy.
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We first review Chern—Simons invariants of trivial bundles using a principal-bundle-free formal-
ism, based on the calculus of matrix-valued forms. We then extend the definition to stably trivial
bundles with connection; prove the additivity property; and finally deduce various obstructions
to immersions into translation manifolds. In the Appendix we show that a certain 3-form on
the general linear group, constructed in terms of the Maurer—Cartan form, is integral, and we
compute the Riemannian Chern—Simons invariant of 3-dimensional lens spaces.

For several reasons, we do not treat here higher-dimensional Chern—Simons forms: first, because
a large part of the current interest in Chern—Simons invariants seems to concentrate in dimension
3; secondly, since the tangent bundle of oriented manifolds is trivial in dimension 3, but in general
not stably trivial in higher dimensions; and thirdly, because there are technical difficulties in
extending the additivity property (Lemma 5) beyond dimension 3. With these limitations, the
paper is essentially self-contained, and could hopefully also be used as an efficient introduction
to the subject, free of the customary reliance on the topology of classifying spaces.

2. MATRIX-VALUED FORMS

Let X be a smooth manifold. Denote by My the space of real matrices with k£ rows and £’
columns, and let X x My — X be the trivial vector bundle. A matrix-valued form on X is a
section in the tensor product bundle A*X ®r My.. For k = k' = 1 this is the usual algebra of
differential forms on X.

Besides the evident associative product (denoted below by concatenation)
(APX (029 Mkk’) X (AqX X Mk’k”) — APTIX X Mkku,
there are two other natural operations on matrix-valued forms.

First, we have the first-order differential operator d, the exterior differential on X twisted by the
trivial connection (also denoted d) on the trivial vector bundle My :

d: APX (39 Mkk’ — Ap+1X (29 Mkk’; d(Ck X A) = (dOz) & A + (—1)padA.
Here o € APX is a form and A : X — My is a section in X X My. The operator d has the
signed Leibniz property
d(uv) = d(u)v + (—1)*eWyd(v),
where, by definition, the degree of a matrix-valued form u € AP X ® My is deg(u) = p.
The second natural operation is the trace, defined when k£ = £':
tr: APX ® gl (R) = APX, tr(a® A) = atr(A).

Although matrix-valued forms do not form a super-commutative algebra, their trace has the sign-
commutation property

tr(uv) = (—1)Ptr(vu).
forevery u € APX ® My and v € A7X @ M.
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Combining these two operations, it is useful to note the identity
d(tr(u)) = tr(d(u)).

The same properties hold for complex matrix-valued forms. We shall distinguish between the two
cases by a subscript in the complex trace trc, in order to distinguish it from its real counterpart.

3. CHERN—SIMONS FORMS AND INVARIANTS

Let E be a topologically trivial real vector bundle of rank n with connection V over X. Once
we fix a frame in F, we write V = d + w for some matrix-valued 1-form w, and we define the
Chern—-Simons 3-form by

5(w) = —pztr (wdw + 2w’) € A*(X).

T 1672

Denote by 2 = dw + w? € A?(X, gl,R) the matrix-valued curvature 2-form of V in the fixed
frame. One can alternately describe the Chern—Simons form as

5(w) = — ez tr (WO — 1w?).
A standard computation gives
d(es(w)) = —161%2tr(§22) e A (X).

Definition 2. A complex k-form w € A*(X) ®g C on a smooth manifold X is said to be integral
if it is closed, and its cohomology class belongs to the image of the natural map H*(X,Z) —
H*(X,C). The space of integral k-forms on X is denoted A% (X).

Equivalently, w € A%(X) if and only if [,w € Z for every oriented smooth singular k-cycle C
with integer coefficients.

In a different trivialization obtained by (right-)multiplying the given frame in £ by a map a :
X — GL,(R), the connection 1-form becomes w’ = a 'wa + a~'da. By an easy computation
using the properties of matrix-valued forms, the associated Chern—Simons form changes into
(1) cs(a”'wa +a”'da) = s(w) + tr ((a7'da)’) — d(daa'w) € A*(X).

