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CHAPTER 1

Classification of topological surfaces

1. Background

We start by reviewing some notions of general topology.
Let S be a set. A topology on S is a subset T of P(S) (the set of subsets of S) such that

(1) ∅, S ∈ T ;
(2) if A,B ∈ T then A ∩B ∈ T ;
(3) if T ′ ⊂ T then ⋃

A∈T ′
A ∈ T .

Elements of T are called open and their complements are called closed in S.
A function f : S → S ′ between topological spaces with topologies T , T ′ is called continuous if
for all A′ ∈ T ′, the preimage f−1(A′) := {a ∈ S; f(a) ∈ A′} belongs to T . A homeomorphism
is a continuous map as above which is bijective and such that the inverse map f−1 : S ′ → S is
also continuous.
A neighborhood of a point p ∈ S is any set which contains some open set A 3 p. A topological
space is called separate if every two distinct points p, p′ admit disjoint neighborhoods V, V ′.
A sequence of points (pn)n≥1 in S is called convergent (towards p ∈ S) if for every open set
T 3 A 3 p, there exists n(A) ∈ N such that pn ∈ A for all n ≥ n(A).
A basis for the topology T is a subset B ⊂ T such that for every element A of T , there exists
B′ ⊂ B such that

A =
⋃
B∈B′

B.

In this book we will work with spaces with countable basis, in order to avoid talking about nets.
Under this standing assumption, one can describe continuity in terms of convergent sequences
(Exercise 1.1).
A topological space S is called compact if every open cover admits a finite sub-cover. More
precisely, if C ⊂ T is such that

⋃
A∈C A = S, there exists a finite subset C ′ ⊂ C such that⋃

A∈C′ A = S.
A topological space S is called connected if it cannot be partitioned in two non-empty disjoint
open sets. It is easy to see that the union of any family of connected subsets of S with non-empty
intersection is again connected (Exercise 1.6). Thus the set of connected subsets of S with the
order given by inclusion is well ordered. Any one-point subset is clearly connected. By Zorn’s
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2 1. CLASSIFICATION OF TOPOLOGICAL SURFACES

Lemma, there exist therefore maximal connected subsets (called connected components), which
are necessarily disjoint, and which cover S.

1.1. Exercises.

EXERCISE 1.1. Let S, S ′ be topological spaces. Show that for any continuous function f : S →
S ′ and any convergent sequence (xn) → x ∈ S, the sequence f(xn) converges to f(x) in S ′.
Conversely, if a function f has this property and the topology of S has countable basis, then f
must be continuous.

EXERCISE 1.2. Let S be a topological space and S ′ any subset. Let

T ′ := {A ∩ S ′;A ∈ T }.
Show that T ′ is a topology on S ′ (called the induced topology). More generally, for every set S
and any function f : S ′ → S, define T ′ := f−1(T ) ⊂ P(S ′). Show that T ′ is a topology with
respect to which f becomes continuous. If T ′′ is another topology on S ′ such that f : (S ′, T ′′)→
(S, T ) is continuous, show that T ′ ⊂ T ′′ (i.e., T ′ is the smallest topology on S ′ which makes f
continuous).

EXERCISE 1.3. Construct an example of continuous map f : [0, 1)→ S ⊂ R2 which is bijective,
but such that the inverse function f−1 : S → [0, 1) is not continuous.

EXERCISE 1.4. Show that a subspace of a compact separate topological space S is compact if
and only if it is closed.

EXERCISE 1.5. Show that the image of a compact space through a continuous map is compact.
Give an example of a continuous map and a compact set whose pre-image is not compact. Same
questions when “compact” is replaced by “connected”.

EXERCISE 1.6. Let C ⊂ P(S) be a family of connected subsets of S such that ∩A∈CA 6= ∅. Then
∪A∈CA is connected.

EXERCISE 1.7. Show that the connected components of any topological space are closed, but
not necessarily open.

2. Topological surfaces

If S is a topological space with topology T and f : S → S ′ a function into a set S ′, we can
define T ′ ⊂ P(S ′) by

(2.1) T ′ := {A′ ⊂ S ′; f−1(A′) ∈ T }.
By Exercise 2.6, T ′ is a topology on S ′. Thus, for any equivalence relation ∼ on a topological
space S, the projection from S onto the set S/ ∼ of equivalence classes gives a topology on
S/ ∼, called the identification topology.

DEFINITION 2.1. A topological space is called a (topological) surface if it is locally homeomor-
phic to R2.



2. TOPOLOGICAL SURFACES 3

More precisely, there exists an open cover C of S such that for every A ∈ C there exists an open
set A′ ⊂ R2 and a homeomorphism φA : A→ A′. Such a homeomorphism is called a chart, and
the set of all homeomorphisms {φA;A ∈ C} is called an atlas. If φA, φB are charts, the map

(2.2) φAB := φB ◦ φ−1
A : φA(A ∩B)→ φB(A ∩B)

is called the change of charts. By exercise 2.7, ΦAB is always a homeomorphism.
The simplest example of surface, besides open sets of R2, is the sphere S2 := {(x, z) ∈ R ×
C;x2 + |z|2 = 1}. To construct charts we use stereographic projections from the north and south
poles, i.e., the points e = (1, 0, 0) and−e. Every line passing through e and another point p ∈ S2

intersects C in a unique point Φ+(p). The formula is

Φ+(x, z) =
z

1− x
, (Φ+)−1(w) =

(
2w

|w|2 + 1
,
|w|2 − 1

|w|2 + 1

)
so Φ+ is a homeomorphism from S2 \ {e} to R2. Similarly one constructs the homeomorphisms
Φ− : S2 \ {−e} → R2.
Let S be a topological surface. An atlas with smooth (respectively holomorphic) changes of
charts is called a smooth (respectively holomorphic) atlas (we identify R2 with C via (x, y) ↔
x + iy). Two smooth (respectively holomorphic) atlases on S are compatible if their union is
again a smooth (respectively holomorphic) atlas. This defines an equivalence relation on the set
of atlases on S.

DEFINITION 2.2. A smooth structure (respectively a holomorphic structure on a topological
surface is an equivalence class of smooth (respectively holomorphic) atlases.

A smooth surface (respectively a Riemann surface) is a topological surface endowed with a
smooth (respectively holomorphic) structure. We leave it to the reader to define analogously the
notions of topological, differentiable and complex analytic manifolds in every dimension.
Clearly, every open subset of C is a complex manifold, with the atlas consisting of a single chart
(the inclusion map into C). Note that in the holomorphic setting the natural notion of dimension is
the complex dimension, so a topological surface endowed with a holomorphic structure is usually
called a complex curve. Nevertheless, in this book we keep the word “surface” for consistency.
The atlas with two charts on the sphere is smooth because the change of charts is given by

Φ+ ◦ (Φ−)−1(w) = 1/w

but it is not holomorphic. However, if we replace Φ+ by its complex conjugate Φ+, the change
of charts becomes holomorphic hence the sphere has a complex analytic structure.

EXAMPLE 2.3. Let S := C× {0} tC× {1} be the disjoint union of two copies of the complex
plane, with the following equivalence relation: (x, 0) ∼ (y, 1) if and only if x = y 6= 0. The
quotient space is a complex plane with a “double origin”. It is not separate because the images
of (0, 0) and (0, 1) in the quotient space do not have disjoint neighborhoods.

In the sequel we will work mainly with separate surfaces. We do not include this in the definition
but we will check case-by-case that our examples of surfaces are separate.
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2.1. Group actions. Let Γ be a group acting on a surface S; this means that for all γ ∈ Γ
we specify a continuous map ρ(γ) : S → S. We ask the action to be compatible with the group
operation, thus ρ(γ) ◦ ρ(γ′) = ρ(γγ′), and moreover we require ρ(1) = 1S , the identity map of
S. It follows easily that ρ(γ) is a homeomorphism. When there can be no ambiguity about the
action, we simply write γ for the action ρ(γ) on S.
Our main example will be the action by homographies of GL2(C) on the complex plane. The

action of a matrix γ =

[
a b
c d

]
on a complex number z is given by

(2.3) γz :=
az + b

cz + d
.

EXAMPLE 2.4. Define
H := {z ∈ C;=(z) > 0}.

Then the group GL+
2 (R) of 2× 2 real matrices with positive determinant acts on H because

=(γz) =
=(z) det(γ)

(cz + d)2
.

The kernel of the action consists of multiples of the identity matrix, which is the center of
GL+

2 (R). We can restrict the action to SL2(R) (the group of real matrices with determinant
1), in which case the kernel of the action is {±1} which is the center of SL2(R) (exercise 2.9).
Thus the quotient group

PSL2(R) := GL+
2 (R)/R∗ ' SL2(R)/{±1}

acts faithfully on H, in the sense that if γz = z for all z ∈ H then γ = 1 ∈ PSL2(R).

If Γ acts on a surface S, the image of any open set A ⊂ S in Γ\S is again open. Indeed, if we
denote by φ the class map

φ : S → Γ\S, p 7→ Γp := [p],(2.4)

then φ−1(φ(A)) =
⋃
γ∈Γ γA. Since γ is a homeomorphism and arbitrary unions of open sets are

again open, we see that φ(A) is open by the definition of the quotient topology.
Assume moreover that the group action is proper discontinuous on the surface S in the following
sense: for all x ∈ S, there exists U 3 x a neighborhood such that for every Γ 3 γ 6= 1, γ(U) is
disjoint from U . This implies that there are no fixed points.

THEOREM 2.5. The set of equivalence classes Γ\S of a proper discontinuous action on a surface
is again a surface.

PROOF. Let [p] be the class of a point p ∈ S. Let U ′ be a neighborhood of pwith U ∩γ(U) 6=
∅ ⇒ γ = 1. Let U be the intersection of U ′ with the domain of a chart around p, thus U is
homeomorphic to an open subset of C. The image of U through the projection φ from (2.4)
is open. Moreover φ : U → φ(U) is clearly bijective by the choice of U , and since it is also
continuous we conclude that it is a homeomorphism. Thus φ(U) 3 [p] has a neighborhood
homeomorphic to an open set in C. �
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2.2. Exercises.

EXERCISE 2.6. Show that T ′ defined in (2.1) is a topology on S ′ such that f : S → S ′ becomes
continuous. For any other topology T ′′ on S ′ for which f is continuous, we have T ′′ ⊂ T ′ (i.e.,
T ′ is the largest topology on S ′ which makes f continuous).

EXERCISE 2.7. Show that the function φAB defined in (2.2) is a homeomorphism.

EXERCISE 2.8. Show that (2.3) defines a group action on C.

EXERCISE 2.9. Show that the center of SL2(R) (i.e., the subgroup of elements which commute
with all matrices in SL2(R)) is made of {I,−I} where I is the identity matrix.

EXERCISE 2.10. Two actions of Z on C are defined by the action of the generator 1:

ρ1(1)z := z + 1, ρ2(1)z := 1 + z

Show that in both cases, every open set of the form (x − 1
2
, x + 1

2
) × R is mapped homeo-

morphically onto its image in the quotient space. The quotient surfaces are called the cylinder,
respectively the Möbius band.
Try (!) to construct in both cases atlases with two charts with domains the images of
(−1/2, 1/2)× R and (0, 1)× R such that the changes of charts are holomorphic!

EXERCISE 2.11. For every τ ∈ C with =(τ) 6= 0 consider the action of Z2 on C defined by the
commuting actions of the generators: ρ(1, 0)z = z+ 1, ρ(0, 1)z = z+ i. Show that the resulting
surfaces (tori) are homeomorphic for all τ .

EXERCISE 2.12. Let Γ be the group with two (non-commuting) generators e1, e2 subject to the
relation e1e2 = e−1

2 e1. If we define homeomorphisms of C by ρ(e1)z := z + 1, ρ(e2)z := z + i,
show that we get a group action of Γ on C. Show that the action is proper discontinuous. The
quotient is called the Klein bottle. What is the abelianisation of Γ (i.e., the quotient of Γ by the
commutator subgroup; here you need to make sure that in every group, the subgroup generated
by elements of the form aba−1b−1 is normal)?

EXERCISE 2.13. Show that the action of the free group with two generators F2 on C defined by
e1z = z + 1, e2z = i− z, is not free (i.e., it has fixed points: there exists 1 6= γ ∈ F2 and z ∈ C
with γz = z).

EXERCISE 2.14. A covering map f : S ′ → S is a continuous map with the following property:
every x ∈ S has a neighborhood U 3 x such that every connected component of f−1(U) is
homeomorphic to U by the map f . Show that each properly discontinuous group action on a
surface S ′ gives rise to a covering map S ′ → Γ\S ′.

3. Triangulations

A triangle (or a 2-simplex) in a topological space S is the image of a homeomorphism from the
standard triangle

(3.1) ∆2 := {(x1, x2, x3) ∈ R3;x1 + x2 + x3 = 1, xj ≥ 0}
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onto a subset of S. The restrictions of this homeomorphism to the vertices and the edges of ∆2

give well-defined vertices in S (the images of vertices of the triangle) and edges (the homeomor-
phic images of the three edges of ∆2). The union of the three edges is called the boundary of the
triangle. The interior of an edge is by definition the edge without its end-points. The interior of
the triangle is the image of the open triangle ∆◦2 obtained by requiring strict inequalities in (3.1).
One could similarly define n-simplexes in S for any dimension n ≥ 0.

DEFINITION 3.1. A triangulation of a space S is a locally finite collection of triangles (Tα)α∈A
on S with the following properties:

• The subsets

S0 :={p ∈ S; p is a vertex for some triangle}
S1 :={p ∈ S; p belongs to the interior of some edge}
S2 :={p ∈ S; p belongs to the interior of some triangle}

are disjoint and their union is S;
• Points in S2 belong to a unique triangle.
• Two edges which contain a common point in S1 must coincide.

Locally finite means that every point has a neighborhood which intersects only a finite number of
triangles. In a triangulated surface, two edges belong precisely to one triangle. Moreover, each
vertex is contained in a finite number of triangles and a finite number of edges E1, . . . , Ek such
that Ei, Ej form a triangle if and only if |i− j| = 1 or i = 1, j = k. A different way of seeing a
triangulation is via the induced topology. We take a disjoint union of a family of triangles (i.e.,
copies of the standard triangle) and introduce an equivalence relation on them with the following
conditions:

• if p 6= p′ but p ∼ p′ then p and q must live on the boundary of two different triangles;
• For every edge E, the equivalence class of p ∈ E◦ contains precisely 2 elements.
• If E◦ 3 p ∼ p′ ∈ E ′◦ there exists a homeomorphism φ : E → E ′ with φ(p) = p′ and

such that for all q ∈ E we have q ∼ φ(q). In other words, the whole edge E is identified
to E ′ via φ.
• If p0 is a vertex, its equivalence class is a finite set of vertices {p0, . . . , pn−1}. We can

order them so that the edges through pj are Ej and Ej ′ such that Ej ′ is identified with
Ej+1 for all j modulo n.

Then one can easily check that the quotient map with its induced topology is a surface. A
triangulation is a homeomorphism from such a combinatorial space to a given surface S.
We will assume without proof the following fact:

THEOREM 3.2. Every surface can be triangulated.

An orientation of a triangle T is a direction of rotation around the edges. More formally, an
orientation is an equivalence class of orders on the set of vertices of T modulo even permutations
(an even permutation is a product of an even number of transpositions). To specify an orientation
on T it is enough to order the vertices of one edge.
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DEFINITION 3.3. An orientation on a triangulated surface is a collection of orientations on each
triangle which are compatible at edges in the following sense: if E is an edge which belongs to
the triangles T, T ′, then the orders on the set of vertices of E induced from the orientations of T ,
T ′ are different.

In other words, the sense along the edge E indicated by one triangle is opposite to the sense of
rotation around the second triangle. Note that an orientation need not exist. The Möbius band
provides a counterexample.
Let now S be a connected triangulated surface. Notice that the vertices and the edges of the
triangulation form a graph. Let Γ be a maximal tree in that graph (a tree is a sub-graph without
cycles). The dual graph is constructed (abstractly) as follows: the set of vertices of Γ′ is the set
of faces of the triangulation, and two vertices F1, F2 are joined by an edge in Γ′ if and only if the
triangles F1, F2 intersect in an edge which does not belong to Γ.
To realize Γ′ geometrically on S we introduce barycentric sub-division. Namely, we choose one
point in the interior of each face (we think of it as the “barycenter”) and one point in the interior
of each edge. Although we do not have a notion of length, we think of this new point as the
“midpoint” of the edge. Inside each triangle, we then link the barycenter with the three initial
vertices, and also with the three new vertices on the boundary. Thus every triangle has been
sub-divided in 6 new triangles. Inside this new triangulation, we view the dual graph as having
vertices at the barycenters of the faces of the initial triangulation. The edges of Γ′ are realized as
concatenation of edges in the barycentric sub-division going through the barycenter of an edge
which does not belong to Γ . (picture)
We denote by S(n) the n-th iterated barycentric subdivision of a triangulated surface S.
From now on we suppose that S is compact. Notice that the number of triangles in any trian-
gulation of a compact surface is finite. This follows immediately from the local finiteness of
the triangulation, but let us see it in a different way. Define the open star of a vertex V in the
triangulation as the union of the interiors of all simplexes (i.e., triangles and edges) which con-
tain V , together with V itself. This is an open subset of S. The union of all such sets covers S
since every edge and triangle have some vertex. By compactness, a finite number of open stars
cover S; since each open star contains the interiors of only a finite number of triangles, the total
number of triangles must be finite.

PROPOSITION 3.4. Every compact triangulated surface S can be split into two closed neighbor-
hoods U,U ′ of Γ, Γ′ which intersect along a circle. Moreover U \ Γ is path-connected.

A space S is called path-connected if for any two points p0, p1 ∈ S there exists a continuous
map f : [0, 1]→ S (i.e., a path) with f(0) = p0 and f(1) = p1.