4872 1672

The form a~'da is the pull-back by a of the Maurer—Cartan form p € A'(GL,(R), gl,R). It
is a fact, detailed in Appendix A for the sake of completeness, that for every n > 3, the form
=z tr(p?) is closed, defines an integral cohomology class on GL,, (RR), and its evaluation on the
3-homology cycle SO(3) C GL,(R) equals —1, thus motivating the choice of the normalization
constant. Equation (1) thus shows that ¢s(w’) agrees with c¢s(w) up to an integral 3-form. It
follows that the class of ¢s(w) modulo A3 (X) gives rise to a well-defined element €S (V) €
A3(X)/A3(X), independent of the trivialization, that we call the Chern—Simons invariant of V.
Whenever the first Pontriaghin form tr(Q?) of V vanishes, ¢s(w) is closed, and its cohomology

class is independent of the choice of trivialization up to an integral class.
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3.1. Vanishing results. The vanishing of a Chern—Simons invariant means that it is represented
by a closed Chern—Simons form whose associated de Rham cohomology class is integral, i.e., it
lives in the image of the natural map H3(X,Z) — H?(X,C). The above discussion ensures that
the vanishing of a Chern—Simons invariant is independent of the choice of trivialization used for
defining the connection 1-form, so it is a property of the connection, rather than of the connection
form in some trivialization.

Here are some evident instances of vanishing results:

Lemma 3. (1) The Chern—Simons invariant of a trivial connection vanishes.
(2) The Chern—Simons form of a flat connection on a trivial vector bundle of rank 1 vanishes.
(3) If w € AY(X) defines an involutive distribution ker(w) C T'X of codimension 1 in X,
i.e., w A dw = 0, then the Chern—Simons form of the connection d + w on the trivial
bundle R x X vanishes.

Proof. By definition, in a parallel frame, the connection 1-form of a trivial connection vanishes,
so both terms in the Chern—Simons form vanish as well.

If the rank of the bundle is 1, the term w? vanishes identically by anti-symmetry. The term w{)
also vanishes if the curvature is 0, proving the second claim.

The third claim is similar, in that the term {2 = dw does not need to vanish anymore, however
the Frobenius integrability condition implies w2 = 0. 0

3.2. Complex Chern-Simons forms and invariants. For trivial complex vector bundles en-
dowed with a C-linear connection, more or less the same definition makes sense using the com-
plex trace, resulting in a complex-valued 3-form on X. In that case, the form ;5 417r2 tre(u) is
integral on GL,,(C) by Lemma 17, so the natural normalization constant for the Chern—Simons

invariant is in this case 1/872:

tsc(w) = —ghtre (wdw + 2w?) € A*(X) @x C.

This form has the same invariance properties as its real counterpart, eventually defining a class
in €6¢(V) € (A3(X) ® C)/A3(X) independent of trivializations, called the complex Chern—
Simons invariant of V.

Since every complex vector bundle has a subjacent real structure, it is natural to inquire about
a possible relationship between the real and the complex Chern—Simons invariants of a trivial
complex vector bundle with complex connection. This relation is simply:

Lemma 4. ¢S(V) = R(CS(V)).

Proof. For A € End¢(C") define Ax € Endg(C") to be the image of A through the natural
inclusion End¢(C") < Endg(C™). It is evident that the inclusion is an algebra map, and that
tl"(AR) = 2%@1‘@(14)) Then

(wdw + %w?’)R = (wRdwR + %wfé) )
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The different normalization constants in the definitions of ¢s and c¢sc account for the factor 2
relating the real and the complex traces. U

By tensoring with C, every trivial real vector bundle £ with connection gives rise to a complex
vector bundle £ endowed with a complex connection. Any trivialization of £ will induce a com-
plex trivialization of £ ® C, and the connection forms in F and E¢ are the same gl,,(R)-valued
1-form w. From the difference in normalization constants, it follows that ¢s(w) = 1csc(w).

4. STABLE CHERN—SIMONS INVARIANTS

Let F/1, E5 be two trivial vector bundles (real or complex) over X with connections V1, V,. We
say that a connection V on E' := E; & E; extends V and V if

2) ILVIL = Vi, ILVIL, =V,

where I, Il are the projectors on E, respectively Fs, in E. If we fix trivializations of F; and
Es, we write V, = d + wq, Vo = d 4 w», and therefore V = d + w, where

w1 A
w = B w|
Here A, respectively B are some matrix-valued 1-forms of suitable dimensions. Denote by R the

curvature of V, and by (2 its matrix-valued 2-form in the fixed trivialization. For ¢,5 € {1,2}
denote by R;; the £; — FE; component of the curvature:

Rij - HZRH]
Lemma S. If R = 0 and Ry, = 0, then in the real case
cs(w) = cs(wy) + es(wo),

while in the complex case csc(w) = ¢sc(wy) + es5c(ws).

The proof is formally the same in both cases, so we disregard the subscript C in the trace when-
ever the bundles are complex.