PROOF. Take as U,U ′ the union of those triangles in the second barycentric subdivision S(2)

which touch Γ, respectively Γ′. Then U,U ′ intersect along their boundary. By induction on the
number of edges of the tree Γ we see that the boundary of U is a circle. Moreover, clearly every
point in U can be joined to the boundary without touching Γ. �
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As a corollary, we can prove that S \Γ (and thus Γ′) is connected. Let p, q ∈ S \Γ. There exists a
path between them in S, say c : [0, 1]→ S with c(0) = p, c(1) = q. Let t1, t2 the infimum, resp.
the supremum of all times t for which c(t) ∈ U , where U is the neighborhood of Γ constructed in
Prop. 3.4. If both p and q belong to U , then we connect them to ∂U without intersecting Γ, then
travel along Γ. If both p and q live in the interior of U ′, then 0 < t0 ≤ t1 < 1. Now c(t0), c(t1)
both live on the boundary of U so we can link p to q by traveling along c until t = t0, then around
∂U and finally again along c from time t = t1 to t = 1.
In conclusion, we have split out surface in two pieces, one of which is a topological disk and the
other one a tubular neighborhood of a graph. It will turn out that the number of “elementary cy-
cles” in that graph, plus some mild information about orientation around these cycles, determine
completely the surface S.

3.1. Exercises.

EXERCISE 3.5. Show that a path-connected space is connected. Give counterexamples to the
converse.

EXERCISE 3.6. Prove that every connected and locally path-connected space is path-connected.
Convince yourselves that every connected surface is locally path-connected. Conclude that every
connected surface is path-connected.

EXERCISE 3.7. Construct a triangulation of the cylinder and of the Möbius band (Exercise 2.10)
using as vertices the points with coordinates (0, j) and (1, j) for j integer. Show that the cylinder
is orientable while the Möbius band is not.

4. Euler characteristic

Let G be a connected graph with v vertices and e edges. If G is a tree, then v − e = 1 and this
identity characterizes trees among graphs. In general, the number v − e is called the Euler char-
acteristic of the graph, denoted χ(G). By induction, we see that 1−χ(G) represents the number
of “eyes” of the graph, in the sense that by removing 1− χ(G) edges without disconnecting the
graph we obtain a tree. Clearly χ(G) ≤ 1.
Let now S be a compact triangulated surface with v vertices, e edges and f faces. The number

χ(S) := v − e+ f

is called the Euler characteristic of the surface S. We divide the e edges of S into the eΓ edges in
Γ and the eΓ′ edges which yield edges of the dual graph. Since there are as many faces in S as
vertices in Γ′, we see that

χ(S) = χ(Γ) + χ(Γ′) = 2−#{elementary cycles in Γ′}

It follows that χ(S) is at most 2.
If χ(S) = 2, the graph Γ′ does not have cycles. The surface S is obtained from two disks (the
closed sets U,U ′ consisting of the closed stars of Γ,Γ′ in the second barycentric subdivision of
S) by gluing along the boundary circle. The result is a sphere.
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If χ(S) < 2, there exists a cycle in Γ′. By induction, there exist 2−χ(S) segments in U ′ so that,
after we cut U ′ along them, we obtain a disk. Thus any surface can be reconstructed from two
disks with some identifications on the boundary.

THEOREM 4.1. Let S be a compact, connected, orientable triangulated surface. If χ(S) = 2
then S is homeomorphic to the sphere S2. In general, χ(S) is even and S is homeomorphic to a
sphere with g = 2−χ(S)

2
handles attached.

Attaching a handle means removing two disks D1, D2 with boundaries C1, C2 from S and gluing
instead a cylinder along the two circles C1, C2.

PROOF. We have already seen that χ(S) ≤ 2, with equality if and only if S is a sphere.
Assume that χ(S) < 2. Then the dual graph Γ′ is not a tree, hence it has a simple cycle C. The
simplexes in the second barycentric subdivision S(2) which touch C form a collar neighborhood
of C, say U . If we cut U along a segment transversal to C we obtain a rectangle, thus U is
obtained from a rectangle by gluing along two opposite edges, i.e. U is either a cylinder or a
Möbius band. By Exercise 4.5 and the orientability hypothesis only the first possibility can
occur, hence the boundary of U is made of two circles C1, C2. Apply now surgery along U , i.e.
remove U and replace it by two disks with boundaries C1, C2. This is the opposite operation to
attaching a handle. We call S1 the surface thus obtained from S by surgery along C.
The Euler characteristic of S1 is related to that of S as follows: suppose there were a vertices
on C. Then by surgery we introduce a new vertices, a edges, two faces (the two disks), and we
remove as many faces as edges when we erase the cylinder U . Thus the Euler characteristic goes
up by 2.
By iterating surgery as long as we get cycles in Γ′, we get the conclusion. �

There is a major problem in what we have achieved so far: our invariant χ(S) seems to depend on
the choice of triangulation. Thus, although we see that every orientable surface is homeomorphic
to a sphere with g handles attached, we do not know yet that surfaces of different genera are not
homeomorphic, because the genus is defined in terms of a choice of triangulation. In reality it
does not depend on the triangulation but in order to make things rigorous, we need to introduce
a finer algebraic invariant of spaces.

4.1. Exercises.
EXERCISE 4.2. Show that in a compact triangulated surface we have the identity

2e = 3f.

EXERCISE 4.3. The faces of a polyhedron can be subdivided into triangles. Check that the Euler
characteristic remains unchanged during this process.

EXERCISE 4.4. A regular polyhedron is a convex polyhedron with all faces made of regular
polygons, and all solid angles congruent. Determine and draw all regular polyhedra using the
fact that the Euler characteristic is 2 and an identity similar to Exercise 4.2.

EXERCISE 4.5. Show that a surface is orientable if and only if it does not contain an embedded
Möbius band.
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5. The fundamental group

Let S be a space and p, q ∈ S. A path from p to q is a continuous map c from the interval
I := [0, 1] to S which maps 0 in p and 1 in q. Two paths are homotopic if there is a “path of
paths” linking them. More precisely, c0 ' c1 if there exists a continuous map C : I × I → S
such that C(0, ·) = c0 and C(1, ·) = c1.
The above map C is called a homotopy between c0 and c1. If C(s, 0) = p is constant in s,
the homotopy is called relative to 0 ∈ I; of course a necessary condition for the existence of
a homotopy between c0 and c1 relative to 0 is that c0(0) = c1(0). Similarly, the homotopy is
relative to the end-points if C(s, 0) = p and C(s, 1) = q are constant in s.
A loop (based at p ∈ S) is a closed path with endpoints p, i.e., such that c(0) = c(1) = p. The set
of loops based at p modulo the equivalence relation given by homotopy relative to the end-points
is called the fundamental group, or the Poincaré group, denoted π1(S, p).
There is an operation on loops based in p defined by concatenation:

(cc′)(t) :=

{
c′(2t) for 0 ≤ t ≤ 1

2

c(2t− 1) for 1
2
≤ t ≤ 1

Concatenation means that we travel along c′ and then along c. It makes sense also for paths which
are not necessarily closed, but such that c(0) = c′(1). This operation is neither commutative nor
associative.

THEOREM 5.1. The operation of concatenation is well-defined on π1(S, p) and is associative
there.

PROOF. If C,C ′ are homotopies between c and c1, respectively between c′ and c′1 relative to
the end-points, then C̃(s, t) := (CsC

′
s)(t) is a homotopy between cc′ and c1c

′
1 relative to the end

points. Associativity is best seen in a picture. �

Let cp be constant loop cp(t) = p. If c is any loop based at p, then ccp and cpc are homotopic to c
relative to the end-points. For instance,

C(s, t) :=

{
p for 0 ≤ t ≤ s

2

c(2t−s
2−s ) for s

2
≤ t ≤ 1

is a homotopy from c to ccp.
If we denote by c the walk along the loop c in the opposite order (i.e., c(t) = c(1− t)) then one
sees easily that cc ∼ cp.
Therefore π1(S, p) is a group, in general non-commutative.

EXAMPLE 5.2. π1(Rn, 0) = {1} for all n. Indeed, every loop c is homotopic to the constant loop
0, i.e., the unit in π1, via homotheties:

Cs(t) := sc(t).
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Similarly, for every contractible space S and any point p ∈ S, we have π1(S, p) = {1}.
If we change the base point, we get another group π1(S, p′). Assuming that S is path-connected,
let d be any path from p to p′. Then the map which to [c] ∈ π1(S, p′) associates [dcd] ∈ π1(S, p)
is well-defined (does not depend on the choice of the representative c), and is a group morphism
that we denote Φd.

LEMMA 5.3. The group morphism Φd : π1(S, p′) → π1(S, p) depends only on the homotopy
class of d relative to the end points.
If d′ is a path from p′ to p′′, then Φd ◦Φd′ = Φd′d as group morphisms from pi1(S, p′′) to π1(S, p).

In particular, if Φd : π1(S, p′) → π1(S, p) is the morphism induced by the inverse path d, we
infer that Φd is an isomorphism. Thus the fundamental group does not depend on the base point
up to isomorphism.
If we choose another path e from p to p′, we form a loop based in p by setting γ := ed. We can
compare the isomorphisms Φd and Φe

Φec = ece = eddcdde = γΦdγ

thus Φe = [γ]Φd[γ]−1. It follows that the isomorphism Φd is well-defined up to conjugation.
Thus, although in general we do not have a canonical isomorphism from π1(S, p′) to π1(S, p),
a conjugacy class of such isomorphisms does exist. If the group is Abelian, all inner automor-
phisms are trivial so in that case the above isomorphism Φd is canonical.
There exists a closely related set, called FS, made of the free homotopy classes of loops in S.

THEOREM 5.4. Let S be a path-connected space and p ∈ S. The set FS of free homotopy
classes of loops in S is canonically identified with the set of conjugacy classes inside π1(S, p).

PROOF. We have a tautological function π1(S, p)→ FS defined by taking a loop based in p
into its free homotopy class. This map is a surjection since every loop is freely homotopic to a
loop based in p. If c, c′ ∈ π1(S, p) are conjugate via γ, i.e., c′ = γcγ, then their free homotopy
class is the same, a homotopy at time s being given by γscγs, where γs is the portion of the path
γ for time at most s. Let us now take two loops c, c′ based in p which represent the same free
homotopy class. We view the loops as maps from S1 to S which map 1 to p, via Exercise 5.6.
Let C : S1 × I → S be a (free) homotopy. Let γ be the path s 7→ C(1, s). This path is in fact a
loop in p, and c is homotopic to γc′γ relative to the end points. �

Associating the fundamental group to each pair (S, p) is a functor: for each map of spaces f :
S → S ′, f(p) = p′ we get a group morphism f∗ : π1(S, p)→ π1(S ′, p′) by setting f∗[c] = c ◦ f
(Exercise 5.9).

5.1. Exercises.

EXERCISE 5.5. Show that every path is homotopic to a constant path relative to 0.

EXERCISE 5.6. Show that the formula

φ(e2πix) := f(x)
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defines a bijection from the set of loops on S into the set of maps from S1 to S.

EXERCISE 5.7. Prove that (relative) homotopy is an equivalence relation on the set of paths in
S.

EXERCISE 5.8. Two points in S are called joinable if there exists a path linking them. Show that
being joinable is an equivalence relation. The equivalence classes are called “path-connected
components”. If Sp ⊂ S is the path-connected component of p, show that π1(S, p) = π1(Sp, p).

EXERCISE 5.9. The function f∗ is well-defined, and is a group morphism.

6. Computations of homotopy groups

Let S ′ → S be a covering map and c : I → S a path starting in p ∈ S. A path c′ : I → S ′ is
called a lift of c if π ◦ c′ = c.

LEMMA 6.1. Choose p′ ∈ S ′ such that π(p′) = p. Then there exists a unique lift of c with
c′(0) = p′.

PROOF. Using that I is compact, cover c(I) with a finite number of open sets Uj so that
π−1(Uj) is a disjoint union of open sets in S ′ homeomorphic to Uj via π. Pick points 0 = t0 <
t1 < . . . < tn = 1 so that c(tj) ∈ Uj ∩ Uj−1. Assume that c′ has been defined up to time tj .
Set p′j := c′(tj). Let U ′j, U

′
j−1 be the components of π−1(Uj), π−1(Uj−1) containing p′j . Then

we can clearly continue c′ up to time tj+1. To prove uniqueness, let T be the supremum of all
times t so that every two lifts coincide up to time t. By continuity, every two lifts coincide up to
time T . Assume T ∈ Uj , let T ′ := c′(T ) and U ′j ⊂ S ′ be the connected component of π−1(Uj)
containing T ′. Then clearly c′ is uniquely defined for larger times that T , unless T = 1. �

A more general result is the so-called homotopy lifting lemma:

LEMMA 6.2 (Homotopy lifting). Let X be a locally compact space. Let f0, f1 : X → S be
continuous maps and F : I ×X → S a homotopy between f0 and f1. Assume that there exists a
lifting f ′0 : X → S ′. Then there exists a lifting F ′ : I ×X → S of the homotopy F .

PROOF. By the previous result, F ′ is unique (if it exists), and moreover F ′(·, x) is the lift of
the curve F (·, x) starting at f ′0(x). By Exercise 6.4 F ′ is continuous. �

These facts allow us to compute π1(S1, 1). Let c : I → S1 be a loop with c(0) = c(1) = 1. Lift
it in the covering

Φ : R→ S1, Φ(x) = exp(2πix).

The point c′(1) sits above c(1) = 1 hence exp(2πic′(1)) = 1 ⇔ c′(1) ∈ Z. This defines a
function L : π1(S1, 1) → Z. Indeed, if c0, c1 are homotopic relative to their end points, then by
the homotopy lifting lemma we have c′0(1) = c′1(1).
Since Z is commutative, the base point is not important so we write π1(S1) = Z.
As a corollary, π1(T 2) = Z2 where T 2 = S1 × S1 is the torus. This follows from a general fact:
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LEMMA 6.3. Let S1, S2 be topological spaces and p1 ∈ X1, p2 ∈ X2 base points. Denote
X := X1 ×X2, p = (p1, p2) ∈ X . Then π1(X, p) = π1(X1, p1)× π1(X2, p2).

PROOF. Every loop in (X, p) is of the form

c(t) = (c1(t), c2(t)) = (c1 × c2)(t)

where c1, c2 are loops in X1, X2. Define a map

π1(X, p)→ π1(X1, p1)× π1(X2, p2), [c] 7→ ([c1], [c2]).

This map is evidently well-defined, i.e., it does not depend on the choice of c ∈ [c]. By Exercise
6.6 it is an isomorphism. �

6.1. Exercises.

EXERCISE 6.4. Show that F ′ defined in the proof of the homotopy lifting lemma is continuous.

PROOF. Since Y is locally compact, it is enough to prove continuity when restricted to a
compact subset, so we can assume that Y itself is compact. Let J := {t ∈ I;F ′ : [0, t] × Y →
S ′ is continuous}. We first prove that the set J is open. Let t ∈ J . For all y ∈ Y , there exists an
open set Uy 3 y and εy > 0 such that F (t− εy, t+ εy)×Uy) is contained in an open set Vy whose
preimage through π is a disjoint union of open sets homeomorphic to Vy. By compactness, there
exist a finite number of such sets Uj and ε > 0 such that F ([t − ε, t + ε] × Uj) ⊂ Vj where
Vj is a open set adapted to the covering map π as above. It is then obvious that the unique
extension of F ′ to time t + ε is continuous. To show that J is closed (and hence J = I which
finishes the proof) let T := sup(J). For every y ∈ Y , there exists U 3 y open and ε > 0 so
that F ([T − ε, T + ε] × U) is contained in an open set V adapted to π. Then clearly the unique
extension F ′, which is continuous on {T − ε}×U by the hypothesis on T , is also continuous on
the whole [T − ε, T + ε]× U . Thus F ′ is continuous at (T, y), which shows T ∈ J . �

EXERCISE 6.5. Show that the mapL : π1(S1, 1)→ Z defined using liftings is a group morphism.
Show that it is an isomorphism.

EXERCISE 6.6. Prove that the map π1(X, p) → π1(X1, p1)× π1(X2, p2) from Lemma 6.3 is an
isomorphism.

7. Fundamental groups of orientable surfaces

Recall that any triangulated surface of genus g has been split into two closed sets U,U ′ intersect-
ing along their common boundary circle, with U a topological disk and U ′ a neighborhood of the
dual graph. It follows from the definition that U ′ can be continuously retracted onto the graph
Γ′. Therefore (Exercise 7.4) they have the same fundamental groups.

LEMMA 7.1. Every graph Γ′ of Euler characteristic 1 − n has the same homotopy type as a
bouquet of n circles. Moreover π1(Γ′) is a free group with n (non-commuting) generators.
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Since χ(Γ′) = χ(S) + 1 = 1− 2g, it follows that Γ′ is (homotopically) a bouquet of 2g circles.
Thus π1(U ′) = F 2g, the free group on 2g generators. We claim that the map from π1(∂′U) to
π1(U ′) takes the generator of π1(S1) into a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g .
Since S = U ∩U ′ we can attempt to compute π1(S) in terms of the fundamental groups of U,U ′

and U ∩ U ′ = S1. In practice, it is more convenient to work with the open sets V := S \ Γ′,
V ′ := S \ Γ, of which U, V are deformation retracts.
A group given by generators γ1, . . . , γn subject to the relations R1, . . . , Rm means the quotient
of the free group F n by the normal subgroup generated by the words R1, . . . , Rm (a relation is
just an element in F n, which we think of as “simplifying” in the quotient group). For example,
Z2 is the quotient of F 2 by the relation γ1γ2γ

−1
1 γ−1

2 . We write

〈γ1, . . . , γn;R1, . . . , Rm〉
for the resulting group.
Let W := V ∩ V ′ and choose p ∈ W . Let

G := π1(V, p), G′ := π1(V ′, p), G0 := π1(W, p).

If

G =〈γ1, . . . , γn;R1, . . . , Rm〉,
G′ =〈γ′1, . . . , γ′n′ ;R′1, . . . , R′m′〉,
G0 =〈γ0

1 , . . . , γ
0
n;R0

1, . . . , R
0
m0
〉

are presentations of G,G′, G0 with generators and relations, define a new group H with gener-
ators γ1, . . . , γn, γ

′
1, . . . , γ

′
n′ as follows: the inclusion maps ıV , ıV ′ define elements ıV (γ0

j ) ∈ G

and ıV ′(γ0
j ) ∈ G′. Then the relations in H are R1, . . . , Rm, R

′
1, . . . , R

′
m′ , and ıV (γ0

j )ıV ′(γ
0
j )
−1.

The Van Kampen theorem states that π1(S) is the group H described above. In particular, H is
well-defined regardless of choices of generators and relations! The above holds true whenever
V, V ′ are an open cover of S, and V, V ′ and W = V ∩ V ” are path-connected.
This result allows us to compute easily the fundamental group of a bouquet of circles, but also
of a surface of genus g. Since V is contractible it does not contribute any generators or relations.
We have seen that V ′ has 2g free generators. The fundamental group of the intersection has one
generator, introducing an extra relation:

THEOREM 7.2. Let S be an orientable surface of Euler characteristic 2g. Then

π1(S) = 〈a1, b1, . . . , ag, bg; a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g 〉.

As a corollary, the rank of the abelianisation is 2g. The abelianisation of a group G is its quotient
by the normal subgroup spanned by commutators, i.e., the subgroup consisting of products of
elements of the form aba−1b−1 ∈ G. Homeomorphic surfaces have thus isomorphic abeliani-
sations of their fundamental groups. Therefore orientable surfaces of different genera are not
homeomorphic, thus completing the classification theorem of orientable surfaces.

REMARK 7.3. Along the same lines, we can classify non-orientable surfaces.
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7.1. Exercises.

EXERCISE 7.4. A subspace X ⊂ Y is called a deformation retract of Y if the identity map of Y
is homotopic relative to X to a map into X . Construct a deformation retract from U ′ onto Γ′.

EXERCISE 7.5. If X ⊂ Y is a deformation retract, show that the map π1(X) → π1(Y ) induced
from the inclusion is an isomorphism.



CHAPTER 2

Riemannian geometry of surfaces

1. Smooth structures

From now on we take S to be a compact, orientable surface of genus g. Let us show it has a
smooth structure. Take a triangulation, and consider the charts defined on the interiors of the
faces by the inverses of the triangulation homeomorphisms, say ΦT : T ◦ → ∆2. For each edge
E bordering two faces T1 and T2 construct a chart with domain T ◦1 ∪ T ◦2 ∪ E◦ as follows: take
affine transformations A1, A2 from ∆2 into the upper, respectively the lower half of a diamond
shape, mapping the images of the edge E onto the diagonal. Then A1 ◦ ΦT1 and A2 ◦ ΦT2 glue
nicely, providing a chart near interior points of E. Near a vertex of multiplicity n, map each
triangle afinely onto a triangle centered into the origin with angle 2π/n. We leave it to the reader
to convince himself that these charts form a smooth atlas.
Whenever we have a smooth atlas, it is very easy to construct many other smooth structures by
composing the charts in the original atlas with an arbitrary homeomorphism. We call the induced
smooth structures equivalent.

PROBLEM 1.1. What can one say about the set of equivalence classes of smooth structures on a
surface of genus g?

How about complex structures? The smooth atlas constructed above does not have holomorphic
changes of coordinates. However, it is not difficult to construct another atlas which is holomor-
phic. The only modification needed is near the vertices. A neighborhood of a vertex is made of
a union of n equilateral triangles. There exists a homeomorphism from this union into an open
neighborhood of 0 in C, given essentially by z 7→ z6/n. Let us illustrate first the case n = 6.
In this case, the 6 triangles fit precisely into C, with vertices in 0 and two consecutive roots of
order 6 of the unit. In general, the function zn/6 := e

6 log z
n is well-defined by starting on the first

triangle with the standard cut of the log function, and continuing it analytically on subsequent tri-
angles. It will agree on the first, resp. the last edge, since the “total angle” around the singularity
is 2πn/6.
If we start with a different triangulation, we may get different holomorphic structures.

PROBLEM 1.2. What can one say about the set of equivalence classes of holomorphic structures
on a oriented surface of genus g?

The rest of this book is about answering these two questions. It turns out that smooth structures
on surfaces are unique up to homeomorphisms. In every genus g, the moduli space of complex
structures on Σg modulo homeomorphisms is a manifold, which has itself a complex structure.

16
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On S2 the complex structure is unique (again, up to homeomorphism) thus the moduli space is
just a point. On the torus, the moduli space is the quotient PSL2(R)\H, the modular curve. In
genus g ≥ 2 we get the celebrated Teichmüller space, a Kähler manifold of complex dimension
3g − 3. Although topologically a ball, Tg has a rich geometry and is perhaps one of the most
interesting objects in mathematics.
From now on a smooth structure on S is assumed fixed, at some point we will prove it is unique.

2. Review of differential geometry

2.1. Functions. Let S be a smooth surface, i.e., endowed with a fixed smooth atlas.

DEFINITION 2.1. A function f : S → R is called smooth at p ∈ S if there exists a chart
φA : A → A′ ⊂ R2 with p ∈ A such that f ◦ φ−1

A : A′ → R is smooth at φA(p). The function f
is called smooth on S if it is smooth at every point of S.

Smooth functions at p form an algebra over R, similarly smooth functions on S form an algebra
denoted C∞(S). The support of a function f ∈ C∞(S) is the closure of the set {p ∈ S; f(p) 6=
0}. Let C∞c (S) denote the sub-algebra of functions with compact support.
Since every open subset of S is a surface, we get an algebra of smooth functions C∞(U) for
every open set U ⊂ S, with restriction maps C∞(U ′)→ C∞(U) whenever U ⊂ U ′. Conversely,
extension by 0 defines a map C∞c (U)→ C∞c (U ′).

LEMMA 2.2. There exists a smooth function µ : C → R+ = [0,∞) satisfying µ(z) = 1 for
|z| ≤ 1/2, µ(z) > 0 for |z| < 1 and µ(z) = 0 whenever |z| ≥ 1.

PROOF. We use the following smooth functions:

µ0(r) :=

{
e−1/x for x > 0,

0 for x ≤ 0;

µ1(r) :=µ0(r)µ0(1− r);

µ2(r) :=

∫ r

−∞
µ1(s)ds;

µ3(r) :=µ2(r)/µ2(1);

µ4(r) :=µ3(1− 2r);

µ(z) :=µ4(|z|).

(2.1)

�

This lemma implies that the restriction map C∞(U)→ C∞(S) is neither injective nor surjective
(Exercise 3.9). At the same time, for any K ⊂ U compact, there exists φ ∈ C∞c (U) with
φ|K = 1. To see this, cover each point p of K ⊂ U by the domain of a chart whose image is the
disc of radius 2, centered at p. The preimages Aj of the unit open disk also cover K, then extract
a finite subcover, i.e.,K ⊂

⋃m
j=1Aj ⊂ U . On each discAj consider the function ψj := µ◦φAj ; it

extends to a smooth function on U with compact support. Set ψ =
∑m

j=1 ψj . From the properties
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of µ in Lemma 2.2 the function ψ is nowhere zero on the compact K, let C be its strictly positive
infimum. Define

φ := (1− µ4) ◦ (ψ/C)

where µ4 was constructed in (2.1), and then check easily that it has the desired properties.
The existence of φ implies that

C∞c (U)→ C∞(S), f 7→ fφ

defines an extension of f|K to S.
Another consequence of the existence of µ is the so-called partition of unity. Let S =

⋃∞
j=1Aj

be a locally finite open cover (Exercise 3.10) and S =
⋃∞
j=1Kj a compact cover with Kj ⊂ Aj .

Then there exist smooth non-negative functions φj ∈ C∞(S) with support in Aj such that
∞∑
j=1

φj = 1.

Here the sum is finite at every point by the assumption on the open cover. It is enough to define

φj :=
µj∑∞
j=1 µj

where µj ∈ C∞c (Aj) is 1 on Kj . The sum
∑∞

j=1 µj is finite in some neighborhood of every
point, hence smooth. Since the Kj’s form a cover of S, this sum is greater than or equal to 1, in
particular it never vanishes.

3. Vectors

A vector at p ∈ S is a derivation vp : C∞(S)→ R, i.e., a linear map such that

(3.1) vp(fg) = vp(f)g(p) + f(p)vp(g).

The set of vectors at p is a vector space, denoted TpS. A vector field is a derivation v : C∞(S)→
C∞(S), i.e., a linear map such that

(3.2) v(fg) = v(f)g + fv(g).

The set V(S) is also a real vector space. By evaluating in p, each vector field gives a vector at p
for all p ∈ S so we get a linear map from V(S) to TpS.

EXAMPLE 3.1. Let p ∈ S and c : I → S a curve starting in p. Then f 7→ df(c(t))
dt |t=0

defines a
vector at p, denoted ċ. In fact every vector at p is of this form, as we shall see below.

EXAMPLE 3.2. On R2, the maps f 7→ ∂f
∂x

, f 7→ ∂f
∂y

define vector fields, denoted ∂x, ∂y.

THEOREM 3.3. Let S be a smooth surface.

(1) There is a natural identification of TpS with the set Derp(C
∞
c (S)) of linear maps from

C∞c (S) to R satisfying (3.1).
(2) Every vector field preserves the support:

supp(v(f)) ⊂ supp(f).
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(3) Every linear map from C∞c (S) to C∞(S) satisfying (3.2) takes values in C∞c (S) and
preserves support.

(4) There is a natural identification of V(S) with the set of derivations on C∞c (S).

PROOF. We define a linear map R : Tp → Derp(C
∞
c (S)) by restricting the action of vp to

compactly supported functions. To show that it is an isomorphism, we start with a lemma about
vectors.

LEMMA 3.4. Let f be a function which equals 1 in a neighborhood K of p. Then for every
vector vp ∈ TpS we have vp(f) = 0. If f has compact support, then Vp(f) = 0 for all Vp ∈
DerP (C∞c (S)).

PROOF. Take a function µ which is 1 near p and has support in K, thus fµ = µ. From the
Leibnitz identity,

(3.3) vp(µ) = vp(fµ) = vp(f)µ(p) + f(p)vp(µ) = vp(f) + vp(µ)⇒ vp(f) = 0.

The same proof applies to the second statement. �

This holds in particular for the constant function 1. By linearity, vp(1 − f) = 0. Again from
the Leibnitz identity, for every g ∈ C∞(S) we have vp(g) = vp(fg), and if f, g have compact
support then Vp(g) = Vp(fg).
We now show thatR is injective. Take vp such thatR(vp) = 0, i.e., vp applied to every compactly-
supported function is 0. We want to show vp = 0. Take a compactly supported f as in Lemma
3.4. Then for every g ∈ C∞(S) we have vp(g) = vp(fg) = 0 since fg has compact support.
Take now Vp ∈ Derp(C

∞
c (S)) and define vp(g) := Vp(fg) for f as above. The map associating

vp to Vp is clearly linear, we claim that it satisfies Leibnitz rule. Indeed, Vp(fg) = Vp(f
2g) by

Lemma 3.4 so

vp(gg
′) = Vp(fg · fg′) = Vp(fg)(fg′)(p) + (fg)(p)Vp(fg

′) = vp(g)g′(p) + g(p)vp(g
′),

in other words vp is a vector. Therefore R is surjective, which finishes the proof of the first claim
of the theorem.
To prove that a vector v preserves support, let f ∈ C∞(S) with support C and p /∈ C. Since S
is a separate surface, there exists a compact neighborhood K of p inside an open disk U disjoint
from C. Let µ ∈ C∞c (S) be with support in U and identically 1 on K. From Lemma 3.4,
the function v(µ) is identically zero on K. From µf = 0 we deduce as in (3.3) that µv(f) is
identically zero on K, thus v(f) vanishes on K. Since p was arbitrary outside the support C of
f if follows that the support of v(f) is contained in C.
For the third statement, note that the above proof still holds for derivations from C∞c (S) to
C∞(S).
For the final statement, we already know that derivations on C∞(S) define derivations on C∞c (S)
by restricting the action of a vector field to compactly-supported functions. To show this map is
injective, assume v is a vector whose restriction to C∞c (S) is 0. Take p ∈ S and µ a function with
compact support which is 1 in a neighborhood K of p. For every f ∈ C∞(S), v(f) and v(µf)
agree on K, and since the latter has compact support it follows that v(f) is zero near p; since p
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was arbitrary, v(f) = 0 as claimed. To show surjectivity, proceed as for the first statement of the
theorem. Let V be a derivation on C∞c (S). Take f ∈ C∞(S). At every point p define v(f)(p) by

v(f)(p) := v(µf)(p)

for some µ ∈ C∞c (S) which is 1 near p. This defines a function v(f) which is independent of the
choices of µ. As in the first part of the theorem, f 7→ v(f) is a derivation. �

COROLLARY 3.5. For U ⊂ S, the inclusion C∞c (U) ⊂ C∞c (S) induces a restriction map
V(S)→ V(U). For p ∈ U , we get a map TpU → TpS which is an isomorphism.

PROOF. The first statement is clear. For the second, it is also clear how the map is defined
(by restriction to C∞c (U)). To show this is isomorphism, take a function f ∈ C∞(S) as in
Lemma 3.4 with support in U which equals 1 near p. Then every vector vp ∈ TpS is determined
by its action on functions with support in U , because vp(g) = vp(fg), proving injectivity. For
surjectivity define a derivation C∞(S)→ R by g 7→ vp(fg) for f as above and vp ∈ TpU . �

The real vector space V(S) has a natural action of the ring C∞(S) defined by

(fv)(g) := f · v(g).

This makes V(S) into a C∞(S)-module (Exercise 3.11).

3.1. Local structure of C∞(S). Since every surface is locally diffeomorphic to R2, let us
study C∞(R2) in some detail. For every z0 ∈ R2, the space Iz0 of functions vanishing at z0 =
(x0, y0) is a maximal ideal inC∞(S). We claim that Iz0 is generated by the functions x−x0, y−y0

as a C∞(S)-module. Let f be a function with f(z0) = 0. For z ∈ R2 set

F : I → R, F (t) := f((1− t)z0 + tz)

and write

f(z) =F (1)− F (0)

=

∫ 1

0

F ′(t)dt

=

∫ 1

0

[∂xf((1− t)z0 + tz)(x− x0) + ∂yf((1− t)z0 + tz)(y − y0)]dt

=(x− x0)α + (y − y0)β

where the last equality defines α, β in an obvious way. Note that α, β are smooth functions of z.
Also note that the generators x− x0, y − y0 are clearly not free in Iz0 since (x− x0)(y − y0)−
(y − y0)(x− x0) = 0.

PROPOSITION 3.6. The C∞(R2)-module V(R2) is free, with basis {∂x, ∂y}.

PROOF. Take v ∈ V(R2) and define functions a, b ∈ C∞(R2) using the coordinate functions
x, y:

a := v(x) = v(x− x0), b := v(y) = v(y − y0)
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where x0, y0 are any constants (recall that v(1) = 0 and so by linearity v(c) = 0 for every
constant function c). For every f ∈ C∞(R2) compute v(f)(z0) using Taylor series:

v(f)(z0) =v(α(x− x0) + β(x− x0))(z0)

=aα + bβ

=(a∂x + b∂y)(f)(z0)

proving that v = a∂x + b∂y in the point z0. Since z0 was arbitrary, we see that ∂x, ∂y span V(R2).
They are clearly independent (Exercise 3.12). �

In the same way, one proves that for every p ∈ R2, {(∂x)p, (∂y)p} form a basis in TpR2, which
therefore has dimension 2.

3.2. Exercises.

EXERCISE 3.7. Prove that in the context of Definition 2.1, for any other choice of chart φB with
p ∈ B, the function f ◦ φ−1

B : B′ → R is smooth at φB(p).

EXERCISE 3.8. Prove that the function f constructed in Lemma 2.2 is indeed smooth.

EXERCISE 3.9. Show that for an open subset U ( S, the restriction map C∞(S) → C∞(U) is
not surjective. If U is not dense, then the restriction map is not injective.

EXERCISE 3.10. A cover S =
⋃∞
j=1Aj is called locally finite if every point has a neighborhood

which intersects only a finite number ofAj’s. Show that it is equivalent to ask that every compact
in S intersects only a finite number of Aj’s.

EXERCISE 3.11. Prove that V(S) is a C∞(S)-module.

EXERCISE 3.12. Show that ∂x, ∂y are independent as generators of the C∞(R2)-module V(R2).

EXERCISE 3.13. Show that the commutator [u, v] of two derivations on an algebra, defined by
[u, v](f) := u(v(f))− v(u(f)), is again a derivation. When u, v are vector fields on S, the new
vector field [u, v] ∈ V(S) is called the Lie bracket of u, v.

EXERCISE 3.14. Let S be a compact surface. Show that every maximal ideal in C∞(S) is of the
form Ip for some p ∈ S.

EXERCISE 3.15. For every p ∈ S, IpV(S) is a submodule of V(S), and

0 7→ IpV(S) ↪→ V(S)→ TpS → 0

is a short exact sequence.

EXERCISE 3.16. Prove that every vector at p ∈ S is obtained from a curve passing through p as
in Example 3.1. If (x, y) is a chart near p, compute the vector ċ in the basis ∂x, ∂y at p.
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4. Forms and tensors

4.1. Change of coordinates. A map Φ : S → S ′ is called smooth if Φ∗C∞(S ′) ⊂ C∞(S),
where we define

(Φ∗f ′)(z) := f ′(Φ(z)).

LEMMA 4.1. A smooth map induces linear maps between TpS and TΦ(p)S
′, for all p ∈ S.

PROOF. Simply define Φ∗V (f ′) := V (f ′ ◦ Φ). �

Let Φ : S → S ′ be a diffeomorphism and V a vector field on S. Define another vector field Φ∗V
on S ′ by Φ∗V (f ′) = V (Φ∗f ′), or more precisely

Φ∗V (f ′)(p′) := V (f ′ ◦ Φ)(Φ−1(p′)).

This is easily seen to be a derivation on C∞(S ′).

EXAMPLE 4.2. Let Φ = Φ1(x, y),Φ2(x, y) : U ′ → V ′ be a diffeomorphism between open
subsets of R2. Then in the bases ∂x, ∂y, the map Φ∗ : V(U ′)→ V(V ′) takes the form

Φ∗ = DΦ =

[
∂xΦ1 ∂yΦ1

∂xΦ2 ∂yΦ2

]
.