Proof. Compute the various ingredients of the curvature and of the Chern—Simons form of w as
follows:
9 [ W2+ AB  w A+ Aws

Bw; +wsB w32+ BA

O [ dw; +w? + AB dA+ wi A+ Aws
~ |dB + Bwy +w, B dwy + w3 + BA
Q- [widw; + w? + wi AB + AdB + ABw + Aw,B *
W= % Bwi A+ BdA + BAw, + wydws + w + w, BA

3 (w3 + w1 AB + ABw, + Aw,B *
* Bwi A+ wyBA + w3 + BAw,
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We have omitted the off-diagonal terms in w(2 and in w?, replacing them with the symbol x, as
they are eventually irrelevant for the trace. From the above, we compute the traces appearing in
the Chern—Simons form:

tr(w?®) = tr(w}) + tr(wy) + 3tr(wy AB) + 3tr(w, BA)
tr(w) = tr(w1Qy) + tr(wads) + tr(AdB) + tr(BdA) + 3tr(w; AB) + 3tr(wa BA)
cs(w) = cs(wy) + ¢s(wq) + tr[A(dB + Bw; + weB)] + tr[B(dA + w1 A + Aws)].

We now recognise in the last two terms the off-diagonal terms in the curvature: €25 = dB +
Buwy +we B, Q15 = dA + w1 A+ Aws. These terms vanish by hypothesis, proving our claim. [

A similar result appears in [6] for the Simons invariants of complete metrics of constant positive
sectional curvature. Note also a related multiplicative statement for Cheeger-Simons differential
characters in [2, Theorem 4.7].

As a consequence, we get an additivity property of Chern—Simons invariants of trivial bundles
with connections. More specifically, if Ey, F/; are trivial bundles with connections and V is a
connection on E = Fy @ Es extending V; and Vs as in (2), then, whenever the curvature
endomorphism of V is diagonal with respect to the splitting, we have

CS(V) = €6(Vy) + €6(V,) mod A(X).

We shall prove a stable version of the above identity shortly. Let us recall that a stably trivial
vector bundle is a bundle which admits a trivial complement in a trivial bundle. More precisely,
E is stably trivial if there exists £’ trivial with E' @ E’ also trivial.

Proposition 6. Let E — X be a stably trivial real (respectively complex) vector bundle with
connection V¥, and E' a trivial complement (i.e., such that E ® E' is trivial) endowed with a
trivial connection V'. Then the invariant €& (V@ V') (respectively €S¢(VEV')) is independent
of the choice of (E',V').

Proof. We only treat the real case, the proof in the complex case being formally identical. Choose
another trivial complement £” with trivial connection V" such that £ & E” is trivial.

Notice that V& V' @& V” is the direct sum connection on £ @ E’' @ E” with respect to the splitting
in the direct sum of the trivial bundles ¥ & E’ and E”, so in particular its curvature is diagonal
with respect to this splitting. We use Lemma 5 to deduce that, once we fix trivializations of
E® E" and of E”,
s(VaV oV =u(VaV)+s(V).

But the last term vanishes by Lemma 3 since V" is trivial, hence we have proved the equality
s(VaV e V") = (Ve V) in the chosen trivializations. Passing to the residue modulo
A (X)), weget€S(VaV @ V") =€&(Va V).

Similarly, fixing trivializations of F & E” and of E’, we have ¢s(V & V' & V") = ¢s(V & V”),
and we deduce that independently of trivializations, €&(V & V' & V") = €S(V & V”).

We deduce the equality €S(V & V') = ¢&(V @ V”). O
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Definition 7. The Chern—Simons invariant €S(V) of a stably trivial vector bundle £ with con-
nection V is defined as the class €5(V @ V') € A*(X) /A3 (X), for any trivial vector bundle £’
endowed with a trivial connection V' such that £/ & E’ is trivial. (By Proposition 6, that class is
independent of the choices involved.)

5. CONFORMAL INVARIANCE

If (X3, g) is a parallelizable compact 3-Riemanian manifold, the Chern—-Simons invariant of the
Levi-Civita connection is known to be conformally invariant [3]. We extend this result when the
tangent bundle 7' X is only stably trivial as follows:

Proposition 8. Ler (X™, g) be a Riemannian manifold of dimension n with stably trivial tangent
bundle, and V its Levi-Civita connection. Fix a trivial complement of rank k, L, to T X, with
its trivial connection d, and a global frame s in the trivial bundle T'X @& L over X. Let w €
C>(X,gl,. ) be the connection 1-form of V & d in the fixed framing. Then the Chern—Simons
3 form ¢s(w) is conformally invariant up to exact forms on X.