Indeed, from the definition and the chain rule,

(Φ∗∂x)(f) = ∂x(f ◦ Φ) =
∂Φ1

∂x
∂xf +

∂Φ2

∂x
∂yf

so Φ∗(∂x) = (∂xΦ1)∂x + (∂xΦ2)∂y and similarly Φ∗(∂y) = (∂yΦ1)∂x + (∂yΦ2)∂y.

The tangent bundle of a surface S is the disjoint union

TS :=
⊔
p∈S

TpS.

It is endowed with a natural function π : TS → S which associates to a vector vp ∈ TpS its base-
point p ∈ S. If U ⊂ S is the domain of a chart φU : U → R2, the maps (φU)∗ : TpS → TφU (p)R2

define a bijection
(φU)∗ : TU → TR2.

We have seen that TR2 is canonically bijective with R2 × R2 via the map

TpR2 3 vp 7→ (p, a, b)

where vp = a∂x + b∂y, so TR2 has a canonical topology. We define on TS the following
topology: we require that for all charts U , the map (φU)∗ : TU → TR2 is a homeomorphism.
We need to check that this definition is compatible with changes of charts. Let φV be an-
other chart, and Φ : U ′ → V ′ the composition φV ◦ φ−1

U . Then (φV )∗(φU)−1
∗ maps (p, v) to

(Φ(p), DΦ(v)) which is clearly continuous.
It follows that TS is a topological manifold of dimension 4. Moreover, the changes of charts on
TS are clearly smooth maps, thus TS is a smooth 4-manifold. Furthermore, each fiber π−1(p) is
mapped by (φU)∗ linearly onto R2.
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DEFINITION 4.3. A real vector bundle of rank k over a surface S is a smooth manifold E
of dimension 2 + k, together with a map π : E → S and a smooth atlas consisting of open
sets π−1(U) (where U is the domain of a chart φU : U → U ′ on S) and homeomorphisms
ΦU : π−1(U)→ U ′ × Rk, such that the (smooth) changes of charts ΦV Φ−1

U are real linear in the
second variable. A complex vector bundle of dimension k is a real vector bundle of dimension
2k where we require the changes of charts to be complex linear, after identifying R2k and Ck.

The crucial example of a vector bundle is the trivial vector bundle

Rk := S × Rk

with the projection onto the first factor.
Any chart in the above atlas is called a trivialization of E over U . We will mostly be interested
in real plane bundles, i.e., real vector bundles of dimension 2, and in complex vector bundles of
dimension 1, also called complex line bundles.

REMARK 4.4. The fibers of a vector bundle have a well-defined structure of vector space, in-
duced by pulling back the linear structure from Rk (or Ck) via any local trivialization map. This
structure (i.e., the origin, the rules for addition and multiplication by scalars) is independent of
the chosen local trivialization.

A section in a vector bundleE → S is a smooth function s : S → E such that π(s(p)) = p for all
p ∈ S. The set of sections, denotedC∞(S,E), is a vector space and has a naturalC∞(S)-module
structure.

LEMMA 4.5. C∞(S, TS) = V(S).

The algebra C∞(S) has a canonical structure of module over itself.

LEMMA 4.6. Let F : C∞(S) → C∞(S) be a C∞(S)-linear map. There exists a unique f ∈
C∞(S) with F (g) = fg, for all g ∈ C∞(S).

PROOF. For p ∈ S we set f(p) := F (1S)(p). The function f = F (1S) is smooth. For every
g ∈ C∞(S) we have g = g · 1S so F (g) = F (g · 1S) = gF (1S) = fg. �

As a corollary, a C∞(S)-linear map induces C∞(U)-linear maps from C∞(U) to itself, for every
open set U in S.
Let U, V be K vector spaces of finite dimension, where K is the field C or R. The dual of U ,
denoted U∗, is the space of linear functionals on U :

U∗ := {α : U → K;α is K-linear}.
The space of K-linear maps L(U, V ) is also a vector space, of dimension dim(U) dim(V ). The
tensor product of U, V (over K) can be defined as

U ⊗ V := L(U, V ∗).

If u1, . . . , un, v1, . . . , vm are bases in U, V then uj⊗vk form a basis in U⊗V . The tensor product
is associative.
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A bi-linear map α : U × V to K induces a linear map from U ⊗ V to K by u⊗ v 7→ φ(u, v). A
bilinear map φ : U × U → K is called alternate if for all u, v ∈ U we have

φ(u, v) = −φ(v, u).

4.2. The morphism bundle. Take E1, E2 any two real vector bundles of rank k1, k2 over S.
We can organize the disjoint union of spaces of linear maps L(E1

p , E
2
p) into a vector bundle of

rank k1k2, denoted L(E1, E2), as follows: take U1, U2 ⊂ S trivializing open sets for E1, E2 with
trivializations φ1, φ2. Over U := U1 ∩ U2 define the following bijection φU to be smooth:⊔

p∈U

L(E1
p , E

2
p) 3 Φp 7→ φU(Φp) := φ2 ◦ Φp ◦ φ−1

1 ∈Mk1,k2(R).

If we choose different trivializations φ′1, φ
′
2 over U ′1, U

′
2, the resulting bijection φV defined over

U ′ := U ′1 ∩ U ′2 differs from φU as follows:

φU ′(Φp) =φ′2 ◦ Φp ◦ (φ′1)−1

=(φ′2φ
−1
2 )φU(Φp)(φ1(φ′1)−1).

By setting A := φU(Φp) it follows that φU ′ ◦ φ−1
U (A) = (φ′2φ

−1
2 )A(φ1(φ′1)−1) for every k1 × k2

matrix A. The changes of trivializations in E1, E2

ψE1

U1U ′1
:=φ′1(φ1)−1 : U1 ∩ V1 →Mk1(R),

ψE2

U2U ′2
:=φ′2(φ2)−1 : U2 ∩ V2 →Mk2(R)

are smooth matrix-valued maps defined on open sets in S, it follows that the change of trivializa-
tions in L(E1, E2) which maps a matrix-valued function A over U ∩ U ′ into

ψUU ′A = ψE2A(ψE1)−1

are smooth and fiberwise-linear, thus they form a vector bundle atlas.
By analogy with Lemma 4.6, we have:

PROPOSITION 4.7. The space of C∞(S)-linear maps from C∞(S,E1) to C∞(S,E2) is canoni-
cally isomorphic to C∞(S, L(E1, E2)).

PROOF. Given f ∈ C∞(S, L(E1, E2)), define F : C∞(S,E1)→ C∞(S,E2) by F (s)(p) :=
f(p)s(p).
Conversely, let F : C∞(S,E1) → C∞(S,E2) be C∞(S)-linear. We define a section in the
endomorphism bundle as follows: for every sp ∈ E1

p , choose a section s : S → E1 with s(p) =
sp. Define fp(sp) := F (s)(p), which is clearly linear. We must check that fp is independent of
the choice of s. For this we use Lemma 4.8. Since any two extensions s, s′ satisfy (s−s′)(p) = 0,
Lemma 4.8 implies by C∞(S)-linearity F (s− s′)(p) = 0. �

LEMMA 4.8. Let s ∈ C∞(S,E) be a section in a vector bundle of rank k over a surface S,
vanishing at p ∈ S (i.e., s(p) = 0). Then there exist functions fj, j = 1, . . . , 3 and sections
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sj ∈ C∞(S,E) with

s =
3∑
j−1

fjs
j.

PROOF. First write s = µs + (1 − µ)s with µ compactly supported, equal to 1 near p. We
assume that the support of µ is contained in a domain of chart φ : U → R2 over which E is
trivialized, such that φ(p) = 0. We set f3 := 1−mu, s3 := s. Over U , write E = U × Rk, thus
µs can be written as a function-valued k-vector, µs = (u1, . . . , uk). The functions ui vanish at p.
We have seen in section 3.1 that such a function can be decomposed in terms of the coordinates
x, y of the chart φ, so µ1 = xs1

i + ys2
i for some functions gji ∈ C∞(U). This can be re-written

µs = xg1 + yg2

where gj are sections in E over U . To extend the right-hand side to S, we multiply by the square
of a compactly-supported function ν on U ' R2 which is 1 on the support of µ (thus ν2µ = µ)
and we set f1 := xν, f2 = y, nu, sj := νgj . �

Over a base of dimension n, we need n+ 1 terms in the sum from the above lemma.
Similarly, for complex vector bundles E1, E2 we construct the bundle of complex-linear mor-
phisms LC(E1, E2).
Using the morphism bundle construction, we define the dual of any real vector bundle E as

E∗ := L(E,R),

respectively

E∗C := LC(E,C)

when E is complex. In particular, we define the cotangent bundle T ∗S as the dual bundle TS∗

of TS. It is a vector bundle of rank 2 = dim(S).
If φu is a local trivialization of E over U , then (φ∗U)−1 is a trivialization of E∗ above the same
open set U . The changes of trivializations of E∗ are therefore given by (ψ∗UV )−1 where ψUV is
the change of trivializations in E over U ∩ V .

DEFINITION 4.9. A covector at p ∈ S is a linear functional αp : TpS → R. A differential 1-form
is a C∞(S)-linear map α : V → C∞(S).

From lemma 4.7, there is a canonical identification between the space of sections C∞(S, T ∗S)
in the cotangent bundle, and the space of differential 1-forms.
Since vector fields act on functions by derivations, there exists a “universal derivation” map

d : C∞(S)→ C∞(S, T ∗S)

defined by the pairing (f, v) 7→ v(f). More explicitly, df is the map which sends any vector field
v into the function v(f). This universal derivation is called the de Rham differential.
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4.3. Exercises.

EXERCISE 4.10. Convince yourselves that the tangent bundle is an example of a real plane
bundle.

EXERCISE 4.11. Prove that the trivial bundle is a vector bundle in the sense of Definition 4.3.

EXERCISE 4.12. Show that if s : S → E1, f : S → L(E1, E2) are smooth sections, then fs is
also a smooth section in E2.

EXERCISE 4.13. LetE be a complex vector space with complex structure J . Show that for every
α : E → R linear, the map

E 3 v 7→ α(v)− iα(Jv) ∈ C
defines a complex-linear map, thus an element in E∗C. Conversely, for every element µC ∈ E∗C,
the real part of µ belongs to E∗. These two applications are inverse to each other, thus E∗ is
canonically identified with E∗C.

EXERCISE 4.14. If f is a fixed smooth function, show that the map

V(S) 3 v 7→ v(f) ∈ C∞(S)

is C∞(S)-linear, thus it defines a 1-form.

EXERCISE 4.15. In R2, compute the action of dx, dy on the coordinate vectors, where x, y ∈
C∞(R2) are the coordinate functions. Compute df in terms of dx, dy for arbitrary f .

5. Conformal structures and complex structures

Let E be a real vector space; define Λ2(E∗) to be the space of bilinear alternate maps on E, i.e.,

Λ2(E∗) := {α : E × E → R;α(u, v) = −α(v, u),∀u, v ∈ E}.

LEMMA 5.1. The dimension of the space of bilinear alternate maps on a vector space of dimen-
sion 2 is 1.

PROOF. Choose any basis u1, u2 inU . Then every bilinear alternate map αmaps u1⊗u1, u2⊗
u2 and u1⊗u2+u2⊗u1 to 0. thus α is determined by its value on u1⊗u2. There do exists nonzero
such maps, for instance set α(u1⊗u1) = α(u2⊗u2) = 0 and α(u1⊗u2) = −α(u2⊗u1) = 1 ∈
K. �

An orientation on a real plane V is an equivalence class of non-zero bilinear alternate maps
under the following equivalence relation: α ∼ α′ if there exists c > 0 with α = cα′. There are
clearly two orientations on every real plane. For a given orientation, an ordered pair (u, v) of
non-colinear vectors is called positively oriented if for any representative α of the orientation,
α(u, v) > 0.
Let (V, 〈, 〉) be a real vector space of dimension 2 together with a inner product, i.e., a symmetric,
bi-linear, positive definite map from V × V to R. Two vectors X, Y are called orthogonal if
〈X, Y 〉 = 0. Two inner products on V are conformally equivalent if they differ by multiplication
with a positive number.
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Let V be a real plane. A conformal structure on V is a choice of a conformal class. A complex
structure on V is a map C×V → V extending the map of multiplication by scalars R×V → V ,
which is real bi-linear and associative: z1(z2v) = (z1z2)v.

LEMMA 5.2. A complex structure on V amounts to the choice of a real endomorphism J : V →
V satisfying J2 = −1V .

PROOF. Simply define J as the action of C 3 i on V . �

THEOREM 5.3. On a real plane V , complex structures are in a natural bijection to conformal
structures together with an orientation.

PROOF. Although this theorem is quite simple, understanding it will be crucial in the rest
of the book. Take first a conformal structure [g] and a representative g, i.e., a scalar product
g : V × V → R. For any vector v, define Jv as the rotation of v by 90◦ in the sense of the
orientation. More precisely, Jv is defined as the unique vector in V of the same length as v,
orthogonal to v and such that the basis (v, Jv) is positively oriented. We can construct J in an
orthonormal oriented basis (e1, e2); for every vector v = (a, b), Jv must be equal to (−b, a)

therefore it is clear that the map v 7→ Jv is linear, with matrix
[
0 −1
1 0

]
and moreover J2 = −1.

If we choose another representative kg of the conformal class (k > 0) the geometric definition
does not change, thus J is well-defined in terms of the conformal class [g].
Conversely, given J : V → V with J2 = −1, notice first that for every v 6= 0 the vectors v and
Jv are linearly independent. Indeed, otherwise Jv would be colinear to v, thus v would be an
eigenvector of J with eigenvalue λ ∈ R; but then v is also an eigenvalue for J2 of eigenvalue
λ2 ≥ 0, which contradicts J2 = −1. Choose any vector v ∈ V and decree that v, Jv are an
oriented orthonormal basis of V , thus constructing a scalar product gv. If we choose another
initial vector v′, write v′ = av + bJv, Jv′ = −bv + aJv. We claim that the metric gv′ with
respect to which v′, Jv′ form an orthonormal basis is (a2 + b2) times gv, thus the conformal class
of gv is independent of the choice of v.
The above maps associating a complex structure to a conformal structure and vice-versa are
clearly inverse to each-other, thus bijections. �

6. Oriented vector bundles

Let E → S be a real vector bundle of rank 2. The bundle Λ2(E∗) is defined as the disjoint union
of Λ2(E∗p). If φU : E|U → U × R2 is a local trivialization of E, the bijection⊔

p∈U

Λ2(E∗p) 3 αp 7→ (φ−1
U )∗αp ∈ Λ2(R2)

is defined to be a homeomorphism, where

(φ−1
U )∗αp(u, v) := αp(φ

−1
U (p, u), φ−1

U (p, v)).
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If φU ′ is another trivialization inE with φU ′ ◦φ−1
U = ψUU ′ , the change of trivializations in Λ2(E∗)

is given by
β 7→ (ψ−1

UU ′)
∗β.

Here ∗ means pull-back, not adjoint! In this way Λ2(E∗) becomes a real line bundle.

DEFINITION 6.1. A vector bundleE → S of rank 2 is called orientable if the line bundle Λ2(E∗)
is trivial.

An orientation in a real vector bundle of rank 2 is an equivalence class of trivializations of Λ2(E∗)
modulo the equivalence relation given by multiplication with a strictly positive function. An
orientation on E induces orientations in each fiber Ep.

EXAMPLE 6.2 (The volume form). Let S be a surface embedded in R3. On every tangent plane
define a bi-linear form as the length of the vector product:

α(U, V ) := |U × V |
where

(u1, u2, u3)× (v1, v2, v3) := (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

This bi-linear anti-symmetric form is non-zero on every tangent plane, hence it defines a trivi-
alization of the exterior bundle Λ2(T ∗S). It follows that every surface embedded in R3 is ori-
entable.

In general, over an oriented Riemannian surface with metric g, we can define a volume form µg
by the requirement that µ(X, Y ) = 1 for every orthonormal frame with positive orientation.

6.1. Exercises.

EXERCISE 6.3. Show that a line bundle is trivial if and only if it has a non-zero section.

EXERCISE 6.4. Show that a smooth surface constructed from an oriented triangulated surface as
in Section 1 is orientable.

EXERCISE 6.5. Show that the volume form µg is a smooth section in the bundle Λ2T ∗S.

7. Riemannian metrics and almost complex structures

A metric on a vector bundle is a collection of inner products on the fibers, varying smoothly in
the base variables.

DEFINITION 7.1. Let E → S be a real vector bundle over a smooth surface. A metric on E is a
symmetric, positive-definite smooth section in E∗ ⊗ E∗, i.e., a symmetric bi-linear form which
is positive-definite on each fiber Ep, p ∈ S.

A Riemannian metric on a surface S is a metric on the tangent bundle of S. For instance, if
S = R2, the canonical metric defined by

〈∂xi , ∂xj〉p := δji

is an example of Riemannian metric.
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If S ⊂ R3 is an embedded surface, there is a canonical metric on TS induced from the inclusion
TS ⊂ R3 of vector bundles over S.
In general, if S is compact we can construct Riemannian metrics as follows: for each p ∈ S
there exists a chart φp : Up → D2 with image the disk of radius 2. Let Vp be the preimage of
the disk of radius 1, and Kp its closure. A finite number of the Vp’s, say V1, . . . , Vn, cover S by
compactness; let µj be a smooth non-negative function with support in Uj which is 1 on Kj .
Let gj be Riemannian metrics on Uj . Such metrics exist since Uj is diffeomorphic to a disk in
R2, so we could take for instance the pull-back through φj of the canonical metric on R2. Then
µjgj ∈ C∞c (Uj, T

∗Uj ⊗ T ∗Uj) is a symmetric non-negative 2-tensor; moreover,

g :=
∑

µjgj ∈ C∞(S, T ∗S ⊗ T ∗S)

is positive-definite. The same construction works for a paracompact manifold, but in this book
we focus only on the compact case.
Two metrics g1, g2 on E are conformally equivalent if there exists a positive function f ∈
C∞(S,R∗+) with g1 = fg2. A conformal class is an equivalence class of metrics under the
above equivalence relation.
We now want to generalize Theorem 5.3 to bundles. A complex structure on a bundle E is an
endomorphism J (i.e., a section in the endomorphism bundle L(E,E)) with J2 = −1E .

THEOREM 7.2. Let E → S be a rank-2 real vector bundle over a compact surface. Then
conformal classes of metrics on E together with an orientation are in bijection with complex
structures on E.

PROOF. Theorem 5.3 is a particular case of this result, for a vector bundle over a point. Thus
the bijection is established for the fibers at every point. It remains to show that when we vary the
point we obtain smooth objects.
If [g] is a conformal class, we pick a representative g and define J[g] to be the map of rotation
by π/2 with respect to g, in the sense given by the orientation. This does not depend on g ∈ [g]
and clearly J2 = −1E . To show that J is a smooth section in the endomorphism bundle, we can
work locally over an open set U ⊂ S above which E is trivial. Let e1, e2 : U → E be sections
which form a base in E at every point of U . We assume that e1, e2 form a positively oriented
bases at a point p0 ∈ U (and hence by exercise 7.8 at every point p ∈ U ), otherwise just re-label
them. Using the metric g, we first define e′1 := e1/‖e1‖g, i.e., we normalize e1. Next we set

e′2 :=
e2 − 〈e2, e

′
1〉e′1

‖e2 − 〈e2, e′1〉e′1‖g
.

Using this procedure (called the Gramm-Schmidt orthonormalization procedure) we obtained a
smooth orthonormal basis of sections. Let e1

′, e2′ : U → E∗ be the dual basis, then

J = e′2 ⊗ e1′ − e′1 ⊗ e2′

is clearly smooth.
In the opposite direction, we fix a complex structure J . Let U ⊂ S be a trivializing open set,
and e1 : U → E a nowhere zero section. We can define a metric on E|U by requiring {e, Je}
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to be orthonormal. The conformal class of the metric is independent of the choice of e. The
using a finite partition of unity, patch together the metrics to a global metric on E. It is clear that
the conformal class of the resulting metric is independent of choices, and that for every v ∈ Ep,
Jv ⊥ v. �

The same proof works for paracompact manifolds. If we drop the smoothness requirement, the
statement is true for locally trivial vector bundles over a paracompact base.
A smooth map Φ between two surfaces endowed with Riemannian metrics (S, g) and (S ′, g′)
is called conformal if Φ∗g′ is conformal to g. Note that the definition makes sense if we only
specify conformal classes on S, S ′. Assume now that S, S have holomorphic structures. These
induce complex structures in TS, TS ′, hence conformal structures and orientations on S, S ′.

LEMMA 7.3. A smooth map between two holomorphic surfaces is holomorphic if and only if it
preserves orientations and is conformal with respect to the induced conformal structures.

PROOF. In local (holomorphic) coordinates we check easily that Φ is holomorphic if and
only if DΦ commutes with J . In turn, this is equivalent to Φ being orientation-preserving and
conformal. �

A rephrasing of this lemma is the following description of holomorphic surfaces as conformal
surfaces. A smooth map φ : C→ C is called conformal if it is conformal for the standard metric
on R2; clearly, by the above lemma an orientation preserving map is conformal if and only if it
is holomorphic.

LEMMA 7.4. A holomorphic structure on a surface S is the same thing as an oriented conformal
atlas on S.

7.1. Exercises.

EXERCISE 7.5. Prove that a metric on E defines an isomorphism of real vector bundles E ' E∗.
Show that in this way you get a metric on E∗. Find its coefficients in a local trivialization of E∗

in terms of the coefficients of the initial metric on E in the corresponding trivialization.

EXERCISE 7.6. Show that conformal equivalence is an equivalence relation.

EXERCISE 7.7. Show that two metrics g1, g2 are conformally equivalent if and only if there exists
a function h ∈ C∞(S,R) with g1 = e2hg2.

EXERCISE 7.8. Let e1, e2 : S → E be non-zero (i.e., nowhere zero) sections in an oriented
vector bundle E above a connected base S. Show that for points p, p′ ∈ S, the basis e1(p), e2(p)
is positively oriented if and only if e1(p′), e2(p′) is positively oriented.

EXERCISE 7.9. Let E be a 3-dimensional vector space with a scalar product and {e1, e2, e3} any
basis. Construct explicitly an orthonormal basis {e′1, e′2, e′3} such that e1 and e′1 span the same
line, and {e1, e2} and {e′1, e′2} span the same plane.



CHAPTER 3

Uniformization of surfaces

Let S be a compact oriented smooth surface. We have seen that it admits Riemannian metrics,
and that each conformal class corresponds to a unique complex structure in the tangent bundle,
also called an almost complex structure on S.
We want to find in each conformal class a “nice” representative. This will be a metric with
constant scalar curvature. Then the almost complex structure will turn out to be integrable, i.e.,
it comes from a holomorphic structure on S.

1. Connections and curvature

Let R be the trivial line bundle on S. Let us denote by ∇V : C∞(S,R) → C∞(S,R) the action
by derivations of V on C∞(S,R) = C∞(S). It satisfies

∇fV = f∇V , ∇V ◦ f = f∇V + V (f).(1.1)

DEFINITION 1.1. LetE be a vector bundle on S. A linear action of V(S) onC∞(S,E) satisfying
(1.1) is called a connection in E.

Like vector fields, connexions can be restricted over open subsets of S. If ∇E,∇E′ are connec-
tions in E,E ′, we define connections in E ⊕ E ′ and in E ⊗ E ′ by

∇E⊕E′
V (s⊕ s′) := ∇E

V s⊕∇E′

V s
′,

∇E⊗E′
V (s⊗ s′) := ∇E

V s⊗ s′ + s⊗∇E′

V s
′.

On the trivial bundle of rank k we have the trivial connection, obtained by applying V to each
component function. Using partition of unity, we can show that there exist connections in each
vector bundle.

1.1. The Levi-Civita connection. The main example of connection is the Levi-Civita con-
nection in the tangent bundle. Let (S, g) be a surface with a Riemannian metric. There exists a
unique connection in TS satisfying for all U, V ∈ V

∇UV −∇VU = [U, V ];

∇Ug = 0.
(1.2)

The last identity means explicitly

V (g(X, Y )) = g(∇VX, Y ) + g(X,∇V Y )

31
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The existence of∇ is easy: we just define∇XY by the requirement that for every Z ∈ V ,

2g(∇XY, Z) =Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )

+ g([X, Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X).
(1.3)

To prove uniqueness, we deduce (1.3) from (1.2) by some easy manipulations.

1.2. Curvature. For X, Y ∈ V(S) and F ∈ C∞(S,E), the expression

(1.4) RXY F := ∇X(∇Y F )−∇Y (∇XF )−∇[X,Y ]F

is again a section in S. ClearlyR depends R-linearly on each of the vector fieldsX, Y and on the
section F , but remarkably it is also C∞(S)-linear in each of these entries (Exercise 2.9). Thus
for vectors Xp, Yp we get using Lemma 4.8 a well-defined endomorphism of Ep by setting

Fp 7→ (RXY F )(p)

where X, Y, S are arbitrary extensions of Xp, Yp, resp. Fp, to vector fields, respectively a smooth
section in S. In this way, R becomes a section in T ∗M⊗T ∗M⊗E∗⊗S. ClearlyRXY = −RY X

so in fact R ∈ C∞(S,Λ2T ∗S ⊗ End(E)).
If E is a complex bundle with complex structure J and the commutator [∇, J ] vanishes, then
RXY commutes with J , thus it is a complex endomorphism of E.
IfE is a line bundle (real or complex), the endomorphism bundle End(E) is canonically trivial of
rank 1, a canonical nonzero section being the identity 1E . Consequently (provided the connection
is compatible with J in the complex case) the curvature of such a line bundle is simply a volume
form, or a 2-form when the base is of higher dimension.

1.3. Gaussian curvature. When E is the tangent bundle of a surface endowed with a Rie-
mannian metric and X, Y is a orthonormal frame, the quantity κ := 〈RXY Y,X〉, which is a real
number associated to each point of S (hence a function), does not depend on the orthonormal
frame. This function is called the Gaussian curvature of the metric. It is half of the scalar cur-
vature, a quantity associated to each Riemannian manifold of arbitrary dimension. For surfaces
in R3 it is related to the mean curvature as follows: the Gaussian is the determinant of the Wein-
garten map, while the mean curvature is the trace of the same map. Therefore Gaussian curvature
for a surface in R3 is the product of the principal curvatures (the eigenvalues of the Weingarten
map).
We can easily compute the Gaussian curvature of the Euclidean plane and of the unit sphere. On
R2 with the standard basis for the tangent bundle X1 = ∂x1 , X2 = ∂x2 , we see immediately that
∇XiXj = 0 so the curvature tensor vanishes identically so κR2 = 0. For the sphere we compute
the curvature in the stereographic charts, the result is κS2 = 1.

1.4. Integration of volume forms. LetC∞c (S,Λ2T ∗S) be the space of compactly supported
volume forms on an oriented surface S. There exists a natural functional on this space with real
values, ω 7→

∫
S
ω, with the following properties:

(1) If Φ : S → S ′ is a smooth map, then
∫
S

Φ∗ω =
∫
S
ω.
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(2) If S ⊂ R2 with the standard orientation and ω = a(x, y)dx ∧ dy, then
∫
S
ω =∫

R2 a(x, y)dxdy.

To construct
∫

, assume first that ω has support in a domain of a chart φ : U → R2 from a
fixed oriented atlas. Write ω = a(x, y)dx ∧ dy and define

∫
S
ω =

∫
R2 a(x, y)dxdy. If we

consider another chart φ′ : U → R2 with coordinate functions x′, y′, let Φ := φ ◦ (φ′)−1, then
(x, y) = Φ(x′, y′) so

dx =
∂Φ1

∂′x
dx′ +

∂Φ1

∂′y
dy′

dy =
∂Φ2

∂′x
dx′ +

∂Φ2

∂′y
dy′

therefore
dx ∧ dy = det(DΦ)dx′ ∧ dy′.

Thus in the chart φ′ the form ω takes the form ω = a ◦ Φ det(DΦ)dx′ ∧ dy′. The formula of
change of variable under integration∫

R2

a(x, y)dxdy =

∫
R2

a(Φ(x′, y′))| det(DΦ)|dx′ ∧ dy′

together with the fact that the change of charts Φ is positively oriented (thus det(DΦ) > 0)
proves independence of the definition of the integral with respect to the chart.

2. The hyperbolic plane

This will be our fundamental example of Riemannian metric. The underlying surface is the upper
half-plane from Example 2.4. The metric we consider is conformal to the standard Euclidean
metric on R2, gE = dx2 + dy2, namely

(2.1) gH =
gE
y2

=
dx2 + dy2

y2
.

Explicitly, this means that an orthonormal basis of the tangent space at (x, y) ∈ H2 is given by
X := y∂x, Y := y∂y. We choose the standard orientation of TH2, for which the frame (X, Y )
is positively oriented. From (the proof of) Theorem 7.2, the almost complex structure on TH2

corresponding to the conformal class of gH is given by

JX = Y, JY = −X.

Also, the volume form of the metric gH satisfies by definition µ(X, Y ) = 1. We can check easily
that

[X, Y ] = −X
from which we compute the Levi-Civita connection in the frame X, Y using (1.3):

∇YX = ∇Y Y = 0, ∇XY = −X, ∇XX = Y.
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In particular ∇ commutes with J in the sense that for every vector fields U, V we have
∇U(JV ) = J∇UV . The curvature is then given by RXYX = Y , or in other words

RXY = J : TH2 → TH2.

We can re-write this as R = µ⊗ J ∈ C∞(H2,Λ2T ∗H2 ⊗ End(TH2)).
Directly from the definition, the Gaussian curvature of H2 is the constant function −1.

2.1. Geodesics. Let c : [a, b] → S be a smooth curve and consider the vectors ċc(t) tangent
to c. If c is injective, we can extend ċ to a vector field V on S.

LEMMA 2.1. For every X ∈ V(S), the vector field ∇VX does not depend on the choice of
V , and is thus denoted ∇ċX . If X ′ is another vector field which agrees with X along c, then
∇ċX

′ = ∇ċX .

A vector field satisfying∇ċX = 0 is called parallel along c. In view of this lemma, we make the
following

DEFINITION 2.2. A curve c is called a geodesic if∇ċċ = 0.

Since the Levi-Civita connexion is determined (and hence preserved) by the metric, it follows
that isometries preserve geodesic curves.

LEMMA 2.3. For every z ∈ S and v ∈ TzS there exists ε > 0 and a geodesic c : (−ε, ε) with
c(0) = z, ċ(0) = v. Moreover, the geodesic c = c(z, v) is unique, and depends smoothly on
(z, v) ∈ TS.

PROOF. Local coordinates + ODE. Choose local coordinates (x1, x2) in a neighborhood of
z (i.e., a chart φ = (x1, x2) : U → R2). Without loss of generality we may assume that
φ(z) = 0. The unknown geodesic is thus determined by two unknown functions x1(t), x2(t)
with x1(0) = x2(0) = 0. The tangent vector to c(t) = (x(t), y(t)) is

ċ(t) = x′1(t)∂x1 + x′2(t)∂x2 .

For every i, j ∈ {1, 2},∇∂xi
∂xj is a vector field on U ; since {∂x1 , ∂x2} for a basis for local vector

fields on U we can write
∇∂xi

∂xj = Γ1
ij∂x1 + Γ2

ij∂x2

for some functions Γkij ∈ C∞(U) called the Christoffel symbols. These functions depend on the
connection and on the local coordinates. With this notation we write

∇ċċ =∇ċ(x
′
1∂x1 + x′2∂x2)

=x′′1∂x1 + x′1∇ċ∂x1 + x′′2∂x2 + x′2∇ċ∂x2

=x′′1∂x1 + x′′2∂x2 +
2∑

i,j,k=1

x′jx
′
iΓ
k
ij∂xk .
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By setting the coefficients of ∂x1 , ∂x2 equal to 0, we deduce that c is a geodesic if and only if the
following identities hold:

x′′1 +
2∑

i,j=1

x′jx
′
iΓ

1
ij = 0, x′′2 +

2∑
i,j=1

x′jx
′
iΓ

2
ij = 0

where Γkij is evaluated at the point (x1(t), x2(t)). Thus x(t) := (x1(t), x2(t)) is a solution to the
second-order differential system

(2.2) x′′(t) = V (x′(t), x(t))

for V : R4 → R2, Vk(X, x) := −
∑2

i,j=1 Γkij(x)XiXk. For such a system, there exists ε > 0

and a neighborhood V ⊂ R4 of the initial value (x(0), x′(0)) (corresponding to the initial point
z = x(0) and direction v = x′(0)) such that (2.2) has a unique solution for t ∈ (−ε, ε) for each
initial value in V , depending smoothly on the initial values. �

We have seen that on the hyperbolic plane, the vector field Y is self-parallel in the sense that
∇Y Y = 0. For every x ∈ R, the curve

cx : R→ H2, cx(t) = (x, et)

is an integral curve to Y , i.e., ċx(t) = Ycx(t) for all t. It follows that cx is a geodesic for all x,
moreover |ċx| = 1. To find other geodesics, use the rich group of oriented isometries PSL2(R)
of H2 and Exercise 2.12. For every vector v ∈ TzH2 we find in this way a geodesic starting in z
in the direction of v. By uniqueness, every geodesic on TH2 is of this form.

2.2. Distance. Let γ : [a, b]→ S be a smooth curve in a surface endowed with a Riemannian
metric. At each γ(t), we have a tangent vector γ̇(t) ∈ Tγ(t)S defined by f 7→ df(γ(t))

dt
. The length

of γ is defined as

l(γ) :=

∫ b

a

‖γ̇(t)‖dt.

Remarkably, l(γ) depends only on the image of γ, thus is invariant under reparametrization: If
φ : [a′, b′]→ [a, b] is a diffeomorphism, then l(γ ◦φ) = l(γ). Indeed, if we set t = φ(s), we have

(2.3) ˙γ ◦ φ(s) = φ′(s)γ̇(φ(s))

hence ∫ b′

a′
‖ ˙γ ◦ φ(s)‖ds =

∫ b′

a′
|φ′(s)|‖γ̇(φ(s))‖ds = l(γ)

using the change of variables formula and the implicit assumption that φ is increasing, hence its
derivative has positive sign.
The distance between two points p, p′ in S is defined as the infimum of the lengths of all curves
linking p to p′. This defines a metric on S. For two arbitrary points in S, it may happen that no
curve realizes the infimum (example: in C∗, the distance between 1 and −1 is 2, but from the
triangle identity every path from 1 to −1 has length strictly larger than 2).
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PROPOSITION 2.4. Let p, q ∈ S and c : I → S a curve from p to q of length equal to d(p, q).
Then c is a geodesic.

Here we mean that the image of c can be realized as the image of a parametrized geodesic, or in
other words that after a suitable parametrization t = t(u), the curve c(t(u)) becomes a geodesic.

PROOF. Variational computation. Let C : I × (−ε, ε) → S be a smooth function with
C(t, 0) = c(t) and C(0, s) = p, C(1, s) = q for all t ∈ I , or in other words cs := C(·, s) is a
family of curves from p to q passing through c (to be thought of as a smooth path through c in
the space of paths from p to q). The function s 7→ l(cs) has a minimum at s = 0, in particular

dl(cs)

ds
|s=0 = 0.

For simplicity assume that ċ(t) 6= 0 for all t ∈ I , one can always reduce to this case. Let

T := C∗(∂t), X := C∗(∂s)

be vector fields along the image of C. Since ∂s, ∂t commute, we deduce [T,X] = 0. We then
compute

∂sl(cs) =

∫ 1

0

∂s
√
〈T, T 〉dt =

∫ 1

0

〈∇XT,T 〉+〈T,∇XT 〉
2|T | dt

=

∫ 1

0

〈∇XT,T 〉
|T | dt =

∫ 1

0

〈∇TX,T 〉
|T | dt

=

∫ 1

0

〈
∇TX,

T
|T |

〉
dt =

∫ 1

0

∂t

〈
X, T|T |

〉
dt−

∫ 1

0

〈
X,∇T ( T

|T |)
〉
dt.