Proof. Let f € C*(X) be a conformal factor, V* the connection associated to the conformal
metric g, = e?/¢, and w, € C*°(X, gl +x) the connection 1 form in the fixed framing. An easy
computation valid for for every 1-parameter variation of the Chern—Simons form gives:
atCE(wt)hgzo = tr(d)tdwt + wtdd}t -+ 2d)twt2)|t:0
= dtr(dw) + 2tr(w(dw + w?)).
The first term is exact. In the second term, dw+w? is the matrix of the curvature of the connection

V @ d in the fixed framing s. A direct application of Koszul’s formula shows, in our case of
conformal variations, that the variation of the Levi-Civita connection is

0V V) =U(f)V + V(U = g(U, V)V,

in particular it is independent of . So w is the matrix in the fame s of the block-diagonal
endomorphism (with respect to the splitting 7'X & L)

{@(Vé) [t=0 8}

One can compute tr(w(dw + w?)) in any local basis, that we now choose to be compatible with
the splitting:

tr(w(dw + w?)) = tr (8(V")j=0R)
where R is the curvature endomorphism of V. So the bundle L does not contribute at all to this
term. In any orthonormal frame {e;} on X,

(Vo =df @1+ @ (df ®e;—e @ V)

R:}l Z Rjkaﬁej/\ek® (ea®65—eﬁ®ea).
Jiksa,8
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Using the anti-symmetry of the Riemann curvature coefficients, we get tr((Vf ® I)R) = 0. The
remaining term gives

Z Rjradi(f),

i7j7k7l

which vanishes by the first Bianchi identity. U

6. VANISHING RESULTS

Theorem 9. Let E — X be a stably trivial vector bundle endowed with a connection V*.

Assume that there exists a line bundle L. — X with a flat connection VL, and a trivial connection
V on the bundle E © L such that

VE =115V, vi =11, VI,

where 11y and 11, = 1 — Il are the projectors on the E, respectively L factors in 2 & L. Then
CS(VE) = 0.

Proof. The conditions of Lemma 5 are clearly satisfied since V is trivial. Moreover, €& (V) = 0
by the same reason. Also, €& (V%) = 0 by Lemma 3. It follows from Lemma 5 that €&(V¥) =
0. O

From this, we recover some classical, and some more recent, vanishing results modulo Z.

Corollary 10 (Chern-Simons [3]). Let f : X3 — R* be a conformal immersion of an oriented
Riemannian compact 3-fold (X, g) in the flat Euclidean space R*, and w the connection 1-form
of the Levi-Civita connection of g in some global frame on X. Then

/Xcs(w) €.

Proof. First, assume that f is an isometric immersion. The tangent bundle of every orientable
3-manifold is trivial [9], so it makes sense to consider the Chern—Simons form for the Levi-Civita
connection in some trivialization. The pull-back of TR* through the isometric immersion is the
direct sum of 7'X (since the map f, is injective on each tangent space) and of the normal line
bundle N X. This last bundle is trivial together with its induced connection, since it admits a
parallel section (the unit normal vector field compatible with the orientations on 7'X and TR%).
Moreover, the connection induced on T'X by projecting the trivial connection on f*TR* is the
Levi-Civita connection. Hence for every trivialization of 7°X we obtain by Theorem 9 that
cs(w) € A3(X). By pairing with the fundamental homology class [X]| € H3(X,Z) we get the
conclusion in the case where f is isometric.

In general, replace g by the pull-back of the euclidean metric through f. Since f is conformal,
this metric is conformal to g, so the Chern—Simons invariant does not change. O
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A notion more general than isometric immersions is that of equiaffine immersions, see [8]. Recall
that a connection on the tangent bundle of a manifold X" is called equiaffine (or unimodular) if
it preserves a volume form. Equivalently, an equiaffine connection induces the trivial connection
on the top form bundle A" X. Yet another way of defining it would be to ask that the global
holonomy group be a subgroup of SL,,. An equiaffine immersion of a manifold endowed with
a torsion-free equiaffine connection V% is by definition an immersion f : X — R™ together
with a complement E’ of T'X inside f*TR™, such that for the projector IIx defined by F’, the

connection on 7'X induced from f *VR4 is precisely V:
V - HTXf*VR4HTx.
A generalization of the result of Chern and Simons was recently found for equiaffine immersions:

Theorem 11 (Cap-Flood-Mettler [1]). Let X3 be a compact oriented 3-fold with a torsion-free
connection V on T X which preserves a volume form. If (X, V) admits an equiaffine immersion

in R?* then
/ es(V) € Z.
X

The proof in [1] is based on a notion of “flat embeddings™ of principal bundles with structure
group G inside some larger Lie group GG. Theorem 11 is in fact a particular case of a more general
vanishing result:

Theorem 12. Let X™ be a smooth manifold, and VX a connection on TX. Assume that:

(1) the local holonomy of V= is a subgroup of SL,,(R);

(2) there exists an immersion f : X — Y in a manifold Y™ and a trivial connection V¥
onTY;

(3) there exists a rank-1 complement FE of T'X inside f*TY such that

VA =y f*(V7 )y,
where llpx : f*T'Y — TX is the projection on the first factorin f*T'Y =TX @ FE.