Since C(0, s) = p for all s we deduce ∂C
∂s

(0, s) = 0 so X(0) = 0 and similarly X(1) = 0. This
means that ∫ 1

0

∂t 〈X,T/|T |〉 dt = 0,

hence if c is a curve of minimizing length then∫ 1

0

〈
X,∇T ( T

|T |)
〉
dt = 0.

Now every vector field X along c satisfying X(0) = 0, X(1) = 0 arises from a variation of the
curve c as above. By choosing X := t(1− t)∇T

T
|T | we see that ∇T

T
|T | = 0 (indeed, if we define

f(t) :=
∣∣∣∇T

T
|T |

∣∣∣2, then f(t) ≥ 0 and
∫ 1

0
t(1 − t)f(t)dt = 0 so f(t) = 0). Recalling that T = ċ,

this is equivalent to c being a geodesic after a suitable re-parametrization by arc-length. �

Let c : (a, b) → S be a geodesic and s : (a′, b′) → (a, b) a diffeomorphism. Then the re-
parametrized curve c̃ : c ◦ s : (a′, b′) → S is a geodesic if and only if s(t) is an affine transfor-
mation, i.e., s(t) = αt+ β. Indeed, set V := c′(t), Ṽ := c̃′(s) = c′(s(t))s′(t). Then

∇Ṽ Ṽ = s′(t)2∇V V + s′(t)s′′(t)V = s′(t)s′′(t)V
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so ∇Ṽ Ṽ = 0 if and only if s′s′′ = 0, which is equivalent to (s′)2 constant, thus s(t) affine.

2.3. The Gauss-Bonnet theorem. Few results in mathematics are more beautiful than the
Gauss-Bonnet theorem. This result could well be considered one of the cornerstones of modern
mathematics. Its attraction lies in its complexity – it marries in an unprecedented way Analysis,
Geometry and Topology – yet its statement shines in deceptive simplicity:

THEOREM 2.5. Let (S, h) be an orientable closed surface with a Riemannian metric, κ the
Gaussian curvature function and µh the volume form of h. Then∫

S

κµh = 2πχ(S)

where χ(S) is the Euler characteristic of S, also given by χ(S) = 2 − 2g where g is the genus
(or the number of handles) of S.

PROOF. For the sphere S2 with the standard metric, we compute directly that the Gaussian
curvature equals 1, thus, since the area of the sphere is 4π and the Euler characteristic is 2, we
check the Gauss-Bonnet theorem in this case.
For the torus with the standard flat metric (or any flat metric), the curvature and the Euler charac-
teristic are both 0. Together with Proposition 2.6, we have therefore proved the theorem in genus
0 and 1.

PROPOSITION 2.6. The integral
∫
S
κµg is independent of the metric g.

PROOF. The tangent bundle is a complex line bundle, the complex structure being the rota-
tion by angle π/2 in the positive direction. The Levi-Civita connection preserves this complex
structure in the sense that [∇, J ] = 0, in other words

∇X(JV ) = J∇XV

for all vector fields X, V . It follows that ∇ is a connexion on the complex bundle TM . By
definition, its curvature is the same as the Riemannian curvature:

RC
XYZ = RXYZ

for all vectors X, Y, Z. From the known skew-symmetry relation 〈RXYZ,W 〉 = −〈RXYW,Z〉,
we deduce that RXY is a real multiple of the endomorphism J . We can compute the coefficient
from the definition of Gaussian curvature using an orthonormal positively oriented frame (X, Y ):
RXY Y = κX , therefore RXY = −κJ or equivalently the curvature is simply R = −κµ ⊗ J .
Therefore the curvature of the complex bundle TS is

RC = −iκµ.
We are therefore trying to prove that

∫
S
RC is independent of the metric.

We prove more generally

LEMMA 2.7. Let E → S be a complex line bundle and ∇t a family of connections. Then the
curvature forms Rt differ by exact forms.
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The curvature 2-form R is called the first Chern form of E, it is always closed even in dimen-
sions higher than 2, and its cohomology class (which by the above lemma is independent of the
connection) is 2π times the so-called first Chern class of E.

PROOF. We will prove that ∂tRt is exact, then by integration in t we get the desired result.
Let Uj be a finite open cover of S by chart domains and φj : E|Uj → C× Uj local trivializations
of E. In each trivialization write∇t = d+αtj for some complex-valued 1-forms αtj defined over
Uj . The curvature can be computed locally by Rt = dαtj so over Uj ,

(2.4) ∂tR
t = d(∂tα

t
j).

Let φij := φi ◦ φ−1
j : Uj ∩ Ui → C∗ be a change of trivialization. We have

αti = αtj + φ−1
ij dφij

and we notice that the correction term φ−1
ij dφij is independent of t, so

∂tα
t
i = ∂tα

t
j.

This defines therefore a 1-form α̇ on S. By (2.4), ∂tRt = d(α̇) is exact. �

Take g0, g1 two metrics on S. Then the family of tensors gt := (1 − t)g0 + tg1, t ∈ [0, 1] is
made of symmetric, positive definite bilinear forms, hence gt is a Riemannian metric for all t,
interpolating smoothly between g0 and g1. They give rise to a family of connections on TS,
however as complex bundles, the bundle TS with the complex structure Jt changes with t. To
address this problem, consider the bundle TS → S × [0, 1] with complex structure over S × {t}
given by Jt. By homotopy invariance, this bundle is isomorphic as complex line bundles to the
“constant” bundle TM → S × [0, 1] with complex structure J0 at each time t. Let ∇̃t denote
the pull-back of∇t via this isomorphism. We are now in the setting of Lemma 2.7, therefore the
complex curvature forms R̃0 and R̃1 differ by an exact form. By Stokes’s theorem the integral
on a closed surface S of an exact form vanishes. Thus∫

S

R0 =

∫
S

R1.

Together with the identity Rt = −iκ(gt)µt⊗ Jt we conclude the invariance of the Gauss-Bonnet
integral. �

Using this proposition, we can prove the Gauss-Bonnet formula in higher genus as follows1:
take a torus embedded in R3 and squeeze it between two parallel planes, so that it acquires two
flat regions U+, U−, one exterior curved region E and one interior region I . By removing I and
replacing it with flat continuations of U± we get a sphere with two flat regions V ± and the curved
exterior region E. Since the curvature of V ± vanishes, we have∫

E

κµ =

∫
S2

κµ = 4π.

1This proof used to be taught by Professor Kostake Teleman to second year students at the University of
Bucharest in the 1990’s
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This implies, in view of the direct treatment of the torus case, that

(2.5)
∫
I

κµ =

∫
T 2

κµ−
∫
E

κµ = −4π.

Now take the sphere obtained from E and V ± and expand it in the horizontal direction by a large
constant (i.e., apply to it the linear isomorphism of R3 given by (z, x3) 7→ (Cz, x3) for a large
constant C). We still have

∫
E′
κµ = 4π by the same argument as above. In the resulting sphere,

which now has two large flat regions, glue back g copies of the inner region I , where g is any
genus. We get in this way a surface of genus g (together with a Riemannian metric) with one
exterior region E ′, g inner regions isometric to E and some flat regions.
By (2.5), each of the g inner regions in S contribute −4π towards the Gauss-Bonnet integrand.
The exterior region E ′ contributes by 4π thus in all,∫

S

κµ = g

∫
I

κµ+

∫
E′
κµ = 4πg − 4π = 2π(2− 2g). �

2.4. Isometries of H2. Let PSL2(R) be the group from Example 2.4. We claim that it acts
by isometries on H2. For this, we remark that

gH =
<(|dz|2)

=(z)2

where |dz2| = dz ⊗ dz. Therefore, if we take PSL2(R) 3 γ =

[
a b
c d

]
and we set w = γz, we

have

γ∗|dz2| = |dw|2 =

∣∣∣∣(cz + d)adz − (az + b)cdz

(cz + d)2

∣∣∣∣2 =

∣∣∣∣ dz

(cz + d)2

∣∣∣∣2 =
|dz|2

|cz + d|4
,

γ∗=(z)2 =

(
y

|cz + d|2

)2

from which we deduce γ∗gH = gH .
Another space isometric to H2 is B2, the unit ball in C, with metric

(2.6) gB =
4<(|dz|2

(1− |z|2)2
.

As above, one proves that the map

H2 3 z 7→ w =
z − i
z + i

∈ B2, z =
i(1− w)

1 + w

is an isometry. It is clearly bijective and bi-holomorphic. It is tautological that the group

γ0PSL2(R)γ−1
0 ⊂ PSL2C, where γ0 =

[
1 −i
1 i

]
∈ GL2(C), acts by holomorphic automor-

phisms on B2, which are also isometries.

THEOREM 2.8. The group of orientation-preserving isometries of (H2, gH) is the same as the
group of bi-holomorphic isomorphisms of H2 ⊂ C, and is given by the group PSL2(R).
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PROOF. From Lemma 7.3, every orientation preserving isometry is also holomorphic. We
claim that every bi-holomorphic map is given by a Möbius transformation (i.e., an element of
PSL2(R)) which is known to act as an isometry. To prove this, we use the ball model B2 of
the hyperbolic plane. Take any automorphism Φ of B2 and set w0 = Φ(0). There exists an
automorphism a ∈ G := γ0PSL2(R)γ−1

0 of B2 which takes 0 onto w0, thus f := a−1Φ fixes 0.
Thus f : B2 → B2 is a holomorphic function vanishing at 0, it follows that g : z) := f(z)

z
is

also holomorphic, and from the maximum principle it takes values in B2. In particular, we have
|f ′(0)| ≥ 1 since f ′(0) = g(0). Since the same reasoning applies to the inverse function f−1 we
get |f ′(0)| = 1 and by the equality case in the maximum principle for g we get that g is constant
of absolute value 1, which means that f is a rotation, in particular an isometry. �

Let Γ be a discrete subgroup in PSL2(R). Assuming that Γ acts properly discontinuously, the
quotient S := Γ\H2 is a surface. Since the action is by smooth maps, the surface S is smooth.
Since the action preserves the metric and the holomorphic structure, the quotient inherits a Rie-
mannian metric of Gaussian curvature −1 (which is called a hyperbolic metric) as well as a
structure of holomorphic surface.

2.5. Exercises.

EXERCISE 2.9. Show, using the definition of a connection, that the map R : V(S)3 → V(S)
defined in (1.4) is C∞(S)-linear in each of the three factors.

EXERCISE 2.10. Show that the distance function on a surface with Riemannian metric satisfies
the triangle inequality.

EXERCISE 2.11. Let Φ : E → E ′ be an isomorphism between two K vector bundles over S (K =
C or R), ∇′ a connection on E ′ and ∇ its pull-back on E via Φ, i.e., ∇Xψ := Φ−1(∇′XΦ(ψ)).
Show that the curvature tensors satisfy

R = Φ−1R′Φ.

In particular, if E,E ′ are K-line bundles, then

R = R′ ∈ C∞(S,Λ2(S))

after the canonical identifications End(E) = End(E ′) = K.

EXERCISE 2.12. Prove that the image of vertical lines through an isometry γ ∈ PSL2(R) is
geometrically a half-circle with center on the real line.

3. Hyperbolic quotients

We will show that every complete orientable hyperbolic surface is a quotient of H2 by some
discrete subgroup of PSL2(R). For this, we need some additional topological and geometric
notions.
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3.1. The universal cover. The universal cover of a connected surface S is a simply-
connected surface S̃ defined as follows: Fix a base point p ∈ S and consider all the paths
starting from p. Then S̃ is the set of homotopy classes of such paths relative to the end points.
A base of neighborhoods of a class [γ] is defined by considering charts φU : U → R2 with
γ(1) ∈ U ; we define VU([γ]) as the set of those [δ] for which δ(1) ∈ U , and such that γ is
homotopic to δ relative to 0 and U in the sense that there exists a homotopy F : I × I → S with
F (s, 0) = p and F (s, 1) ∈ U , ∀s ∈ I . We will leave to the exercises the proof of the fact that
S̃ is a simply-connected surface which covers S, and that S̃ is complete if S is complete. The
projection

S̃ → S, [γ] 7→ γ(1)

is a smooth map which is a local diffeomorphism.
Assume that a compact (or more generally, complete) surface S has a hyperbolic metric. Take S̃
to be the universal cover of S and pull back the metric through the covering map to a hyperbolic
metric on the simply connected, complete surface X̃ , which will turn out to be isometric to H2.

3.2. Jacobi fields and comparison theorems. We claim that up to isometry there exists
precisely one simply connected, complete hyperbolic surface (which can be identified with both
B2 and H2). Here completeness means that every geodesic can be extended for arbitrary positive
and negative time. From Lemma 2.3, on every surface S endowed with a Riemannian metric
there exists a map called geodesic flow from a neighborhood of {0} × T S ⊂ R × TS into S,
defined by (t, v) 7→ γv(t), where γv is the unique geodesic starting in the direction of v. The fact
that S is complete can be restated as saying that the geodesic flow is well-defined for all times t.
The exponential map at a point p ∈ S is then defined by

TpS → S, expp(v) := γv(1).

EXAMPLE 3.1. Let S be the Euclidean space R2, then the exponential map is the identity. If S
is a torus S = Γ\R2, the exponential map is the covering map R2 → Γ\R2.

LEMMA 3.2. For every point z ∈ H2, the exponential map expz : R2 → H2 is a diffeomorphism.

PROOF. Since exp clearly commutes with isometries, we can check the statement on the
disk model of the hyperbolic plane, with z = 0. Then it is an easy computation that exp0(v) =

f(|v|)v, for f(r) = tanh(r/2)
r

. The function f is even in r, thus f(|v|) is smooth including at
v = 0, and φ is a smooth homeomorphism, hence a diffeomorphism. �

We claim that the exponential map sends lines through 0 ∈ TpS (parametrized with constant
speed) into geodesics. Indeed, we first note that the geodesics through p are scale-invariant in
the following sense:

γtv(s) = γv(ts).

This holds because both curves are geodesic (the right-hand side is a linear rescaling of a geo-
desic hence a geodesic itself) and their initial tangent vector at s = 0 equals tv. It follows that
expp(tv) = γtv(1) = γv(t) runs along the geodesic γv.
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Using the exponential map, we can construct near each point a distinguished chart from the
Riemannian metric, using the exponential map.

LEMMA 3.3. The differential D(expp)p : TpS → TpS is the identity map.

PROOF. Immediate from the definition of the exponential and of the differential. If c :
[0, 1] → TpS is a curve through p with ċ(0) = v, then D(expp)p(v) is by definition the vec-
tor tangent to the curve expp(c(t)). Fix v ∈ TpS and take c(t) := tV , then expp(tv) = γv(t)
where γv is the unique geodesic starting at p in the direction of v. Since the tangent vector at
t = 0 to this geodesic is v, it follows that D(expp)p acts as the identity. �

Therefore the exponential map expp remains non-degenerate in a neighborhood of p, hence it
is the inverse of a chart. By taking an isometry of TpS with R2, we get the so-called normal
coordinates on S near p.

LEMMA 3.4. In normal geodesic coordinates (x1, x2), the following identities hold at p:

∇∂xi
∂xj(p) = 0, ∂xi(gjk)(p) = 0.

We stress that this vanishing occurs only at p, otherwise we would get zero curvature.

PROOF. Take a1, a2 ∈ R and define v := (a1, a2) ∈ TpS. Set V to be the vector field tangent
to the geodesic γv, we can write it as V(ta1,ta2) = a1∂x1 + a2∂x2 . By expanding∇V V = 0 we get

2∑
i,j=1

aiaj∇∂xi
∂xj = 0,

valid along the geodesic γv, so in particular at p. The coefficients a1, a2 are arbitrary and
∇∂x1

∂x2 = ∇∂x2
∂x1 (valid for coordinate vector fields) so we get the first statement. The second

one is a consequence:

∂xi(gjk) = ∂xi〈∂xj , ∂xk〉 = 〈∇∂xi
∂xj , ∂xk〉+ 〈∂xj ,∇∂xi

∂xk〉
and the right-hand side vanishes at p. �

LEMMA 3.5. Let X1, X2 be an orthonormal frame in p. Extend X1, X2 by parallel transport
along geodesic rays starting from p. Then [X1, X2]p = 0 and∇XiXj = 0, for all i, j ∈ {1, 2}.

PROOF. Since X1 agrees with ∂x1 at p, and they are both parallel along the x1-geodesic
γ1, it follows that X1 agrees with ∂x1 along γ1. By definition, the covariant derivative of Xj

with respect to ∂x1 vanishes along γ1. In particular, at p we have ∇X1Xj = 0. The identity
[X1, X2] = ∇X1X2 −∇X2X1 completes the proof. �

THEOREM 3.6. Let S be a geodesically complete, simply connected hyperbolic surface. Choose
a vector-space isometry φ between T0B2 and TpS. Then Φ := expp ◦φ ◦ exp−1

0 is an isometry.

PROOF. First we prove that Φ is a local isometry, using Jacobi fields. Then for topological
reasons, Φ must be injective, thus it is a diffeomorphism. �

In order to check that a surface is geodesically complete, we mention the following results:
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THEOREM 3.7. The topology on a Riemannian manifold is the same as the topology given by the
distance function. A Riemannian manifold is geodesically complete if and only if it is complete
as a metric space, i.e., every Cauchy sequence is convergent.

In particular, compact surfaces are geodesically complete.
Two metrics g, g′ on S are called quasi-isomorphic if there exists C > 0 such that for every
p ∈ S and v ∈ TpS, we have

C−1‖v‖g ≤ ‖v‖g′ ≤ C‖v‖g.

COROLLARY 3.8. Let g be a geodesically complete metric on S, and g′ a quasi-isometric metric.
Then g′ is also geodesically complete.

3.3. Classification of complete hyperbolic surfaces.

THEOREM 3.9. Every complete connected hyperbolic surface is isometric to a quotient of H2 by
a discrete subgroup of PSL2(R) isomorphic to π1(S).

PROOF. The pull-back through the local diffeomorphism π : S̃ → S of the metric on S
is a Riemannian metric on S̃. Since Gaussian curvature is a local quantity, it follows that S̃ is
also a hyperbolic surface. From Theorem 3.6, every two simply connected hyperbolic surfaces
are isometric, thus S̃ is isometric to H2. The group D(S̃, π) of deck transformations, i.e., those
diffeomorphisms Φ : S̃ → S̃ which satisfy π ◦ Φ = π, is isomorphic to π1(S). But it is evident
that S = S̃/D(S̃, π). �

3.4. Exercises.

EXERCISE 3.10. Prove that the conjugate group γ0PSL2(R)γ−1
0 ⊂ PSL2(C), where γ0 =[

1 −i
1 i

]
∈ GL2(C), is precisely

G = {z 7→ az + b

bz + a
; a, b ∈ C, |a|2 − |b|2 = 1}.

EXERCISE 3.11. Prove that S̃ constructed in the proof of Theorem 3.9 is a surface and the map
[γ] 7→ γ(1) is a covering map. If S is smooth (or holomorphic) then S̃ has a canonical smooth
(respectively holomorphic) structure.

4. Uniformization

So far we have described hyperbolic surfaces as metric quotients of the hyperbolic plane. In this
section we will show that topologically, every surface of genus g ≥ 2 can be realized as such a
quotient. The tool for this will be the uniformization theorem 4.3. We will need smooth structures
and Riemannian metrics, let therefore (S, g) be a compact orientable smooth surface together
with a fixed Riemannian metric. We first compute the behaviour of Gaussian curvature under
conformal change. Let us recall for this purpose the definition of the Laplacian in Riemannian
setting.
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The space C∞c (S,C) has a pre-Hilbert structure, i.e., a scalar product for which the induced
topology is not complete. This scalar product is defined using the Riemannian metric g by the
L2 product:

〈f, f ′〉L2 :=

∫
S

ff ′µg,

where µg is the volume form associated to the metric g. In local coordinates, µg =
det(gij)

1/2dx ∧ dy, where (gij) is the 2× 2 matrix of the metric g in the basis ∂x, ∂y.
Similarly we define an L2 product on 1-forms. We first note that g induces an isomorphism
between TS and T ∗S by the correspondence V 7→ g(V, ·). Thus g is also, using this correspon-
dence, a metric on the bundle T ∗S. For 1-forms α, α′ we set

〈α, α′〉L2 :=

∫
S

g(α, α′)µg.

Recall the de Rham differential d : C∞(S)→ C∞(S, T ∗S). The operator d∗ (sometimes denoted
δ) is the adjoint of d with respect to the scalar products on functions and on 1-forms: the identity

〈d∗α, f〉 = 〈α, df〉

defines uniquely d∗. The Laplacian is defined by

∆ := d∗d : C∞(S)→ C∞(S).

As an illustration, let us compute the Laplacian for two particular cases. First, let S be R2 with
the flat metric. The length of the basic 1-forms dx, dy is 1 at every point. Then for f ∈ C∞(R2)
and α = adx + bdy ∈ C∞(R2,Λ1) with one of them of compact support, we compute using
integration by parts

〈df, α〉 =〈∂xfdx+ ∂yfdy, adx+ bdy〉

=

∫ 2

R
(∂xfa+ ∂yfb)dxdy

=−
∫ 2

R
(f∂xa+ f∂xb)dxdy

=〈f,−∂xa− ∂yb〉

so we deduce d∗α = −∂xa− ∂yb. The Euclidean Laplacian is therefore given by

∆R2

f = −(∂2
x + ∂2

y)f.
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Let us now compute the hyperbolic Laplacian in the H2 model. The volume form is y−2dxdy,
while |dx| = |dy| = y (i.e., the length of the 1-forms dx, dy at (x, y) equals y). Therefore,

〈df, α〉 = 〈∂xfdx+ ∂yfdy, adx+ bdy〉

=

∫ 2

R
(y2∂xfa+ y2∂yfb)y

−2dxdy

=−
∫ 2

R
(f∂xa+ f∂xb)dxdy

=−
∫ 2

R
y2(f∂xa+ f∂xb)y

−2dxdy

= 〈f,−y2(∂xa+ ∂yb)〉.

The hyperbolic co-differential is thus given by d∗α = −y2(∂xa + ∂yb), while the Laplacian
equals

(4.1) ∆H2

f = −y2(∂2
x + ∂2

y)f.

There is nothing special about the function y = =(z) in the above computation. Exactly in the
same way we obtain

LEMMA 4.1. Let g, g′ := e−2fg be two conformal metrics on a surface S. Then

∆g′ = e2f∆g.

Note however that in higher dimensions the formula is no longer valid. In local coordinates, we
can compute from the definition

∆f = − 1√
det(g)

n∑
i,j=1

∂xi(
√

det(g)gij∂xj)f,

where g = (gij)i,j=1,...,n ∈ GLn(R) is coefficient matrix for the metric in the basis ∂xi , i.e.,
gij = g(∂xi , ∂xj), and gij are the coefficients of the inverse matrix g−1. The case n = 2 is special
because then

√
det(g′)g′ij =

√
det(g)gij for any conformal change g′ = e−2fg.

As a consequence of lemma 3.4 and this formula, in geodesic normal coordinates at p we have

∆f(p) = −(∂2
x1

+ ∂2
x2

)f(p).

We stress again that such a formula is only valid at the origin of the normal geodesic coordinates.

LEMMA 4.2. For f ∈ C∞(S), define g′ := e−2fg. The Gaussian curvature functions κ, κ′ are
related by

κ′ = e2f (κ−∆f).

PROOF. Let ∇, ∇′ be the Levi-Civita connections associated to g, g′. Fix arbitrary vector
fields X, Y, Z on S. Using (1.3), we obtain

2〈∇′XY, Z〉g′ =2e−2f (〈∇XY, Z〉g −X(f)〈Y, Z〉g −Y (f)〈X,Z〉g + Z(f)〈X, Y 〉g) ,
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which implies (since Z was arbitrary)

(4.2) ∇′XY = ∇XY −X(f)Y − Y (f)X + 〈X, Y 〉∇(f).

It is enough to prove the Lemma at an arbitrary point p. Choose geodesic normal coordinates
around p, and let X1, X2 be the orthonormal frame introduced in Lemma 3.5. From (4.2),

∇′X2
X2(p) =∇X2X2 − 2X2(f)X2 +∇(f),

∇′X1
X2(p) =∇X1X2 −X1(f)X2 −X2(f)X1.

Recall from Lemma 3.4 that at p we have [Xi, Xj] = ∇XiXj = 0. By ignoring the terms which
vanish at p we compute

∇′X1
∇′X2

X2 ≡∇X1∇X2X2 − 2X1X2(f)X2 +∇X1∇(f)

+ 2X1(f)X2(f)X2 −X1(f)∇(f)

+ 2X2(f)2X1 − |∇(f)|2X1 +X1(f)∇(f),

∇′X2
∇′X1

X2 ≡∇X2∇X1X2 −X2X1(f)X2 −X2
2 (f)X1

+X2(f)X1(f)X2 +X2(f)2X1 + 2X1(f)X2(f)X2 −X1(f)∇(f)

From this, we deduce that modulo terms vanishing at p

〈R′X1X2
X2, X1〉g =〈RX1X2X2, X1〉g +X2

1 (f) +X2
2 (f) + Ip,

hence since ∆ = −(X2
1 +X2

2 ),

〈R′X1X2
X2, X1〉g′ =e−2f (κg −∆f).

This identity is only valid at p, which however was arbitrary. The proof is finished by noting
that the orthogonal frame X1, X2 for g′ is made of vectors of g′-length equal to e−f , hence
κ′ = e4f〈R′X1X2

X2, X1〉g′ . �

We come now to one of our main theorems about surfaces - the uniformization theorem. It essen-
tially says that conformal structures on orientable surfaces admit a distinguished representative
of constant curvature, of the sign of the Euler characteristic of the surface.

THEOREM 4.3. Let S be an orientable closed surface of genus g together with a Riemannian
metric h. Then

(1) If g = 0, there exists f ∈ C∞(S) (not unique) such that S with the metric e−2fh is
isometric with the standard unit sphere.

(2) If g = 1, there exists f ∈ C∞(S) with e−2fh flat, and f is unique up to an additive
constant.

(3) If g ≥ 2, there exists a unique f ∈ C∞(S) with e−2fh hyperbolic.

Before proving the theorem, let us examine some of its consequences.
The third part, together with Theorem 7.2, says that almost complex structures are in bijection
with hyperbolic structures for genus ≥ 2, and with flat structures of volume 1 in genus 1.
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COROLLARY 4.4. Let S be a closed orientable surface of genus g ≥ 2 endowed with a confor-
mal structure, or equivalently with an almost complex structure J . Then there exists a discrete
subgroup Γ ⊂ PSL2(R), unique up to conjugation in PSL2(R), and a conformal diffeomorphism
Γ\PSL2(R)→ S.

PROOF. This follows immediately from the uniformization theorem and Theorem 3.9. �

In particular, J is integrable because the deck transformations group Γ acts by holomorphic
automorphisms of H2. The second part of the uniformization theorem allows us to show below
that on every orientable conformal surface (i.e., not necessarily compact) the induced almost
complex structure is integrable. This follows as a particular case from the Newlander-Nirenberg
theorem valid in higher dimensions, but here we get it essentially for free.

COROLLARY 4.5. Let S be an orientable surface endowed with a conformal structure. Then the
associated almost complex structure J is integrable, i.e., S admits a holomorphic atlas so that
for each chart (x, y) in the atlas, J∂x = ∂y.

PROOF. We start by a trivial remark. Pick a metric h in the fixed conformal class on S.

LEMMA 4.6. For every point p ∈ S, there exists a neighborhood U 3 p, a metric h′ on the torus
T2 and an isometry from (U, h) to an open subset U ′ ⊂ T2 endowed with the metric h′.

PROOF. Choose p′ ∈ T2, and charts around p, p′, namely φ : V → R2, φ′ : V ′ → R2. Define
Φ := φ′−1 ◦ φ : V → V ′. Choose a relatively compact open neighborhood U ′ of p′ in V ′ and a
partition of unity ψ1, ψ2 on T2 relative to the open cover {V ′,T2 \ U ′}. Choose any Riemannian
metric h2 (e.g. the standard metric) on T2 \ U ′, and over V ′ take h1 := Φ∗h, the direct image
of h through the diffeomorphism Φ. Then ψ1h1 + ψ2h2 =: h′ is a Riemannian metric on T2

which agrees with h1 over U ′. This means that Φ is an isometry from (U := Φ−1(U ′), h) onto
(U ′, h′). �

From the uniformization theorem, h′ is conformally flat, which by the above lemma implies that
h was locally conformally flat. A flat metric is locally isometric to R2 with its standard metric.
For each point p in S take a function fp defined near p such that e−2fh is flat in a neighborhood
U 3 p, and choose a positively oriented isometry from a possibly smaller neighborhood W 3 p
onto an open subset of R2, say φp : W → W ′. Clearly when p varies, these isometries provide a
topological atlas for S. Since φp is an isometry relative to the metric e−2fh, it follows that it is
conformal relative to h. Thus the atlas consists of conformal maps, it follows that the changes of
charts are also conformal maps between subsets of R2. By Lemma 7.3, oriented conformal maps
between subsets of C are holomorphic, thus we have constructed a holomorphic atlas. �

Note that here we have used only the genus 1 part of the uniformization theorem, which is
considerably simpler to prove than the other two cases, see section 5.1.

4.1. Exercises.
EXERCISE 4.7. Show that if {Ui}i∈I is an open cover of a surface S, {ψi} are a partition of unity
and hi are Riemannian metrics on Ui, then h :=

∑
i∈I ψihi defines a Riemannian metric on S.
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5. Proof of the uniformization theorem

It may look surprising that the genus, a topological quantity, matters in the analytic statement of
the uniformization theorem. The explanation lies in the Gauss-Bonnet formula (Theorem 2.5).

REMARK 5.1. Let (S, h) be a closed oriented surface of genus g with Riemannian metric h. If g
has constant Gaussian curvature, then its sign equals the sign of χ(S) = 2− 2g.

5.1. The torus case. Let us start with the easiest case where the genus of S is 1. By Lemma
4.2, in order to uniformize the surface we would like to solve the equation

e2f (κ−∆f) = 0,

or equivalently

(5.1) ∆f = κ.

This is the Laplace equation, one of the most studied partial differential equations. To solve it,
consider a finite-dimensional analogy.

LEMMA 5.2. Let d : E → F be a linear map between two finite-dimensional vector spaces with
scalar product. Then the equation d∗dx = u has solutions if and only if u ⊥ ker(d), in which
case the solutions form an affine space modeled on ker(d).

Let us therefore first determine the space of harmonic functions on S.

LEMMA 5.3. Let (S, h) be an oriented, connected and closed Riemannian manifold. Then any
f ∈ C∞(S) which is harmonic (i.e., ∆f = 0) must be constant.

PROOF. Since ∆f = 0 we have 〈∆f, f〉 = 0. But

〈∆f, f〉 =〈d∗df, f〉 = ‖df‖2
L2

so df = 0. Locally, ∂xfdx + ∂yfdy = 0 which implies ∂xf = ∂yf = 0 so f is locally constant,
and since we implicitly assume S to be connected we see that f is constant on S. �

THEOREM 5.4. Let (S, h) be an oriented, connected and closed Riemannian manifold. The
Laplace equation ∆f = u has solutions if and only if the function u is orthogonal in L2-sense to
the kernel of ∆, i.e., if

∫
S
uνh = 0.

PROOF. One direction is clear, namely we see immediately that ∆f ⊥ 1:

(5.2) 〈∆u, 1〉L2 = 〈du, d1〉L2 = 0.

Notice that by definition, 〈∆u, 1〉L2 =
∫
S

∆fνh therefore we conclude that functions of the form
∆f must have zero mean. �

If f is a solution to (5.1) then f + c is also a solution, for all constant functions c. The existence
of solutions depends therefore on a “geometric” issue: is it true that on the torus T2 with metric
h we have

〈κ, 1〉L2(T2) =

∫
T2

κ(x)1µh(x) = 0?
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The reader who paid attention to the Gauss-Bonnet formula already knows the answer to be
always true because the Euler characteristic of the torus is 0. This settles the second statement of
Theorem 4.3.

5.2. The sphere case. Let h be any Riemannian metric on S2. Pick a point p, by Lemma
4.6 we know that h is conformally flat in a neighborhood of p. Up to a global conformal change,
we can therefore assume h to be flat in a neighborhood of p.
There exists an isometry from a neighborhood of p to a neighborhood of 0 ∈ C, given essentially
by the geodesic exponential map (see Theorem 3.6). Let U := S2 \ {p}. The curvature κh is of
course compactly supported in U , and by the Gauss-Bonnet theorem it satisfies∫

U

κhνh = 4π.

Let φ : U → (0,∞) be a smooth function which near p equals φ(z) = ‖z‖, where z is the
standard complex variable on C.

LEMMA 5.5. The function ∆h log φ vanishes near p, and its integral satisfies∫
U

∆h(log φ)νh = 2π.

PROOF. Let φ, φ′ be two strictly positive functions which equal ‖z‖ near z = 0. Then
log φ − log φ′ has compact support in U , so in particular it is smooth on S2. For every function
u ∈ C∞(S2) one has ∫

S2

∆uνh = 〈∆u, 1〉L2 = 〈du, d1〉L2 = 0,

so
∫
U

∆h(log φ)νh is independent of the choice of φ (i.e., of the smooth extension of ‖z‖ to the
whole S2). We pick a particular such extension, which is 1 outside the flat region of S2 around
0, so in particular φ(z) depends only on ‖z‖, it is identically 1 for ‖z‖ ≥ ε, and φ(z) = ‖z‖ for
‖z‖ ≤ ε/2. Clearly ∆ log φ = 0 on the region where φ is constant, it remains to evaluate the
contribution near z = 0. In polar coordinates, ∆ = −r−1∂rr∂r − r−2∂2

θ and φ = φ(r) so∫
‖z‖<ε

∆(log φ)rdrdθ = −2π

∫ ε

0

∂rr∂r log φ(r)dr = −2π(r∂r log φ)|εε/2 = 2π. �

Let φ be any function as in Lemma 5.5. Then ∆ log φ has compact support in U , and∫
U

(κh − 2∆ log φ)νh = 4π − 2 · 2π = 0.

By theorem 5.4, there exists a smooth function f0 ∈ C∞(S2), unique up to a constant, such that
∆hf0 = κh− 2∆h log φ. Setting f := f0 + 2 log φ, we have by Lemma 4.2 that the metric e−2fh
is flat on U . Notice that e−2fh is not defined at p because of the singularity introduced by the
conformal factor e−2logφ = r−4 near p.
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Near z = 0 the metric e−2fh is just e−2f0φ(r)−2(dr2 + r2dθ2). Note that f0 has a finite limit at
r = 0, which we could assume to be 0 since we may subtract from f0 an arbitrary constant. Set
R := 1/r, then e−2fh = e−2f0(dR2 +R2dθ2) as R→∞, where limR→∞ e

−2f0(R,θ) = 1.
We observe that the flat metric e−2fh is complete on the simply connected set U . Indeed, we
have seen above that it is quasi-isometric to the standard metric on C, so Corollary 3.8 applies. It
follows by Theorem 3.6 that (U, e−2fh) is isometric to C with its standard metric. In particular,
(U, h) is bi-holomorphic to C by some map Φ, uniquely defined up to an isometry of C.
Consider now the holomorphic map Φ from U ⊂ S to C ⊂ CP 1 as a singular map from S
to CP 1. In holomorphic charts near p, respectively near ∞, this map is bounded, hence its
singularity is removable. By the same argument, the singularity of Φ−1 is removable. It follows
that Φ extends to a bi-holomorphism of S onto CP 1. Since Φ is holomorphic, hence conformal
from h to the standard metric g0 on CP 1, it follows that Φ∗g0 is a metric of curvature 1 conformal
to h.