Then the Chern—Simons invariant €& (V™) vanishes.

Proof. The connection induced by V¥ on the form bundle A" X has holonomy in the group {1},
hence it is flat and the line bundle A" X is trivial. Let thus i~ be a parallel volume form on X
for VX, and choose a nonzero section e in F such that u* A e is parallel for the trivial connec-
tion f*(VY) on A" f*TY. (The section v, is unique up to a locally constant multiplicative
factor.) Since V¥ = Tlpx f*(VY )y, it follows that ITg f*VY e = 0, implying that the induced
connection on the line bundle &
VE =pf (V)
is flat. The conclusion follows now from Theorem 9. OJ

Theorem 11 follows from Theorem 12 by taking X to be compact, 3-dimensional and oriented
(so in particular parallelizable), Y = R* equipped with is standard flat connection, and E the
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normal line bundle. Since in Theorem 11 the connection V* is assumed to preserve a global
volume form, the global holonomy group of V¥ must be a subgroup of SL3(RR). On an oriented
3-manifold X, a 3-form belongs to A3 (X) if and only if its integral on X belongs to Z.

Note that the method of proof in [1] relies on mapping the principal frame bundle of X into
a principal bundle with total space a larger Lie group; this method does not generalise in an
obvious way to the setting of Theorem 12.

7. APPLICATIONS TO CONFORMAL IMMERSIONS IN TRANSLATION MANIFOLDS

‘We conclude this note with an obstruction to conformal immersions in translation manifolds.

7.1. Translation manifolds. By definition, a translation manifold structure on a topological
manifold Y denotes an atlas T whose transition maps consist of Euclidean translations. Since
translations are oriented isometries of R", Y is oriented and inherits from the Euclidean space
a flat Riemannian metric g¥. This metric has trivial holonomy on Y, a parallel global frame
being defined at any p € Y by the preimage through any chart in 7 near p of the standard frame
on R". Since translations preserve the standard frame, this is well-defined independently of the
chart in J. Conversely, a Riemannian manifold with trivial global holonomy must in particular
be parallelizable (because one can fix a global parallel frame) and locally isometric to R" (since
flat). Out of all local isometries with R", select those that map the fixed parallel frame onto the
standard frame of R", obtaining in this way a translation manifold structure.

In real dimension 2 there exists a related notion of translation surface, which means a com-
pact Riemann surface endowed with a holomorphic 1-form «. Outside the zero locus of «, the
translation surface has a natural translation atlas whose charts consist of local primitives of «,
and a flat metric defined by R(« ® @), with conical singularities at the zero locus, with angle
an integer multiple of 27. According to our definition, the complement of the zero locus of «
in a translation surface is a translation manifold of dimension 2. Note, however, that a general
translation manifold cannot always be compactified by adding some conical points. Note also
that translation manifolds are oriented and flat, but the converse does not hold. A free quotient of
R™ by a discrete subgroup of isometries is a translation manifold if and only if all group elements
are translations. In general, a translation manifold is not required to be complete, so it need not
immerse in some quotient of R".

7.2. Obstructions to conformal immersions in translation manifolds.

Proof of Theorem 1. By Proposition 8, the Chern—Simons form in a fixed frame is conformally
invariant up to exact forms on X, so we can assume that the metric on X is chosen such that the
immersion in Y is isometric. Having trivial holonomy means that we can find a global frame on
Y parallel for VY; clearly in this case the Chern—Simons invariant of V¥ vanishes (Lemma 3).
By Theorem 12, €&(V¥) =0 mod A3(X) so by integration along C' we get an integer. O
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In dimension n = 3 we obtain:

Corollary 13. If an oriented Riemannian compact 3-fold (X, g) immerses in a 4-dimensional
translation manifold, then

/Xce(vg) €.

7.3. Examples. The Chern—Simons invariant of the real projective space RP? = SO(3) equals
1/2 + Z. More generally, the Riemannian Chern—Simons invariant of the lens space L., (see
Appendix B) with its spherical metric equals —1/p (Proposition 18). Lens spaces are locally
isometric to S* < R*. They also admit immersions in R*, which however do not respect the
conformal class. Despite these facts, it follows from Corollary 13 and the computation in Ap-
pendix B that lens spaces cannot be conformally immersed in any Riemannian 4-manifold with
trivial holonomy.

APPENDIX A. DE RHAM COHOMOLOGY OF THE GENERAL LINEAR GROUP

We relegated to this section the proof of the fact, crucial for the definition of Chern—Simons
invariants, that the closed 3-form 4817err(,u3), constructed from the Maurer—Cartan form on
GL}(R), is integral for every n. (This is standard for n = 3.) We prove at the same time

the analogous result for the form 5 trc(4*) on GL,(C).

A.1. Retraction onto the maximal compact subgroups. The general linear group GL,(C)
retracts onto U(n) by the deformation
® : [0,1] x GL,(C) — GL,(C), D (A) = (AA*) 2 A,

The restriction of ® to GL,(R)* defines a deformation retraction of GL,(R)"™ onto SO(n).
Thus the inclusions U(n) — GL,(C) and SO(n) < GL,(R)" induce isomorphisms in
(co)homology.

A.2. Cohomology classes constructed from the Maurer-Cartan form. Let G C GL,(R)
be a linear Lie group. The Maurer—Cartan 1-form x4 = ¢g~'dg € AY(G) ® ¢l R is defined by
p,(V) =g 'Vforg e G,V € T,G. It satisfies the equation

dp = p®
which is equivalent to the vanishing of the curvature of the unique connection on the trivial
G-bundle over a point. It follows that the form tr(u?) is closed:

dtr(p®) = tr (d(p?)) = tr (d(w)p®) — pd(p)p + p*d(p)) = 3tr (d(p)p?)) = 3tr(u’) = 0.
The last equality holds because on one hand, p* = p®p = pp®, while on the other hand, from
the trace property, tr(u3u) = —tr(up?).

The case where G is a subgroup in GL,,(C) is entirely similar, the only difference being that in
that case, trc(y%) is a complex-valued closed 3-form on G.
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Note that the Maurer—Cartan form ¢ on G C GL,(R) coincides with the pullback to G of the
Maurer—Cartan form of the group GL,,(R) itself. A similar statement holds for complex linear
groups.

A.3. Right regular representation of the quaternion algebra. The field K of quaternions is
isomorphic to C? as complex vector spaces, by the identification z; + 225 < (21,22). This
isomorphism is an isometry when we endow K with the Hermitian inner product

(01, ®2)c = a1 @),
where €(z; + z27) := z; denotes the complex part of the quaternion z; + z5j. K is also isometric
to R* as real vector spaces by the identification (a, b, c,d) <> a + bi + ¢j + dk, with respect to
the scalar product {(q1, ¢2) = R(q1G2)-

Define a R-algebra morphism
R : K — Endg(K), R(q)v :=vgq.

By composing R with the chain of inclusion maps Endg(K) — End¢(K) — Endg(K), we
get R-algebra maps R¢ : K — Endc(K), respectively Rg : K — Endg(K). Since R(q) is an
isometry for |g| = 1, by restricting to the Lie group of unit-length quaternions we get Lie group
morphisms

Re: S* — U(2), Rr :S* — O(4), Rc(q) = Rr(q) = (v = Q).

Furthermore, the group morphism detoR¢ : S* — S' factors through the abelianization of
S3, which is {£1}. Since S? is connected, it follows that Rc, respectively Rg, take values in
SU(2), respectively SO(4). In fact Re : S* — SU(2) turns out to be an isomorphism, while
Rpg : S* < SO(4) is an embedding.

A.4. 3-homology of SO(n) and U(n). Let e; denote the first element in the standard basis of
R".

Lemma 14. The Lie group SO(4) is the semidirect product of the subgroups SO(3) = Stab(e;)
acting on Rg(S?).

Proof. For every n > 2 consider the principal fibre bundle with structure group SO(n — 1) =
Stab(e;)

3) SO(n) —— SO(n — 1)
kS
where m(A) = Ae;. When n = 4, the embedding
(4) s:S* — SO(4), s(q) = Re(q™")

is a global section in the fibration 7, giving rise to a product decomposition of manifolds
SO(4) = s(S?) - SO(3).
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For clarity, this means that the every element in the group SO(4) can be written uniquely as the
product of elements of the subgroups s(S*) = Rg(S?), respectively SO(3). This decomposition
is in fact a semidirect product since Rg(S?) is normal in SO(4). Indeed, SO(3) = Stab(e;) is
also the image through Ad of S?, and

Ady-1 Re(q)Ad, = Rp(Ad,-1(q)). 0

By the Kiinneth formula, H3(SO(4),Z) is hence generated by the two 3-cycles of the subgroups
s(S?) and SO(3), the latter being embedded in SO(4) in the lower right corner.

Lemma 15. For n > 5, the map H3(SO(n — 1),Z) — H3(SO(n),Z) induced by inclusion is
surjective.

Proof. Represent any 3-homology class on SO(n) by a smooth singular 3-cycle C'. By dimen-
sional reasons, 7 o C' must avoid at least a point p € S"~ 1. Let (®;)o<t<1 be a deformation retract
of S\ {p} onto —p. Using a connection in the fibration (3), we lift the retraction horizontally, to
define a retraction by deformation of 77!(S \ {p}) to the fiber over —p, hence to SO(n — 1). It
follows that the cycle C' is cohomologous to a cycle in SO(n — 1) C SO(n), as claimed. d

The case of GL,,(C) is similar but simpler, using the principal fibration

5) U(n) —U(n—-1)

lﬂ

SZn—l

For n = 2 this fibration is trivial because it admits the section s¢ = R¢ o inv as in (4), inducing
a product decomposition
U(2) = sc(S%) - U(1),

which turns out to be a semidirect product decomposition of U(2) = U(K) as U(1) = Stab(1)
acting by conjugation on R¢(S). It follows by Kiinneth that H3(U(2), Z) is infinite cyclic, with
generator the cycle s(S?). For larger n, the lacunarity of the Leray-Serre homology spectral
sequence of the fibration (5) shows that the inclusion U(n — 1) < U(n) induces an isomorphism
in Hj, so for every n the 3-homology of U(n) is generated by the cycle S3.

A.5. Integrality.

Lemma 16. For every N, the form i—tr(u?) belongs to A3 (GL; (R)).

Proof. Since SO(n) is a deformation retract of GL," (R), we have to check that the evaluation of
To==tr(1*) on every 3-cycle with integer coefficients in SO(n) is integral. This is trivially true
(for dimensional reasons) when n < 2.

For every n > 3 we have the cycle consisting of (a triangulation of) the subgroup SO(3) —
SO(n) embedded diagonally in the right lower corner. One checks immediately that the restric-
tion of u to SO(3) is the Maurer—Cartan form of that subgroup, composed with the diagonal
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inclusion of spaces of matrices gl(3) < gl(n). This inclusion is moreover compatible with the
trace maps. We now claim that

(6) tr(1*)jso() = —48vol,
where vol is the standard volume form on S3. To see this, consider the adjoint representation
(7) Ad:S* — GL(K), Ad,(v) = qug™.

It decomposes into the trivial representation on R (which is the center of K) and a orthogonal
representation on the span over R of the imaginary quaternions {i, j, k}, identified with R?, that
we denote by Ad : S* — SO(3). The group morphism Ad is surjective, a 2 : 1 covering map
with kernel {£1}, inducing an isomorphism ad : R®* — so(3) at the level of Lie algebras. The
group S* C K with its standard bi-invariant metric admits an orthonormal frame (I, J, K) of
left-invariant vector fields defined at ¢ € S* by I, = ¢i € T,S* C K, etc. In this basis, the map
ad takes the form

00 0 0 0 2 0 —2 0
ad(l)=10 0 —2|, ad(J)=]0 0 0, adK)=|[2 0 0
02 0 —2 .0 0 0 0 0

From this, we compute
tr(ad(/)ad(J)ad(K)) = =8, tr(ad(/)ad(K)ad(J)) = 8.

Note that tr(;%) is left-invariant, so it is a multiple (to be determined) of the standard volume
form induced from S® by the 2 : 1 covering map (7). Moreover, from the above identities,
Ad*tr(p3)(I, J, K) = 48. Together, these two facts end the proof of (6).

When n = 3, the cycle SO(3) clearly generates H3(SO(3),Z).

For n = 4, we have seen that SO(4) is diffeomorphic to the Cartesian product of the submanifolds
SO(3) and s(S?), so H3(SO(4),Z) is free abelian with rmwo generators, the extra one being the
subgroup s(S?), or equivalently' Rg(S?®). The form Rjitr(u?) is left-invariant, hence a constant
multiple of the standard volume form. Write R € AY(S?, gl,(R)) in the standard basis of K
as Ryu(V) = Rg(V) for every V € TS3. Since Ry is multiplicative, for every permutation
o€ Xg,

Rg(o(I))Re(0(J))Ber(o(K)) = Re(o(I)o(J)o(K)) = Re(—sign(a)) = —sign(o)lds,

where sign(o) is the signature of the permutation o, therefore tr ((Ru®)(I,J, K)) = —24,
showing that
(8) tI‘(,U,3)|RR(S3) = —24vol.

Finally, for n > 5, by Lemma 15 the cycles SO(3) and s(S?) still generate* H3(SO(n), Z). Since
vol(S?) = 27% and vol(SO(3)) = 72, it follows from (6) and (8) that 5tr(u*) evaluated on
these cycles equals —1, respectively 1. U

IThe 3-cycles s(S?) and Rg(S?) in SO(4) differ by the orientation-changing involution ¢ — ¢~ of 3.
2Albeit not freely, but this is irrelevant for the sake of our argument.
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Lemma 17. For every n, the form 3—trc(p?) belongs to A3 (GL,(C)).

Proof. This is similar to the real case using the same arguments as above, only simpler since
for every n the homology space H3(GL,(C)) is free of rank 1, generated by the cycle S® —
SU(2) < GL,(C). The matrix-valued form p? evaluated on the orthonormal frame {/, J, K}
equals 3! times Re(I)Re(J)Re(K) = Re(IJK) = Re(—1) = —Idg, so tre(p?)(I, J, K) = 12.
Since vol(S?) = 272, it follows that

/ tre(p?) = —247%. O
S3

APPENDIX B. RIEMANNIAN CHERN—SIMONS INVARIANT OF LENS SPACES

Chern—Simons invariants of flat SU(2) connections on 3-dimensional lens spaces have been com-
puted by Kirk-Klassen [5]. Here we compute the real Chern—Simons invariant of the Levi-Civita
connection.

B.1. The sphere S3. The Chern—Simons form of the Levi-Civita connection V on S? in the
orthonormal frame (7, J, K') was computed in the original paper of Chern and Simons [3]:

1
es(V;(1,J,K)) = —évol.

We refer e.g. to [7] for the easy proof, which can also be derived from the results of the previous
sections. As a corollary, €¢&(V) =0 mod Z.

B.2. Lens spaces. The lens space L, ., is defined as the quotient of S* C C? by the cyclic
group [' of order p generated by the isometry

(21,z2) S (e2friq1/pzl’e27riqz/p22)

for some integers p, q1, q2. If ¢1, g2 are both relatively prime to p, the action is free, so the lens
space L., 4, 1S an oriented compact Riemannian 3-fold with constant sectional curvature 1.
Denote by 7 : S* — L,.,, 4, the natural p : 1 covering map.

Proposition 18. The Chern—Simons invariant of the Levi-Civita connection for the standard
spherical metric on Ly, 4, equals —11—7 mod Z.

Proof. The vector field I defined by right multiplication with ¢ € K is invariant by I', so its
orthogonal complement, the span of ./ and K, forms an invariant oriented real vector bundle of
rank 2 with inner product, which can therefore be naturally equipped with a complex line bundle
structure. Being I'-invariant, this bundle descends to a complex line bundle £ over L.q, g,-
Since H?*(Ly.g, 405 Z) = 0, the Chern class of E vanishes so F is trivial. A trivialization of E by
a global section U of length 1 defines a trivialization of the underlying real vector bundle by an
orthonormal frame (U, V'), where V' is the rotation of U by angle 7/2. Together with I, these
vector fields form an orthonormal frame on Ly, 4,- Let a : S* — SO(3) be the matrix relating
the pull-back of the frame (I, U, V') to S?, denoted (7*I, 7*U, 7*V'), and (I, J, K). Since I = 7*1
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is the first vector in both frames, the matrix a relating them is block-diagonal, orthogonal, with
1 in the upper left corner, hence a rotation in the bottom right corner. In other words, a factors
through SO(2), embedded in SO(3) as the stabilizer of e;.

Use now formula (1) to relate the Chern—Simons forms of the Levi-Civita connection on S? in
the two trivializations (7*[, 7*U, 7*V') and (I, J, K).

Since the map a factors through the 1-dimensional subgroup SO(2), the 3-form tr((a~'da)?) =
a*tr(y?) vanishes. Moreover, by the Stokes formula, [, dtr(daa™'w) = 0. In conclusion,

9) / cs(V; ("1, 7*U,m*V)) = / s(Vi (I, J,K)) = —1.
SB

S3
Since 7 is an isometric covering map of degree p, we have the equality of 3-forms on S?
(Vi (1,U, V) = ¢es(V; (n* 1, 7" U, 7*V)).

Hence the left-hand side of (9) equals p times the integral on L, 4, of the Chern—Simons form
¢s(V; (I,U,V)), leading to

/ es(V: (1,U,V)) = —219. 0
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