5.2.1. The set of conformal metrics of curvature 1. We conclude that every metric h on S2

is conformal to a metric of curvature 1, so there exists f ∈ C∞(S2) with κe2fh = 1. By Theorem
3.6, the metric e2fh is isometric by a map Φf to the standard metric on S2. We would like to
understand how many such f exist. Let f, f ′ be two such conformal factors and Φf ,Φf ′ such
that

Φ∗fg0 = e2fh, Φ∗f ′g0 = e2f ′h.

It follows that ΦfΦ
−1
f ′ =: γ is a conformal transformation of the standard sphere, i.e., a Möbius

transformation (sometimes also called projective transformation)in PSL2C. Conversely, every
γ ∈ PSL2C has the property that γΦf is a conformal map from S to S2.
Some homographies act as isometries on S2. The isometry group of S2 is SO(3), which we view
therefore as a subgroup in PSL2C. It is obvious that γΦf induces the same conformal factor (i.e.,
f = f ′) if and only if γ ∈ SO(3). It follows that the set of conformal metrics of curvature 1 in a
given conformal class is in bijection with the homogeneous space SO(3)\PSL2C.

5.3. The case of genus g ≥ 2. Here we must solve the equation

e2f (κ−∆f) = −1,

or equivalently

(5.3) ∆f − κ− e−2f = 0.

Consider the functional E : C∞(S)→ R given by

E(f) :=

∫
S

(1
2
‖df‖2 − κf + 1

2
e−2f )µh.

Assume that f is a point where E attains its minimum. Then for every φ ∈ C∞(S), the function

Eφ : R→ R, Eφ(t) := E(f + tφ))
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attains its minimum at t = 0, therefore E ′φ(0) = 0. We can compute E ′φ(0) as follows:

E ′φ(0) =

∫
S

(1
2
(〈dφ, df〉+ 〈df, dφ〉)− κφ− φe−2f )µh

=〈∆f − κ− e−2f , φ〉L2(S).

Since φ was arbitrary, it follows that a minimum point for E (or more generally, a critical point)
is a solution for (5.3) because the set of smooth φ ∈ C∞(S) is dense in L2(S).
It remains to show (and this is the main part of the proof) that E does attain its minimum. Let

f 0 :=
1

Vol(S)

∫
S

fµh ∈ R, f⊥ := f − f 0

be the orthogonal decomposition of f into its zero-mode f 0 (i.e., the constant component, or
equivalently the component along the kernel of ∆) and its component in the range of ∆. Notice
that by definition the average of f⊥ over S is 0, i.e.,

(5.4)
∫
S

f⊥µh = 0.

LEMMA 5.6. The functional E is bounded from below.

PROOF. Decompose E(f) into

E(f) =

∫
S

(1
2
‖df⊥‖2 − κf⊥)µh +

∫
S

(−κf 0 + 1
2
e−2f )µh

=:E1(f⊥) + E2(f)

(notice that df = df⊥). The second term E2(f) can be bounded from below using the inequality
ex ≥ 1 + x, valid for all x ∈ R (and proved most easily on the graph):∫

S

e−2fµh = e−2f0

∫
S

e−2f⊥µh ≥ e−2f0

∫
S

(1− 2f⊥)µh = e−2f0

Vol(S),

where in the last equality we used (5.4). Using Gauss-Bonnet,∫
S

(−κf 0 + 1
2
e−2f )µh = 2π(2g − 2)f 0 + 1

2

∫
S

e−2fµh ≥ 2π(2g − 2)f 0 + e−2f0 Vol(S)
2

.

Both constants 2g − 2 and Vol(S)
2

are strictly positive, thus when f 0 is negative, the exponential
will dominate (2g − 2)f 0. It follows that

E2(f) ≥ C1

for some constant C1, as claimed.
The first term E1(f⊥) is rather obviously bounded from below; here is a quick argument: De-
compose f⊥ in an orthonormal basis (for the L2 inner product) of eigenfunctions of ∆ of positive
eigenvalue:

f⊥ =
∞∑
j=1

ajφj,
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where ∆φj = λjφj and 0 < λj ↗∞ as j →∞. Notice that∫
S

‖df⊥‖2µf = 〈df⊥, df⊥〉L2 = 〈∆f⊥, f⊥〉 =
∞∑
j=1

a2
jλj.

On the other hand, by the Cauchy-Bunyakovsky-Schwartz inequality,∣∣∣∣∫
S

−κf⊥µh
∣∣∣∣ ≤ (∫

S

κ2µh

∫
S

|f⊥|2µh
) 1

2

= C2

(
∞∑
j=1

a2
j

) 1
2

= C2‖f⊥‖L2 .

It follows that

E1(f⊥) ≥
∞∑
j=1

a2
jλj − C2

(
∞∑
j=1

a2
j

) 1
2

≥ λ1‖f⊥‖2
L2 − C2‖f⊥‖L2 ≥ − C

2
2

4λ1

,

where λ1 is the smallest non-zero eigenvalue of ∆. �

5.4. Existence of the minimum. Let now fn be a sequence of smooth functions such that
E(fn) converges towards the infimum. Up to choosing a subsequence, we can assume that the
sequences E1(f⊥n ) and E2(fn) both converge towards some finite limits.
For integer k ≥ 0, let us define the k-Sobolev scalar product on C∞(S): for k = 2m even,

〈u, v〉Hk = 〈∆mu,∆mv〉L2 + 〈u, v〉L2 ,

while for k = 2m+ 1 odd,

〈u, v〉Hk = 〈d∆mu, d∆mv〉L2 + 〈u, v〉L2 .

The k-th Sobolev space Hk(S) is defined as the completion of C∞(S) with respect to this inner
product. Using distributions, one can show that Hk(S) is the space of those L2 functions on S
such that ∆k/2f is in L2 (for even k), respectively such that d∆

k−1
2 f is in L2 as a 1-form, for k

odd. It is easy to see that a function f =
∑∞

j=0 ajφj is in Hk if and only if the sequence (λ
k/2
j aj)

is in l2.
We claim that we have the following “exponential Sobolev embedding”, to be proved later:

LEMMA 5.7. There exist constants α,C > 0 such that for every f ∈ C∞(S) with ‖f⊥‖2
H1 ≤ α,

we have

(5.5)
∫
S

ef
2

µg ≤ Ce(f0)2

.

where f = f 0 + f⊥ with f 0 constant, and f 0 ⊥ f⊥ in L2 sense.

Assuming this to be true, we deduce by using the standard inequality

2f⊥ ≤ α(f⊥)2 +
1

α
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that for every c there exists a constant C such that for ‖∇f‖L2 < c we have

(5.6)
∫
S

e2f⊥µ ≤ Ce‖∇f‖L2 .

Since E1(f⊥n ) is convergent, it must be bounded from above by some constant c1. This implies
that the sequence ‖∇f⊥n ‖L2 is bounded: indeed, if we set un := ‖∇f⊥n ‖L2 ≥

√
λ1‖f⊥n ‖L2 , then

u2
n = E1(f⊥n ) + 〈κ, f⊥n 〉L2 < c1 + ‖κ‖‖f⊥n ‖L2 < c1 +

‖κ‖
λ1

un,

implying that u2
n is uniformly bounded by c1 + ‖κ‖2

λ2
1

DEFINITION 5.8. Let H be a separable Hilbert space. A sequence {fn}n≥1 converges weakly to
f ∈ H , denoted fn ⇀ f , if for every g ∈ H we have

〈fn, g〉 → 〈f, g〉 as n→∞.

A weakly convergent sequence must be bounded.

LEMMA 5.9. (1) Every bounded sequence in H has a weakly convergent subsequence.
(2) Every weakly convergent sequence fn ⇀ f in the Sobolev space H2 converges to f as

a sequence in L2 in the usual sense.

Coming back to the minimizing sequence fn for the energy functional E, we have proved that it
must be bounded in H1 by some constant C. We deduce that there exists f⊥ ∈ H1(S) (the first
Sobolev space on S) so that, after choosing a subsequence,

f⊥n
H1

⇀ f⊥, f⊥n
L2

→ f⊥.

This implies that ef⊥n converges in L1 (and hence also in L2) to ef⊥ . Indeed, using the inequality

|ex − 1| ≤ |x|e|x|,
we get ∫

S

|egn − eg|µh ≤
∫
S

|gn − g|e|gn−g|µh ≤ ‖gn − g‖L2‖e|gn−g|‖L2 .

The first factor converges to 0 as n → ∞, while the second is uniformly bounded by (5.6),
proving that limE2(fn) = E2(f).
Regarding E1, we notice first that 〈gn, κ〉 → 〈g, κ〉. Next, we have

0 ≤ ‖dgn − dg‖2
L2 = ‖dgn‖2 − 2〈dgn, dg〉+ ‖dg‖2.

The middle term converges to−2‖dg‖2 since f⊥n
H1

⇀ f⊥. Thus ‖dg‖2 ≤ lim inf ‖dgn‖2, therefore
E1(g) ≤ lim inf E1(gn).
But fn was a minimizing sequence for E = E1 +E2, entailing that E(f) realizes the infimum of
E.
In turn, since E2(fn) is convergent, we deduce that the zero modes (fn)0 also converge to some
f 0.
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We have thus obtained a H1 function f which is a minimum of the functional E. It follows that
f is a weak solution for (5.3).
Inductively we deduce that f ∈ ∩k∈NH

k(S). Indeed, since ∆f ∈ L2, by elliptic regularity we
have f ∈ H2. This in turn implies e2f ∈ H1. Continuing in this way by a boot-strap argument,
f ∈ Hk implies f ∈ Hk+1. By the Sobolev injections, f is smooth. Thus the equation (5.3) has
a solution.

5.5. Uniqueness of the solution. By the existence part, we can work with a constant (−1)
curvature metric conformal to the initial metric, thus we assume κ = −1. Equation (5.3) becomes

∆f + 1 = e−2f .

We want to show that f satisfying the above equation must be identically 0. Since S is compact,
f attains its maximum and minimum, let p be a maximum point.

LEMMA 5.10. Let p ∈ S be a local maximum for a function f : S → R, where S is a surface
with a Riemannian metric. Then ∆f(p) ≥ 0.

PROOF. In dimension 1 we know that −f ′′(p) ≥ 0 if p is a local maximum. Here we choose
geodesic normal coordinates centered at p, so ∆f(p) = −∂2

xf(p)−∂2
yf(p). The point p is a local

maximum point for the coordinate curves passing through p so both components of ∆f(p) are
non-negative. �

By Lemma 5.10, ∆f(p) ≥ 0. This implies e−2f(p) ≥ 1 so −2f(p) ≥ 0 or in other words the
maximum of f is non-positive. By the same argument, the infimum of f is non-negative, which
implies that f is identically 0 as claimed.
Note that by other arguments, we show in Section 6.4 that there exists at most one complete
hyperbolic metric in each conformal class on any surface (not necessaryly compact).

5.6. Exercises. All Hilbert spaces below are assumed to be separable.

EXERCISE 5.11. Prove that a weakly convergent sequence in a Hilbert space must be bounded.

EXERCISE 5.12. Conversely, show that a bounded sequence in a Hilbert space has a weakly
convergent subsequence.

EXERCISE 5.13. Let λj, j ∈ N be an increasing sequence of strictly positive real numbers with
limit∞. Let l2 be the Hilbert space of square-summable sequences (xj)j∈N, xj ∈ R:

〈x, y〉l2 :=
∞∑
i=0

xiyj.

Define H1 as the subspace of those sequences x ∈ l2 such that (λjxj)j∈N is again in l2. Define a
scalar product on H1 by

〈x, y〉H1 :=
∞∑
i=0

λ2
ixiyj.
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Prove that the inclusion H1 ↪→ l2 is compact in the following sense: every bounded sequence in
H1 has a subsequence which is convergent (or equivalently, Cauchy) in l2.

6. Uniformisation revisited

Let us summarize the results derived in this notes about compact surfaces. We have shown first
that every compact orientable surface S is homeomorphic to a sphere with g handles attached, g
being the genus of S, linked to the Euler characteristic by the formula

χ(S) = 2g − 2.

Our proof used a triangulation for S. From any triangulation we constructed a smooth structure,
and with a little more effort even a complex structure.
We have then shown that a complex structure in an orientable real plane bundle is the same as a
conformal structure. Inside each conformal class over a torus we proved, by solving the Laplace
equation with the help of the Gauss-Bonnet formula, that there exist flat metrics, unique up to
a constant. Such metrics are locally isometric to R2. Since every metric on a surface is locally
isometric to a metric on a torus, the above argument gives us isothermal coordinates adapted
to a given conformal structure. This proves that every almost complex structure on a surface is
integrable.

6.1. Conformal structures on the sphere. The first statement of the uniformization theo-
rem, in genus 0, implies that any two smooth structures on a topological sphere differ by a diffeo-
morphism: indeed, pick Riemannian metrics, then we proved that there exists a conformal dif-
feomorphism between the two metrics. Nevertheless, in any given conformal class on the sphere
there exist many metrics of curvature 1, parametrized by the symmetric space SO(3)\PSL2C.
We are going to give a infinitesimal proof of this fact below, in the spirit of Teichmüller theory.

6.2. Moduli space of structures on the torus. Going back to the torus, we deduce that
every conformal class on T2 defines uniquely a complex structure. Moreover, inside the given
conforma class there exists a unique flat metric up to a homothety. By lifting the metric to
the universal cover S̃ and choosing an isometry of S̃ to R2, the conformal structure determines
therefore a rank-2 free discrete subgroup Γ in R2 modulo multiplication by constants in C∗.
Conversely, two flat metrics which give rise to subgroups which differ by a dilation in C∗ are
clearly conformal to each other. Thus the moduli space of complex structures on the torus modulo
diffeomorphisms can be identified with the space of free abelian subgroups of rank 2 in R2

modulo complex homotheties. The algebraic classification of these subgroups is quite simple:
the generator of smallest length can be made (by multiplying with a complex number in C∗) to
be 1, then the least non-real element belongs to the standard fundamental region of the modular
group PSL2(Z), so in conclusion the space of complex structures (or of conformal structures,
or of flat structures up to homothethy) modulo diffeomorphisms is in bijection with the modular
curve PSL2(Z)\H2. If we mod out only by isotopic diffeomorphisms (i.e., homotopic inside the
space of diffeomorphisms), we obtain the Teichmüller space T1 in genus 1, which is identified
with H2.
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6.3. Moduli space of higher genus. For surfaces of genus g ≥ 2, we showed that every
conformal class contains precisely one hyperbolic metric. The proof of this statement was more
difficult, since we had to solve a non-linear Laplace equation. Such a hyperbolic metric defines a
discrete co-compact subgroup Γ in PSL2(R), unique up to conjugation, such that S is isometric to
Γ\PSL2(R). Two hyperbolic metrics which yield conjugate co-compact subgroups in PSL2(R)
must be isometric. Thus conjugation classes of genus g co-compact subgroups in PSL2(R)
are in bijection with conformal classes of metrics on S modulo Diff(S), and also with the set
of complex structures on S modulo Diff(S). This set is called the moduli space of complex
structures on S, and it has a complex analytic structure.

6.4. Uniformisation of general surfaces. In this text we have focused on compact ori-
entable surfaces. A famous result, which took the second half of the 19th century to be com-
pleted, asserts that a connected, simply connected surface Σ with a fixed conformal class is
bi-holomorphic to one of the following surfaces:

• S2, if Σ is compact;
• H2, if there exist on Σ nonconstant bounded holomorphic functions;
• C, otherwise.

This theorem, attributed to Poincaré and Koebe (1907) implies in a rather easy way the uniformi-
sation of compact surfaces and much more: it allows us to uniformize every connected Riemann
surface by a complete metric of constant curvature.
The simply connected compact case is just case (1) of Theorem 4.3 in this text. Let S be a
connected non-compact Riemann surface. Then by the Poincaré-Koebe theorem its universal
cover S̃ is bi-holomorphic to either H2 or C. Assume that we are in the first case, i.e., S̃ = H2.
We obtain a representation of the fundamental group of S in the group of bi-holomorphisms of
H2 or C. By Theorem 2.8, every automorphism of H2 is an isometry for the hyperbolic metric.
Hence the deck transformation group acts by isometries, which means that the uniform metric
on the model space H2 descends to S! Since H2 is complet so are its quotients. In conclusion, S
admits a complete hyperbolic metric.
Assume now that S̃ is C. The automorphism group of C is given by affine transformations,
z 7→ az + b with a, b ∈ C, a 6= 0. As before, we obtain a representation of π1(S) in this group.
Moreover, the action of π1(S) must be free, and this means that in fact the image π1(S) lives
in the group of translations, z 7→ z + b which are isometries for the Euclidean metric on C.
Therefore, S inherits a flat complete metric.
We can actually describe all S in this latter case. A group of translations acts discretely if and
only if it is either trivial (then S = C), or infinite cyclic (then S is a cylinder) or is free abelian
with two generators, in which case S is a torus.

THEOREM 6.1. Let S be a non-compact Riemann surface. Then exactly one of the following
affirmations are true:

• There exists on S a complete hyperbolic metric;
• There exists on S a complete flat metric.
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In the first case, the metric is unique. In the second case, the metric is unique up to constant
dilations, and S is C or a cylinder.

PROOF. The existence is contained in the discussion above, essentially based on the
Poincaré-Koebe theorem. Assume that on a hyperbolic quotient Γ\H2 there exists another com-
plete hyperbolic metric g = e2fgS . Then by the comparison theorem 3.6, the lift of g to the
universal cover (H2, g̃) is isometric to (H2, gH2). Let Φ be an isometry, i.e., Φ is a diffeomor-
phism of H2 onto itself with Φ∗gH2 = g̃. In particular, Φ is a conformal map, since g̃ = e2f̃gH2

where f̃ is the lift of f . Theorem 2.8 implies that Φ is a hyperbolic isometry, so Φ∗gH2 = gH2 .
We see that f̃ = 0 and so f = 0, which entails uniqueness of the complete hyperbolic metric in
its conformal class.
If S is a quotient of the plane by translations, let as before g = e2fgS be another complete flat
metric in its conformal class. We can assume that S̃ is C with its standard metric gC. Then we
get an isometry Φ : (C, gC)→ (C, e2f̃gC). Since automorphisms of C are affine transformations,
we deduce that f̃ is constant and so f is also constant. �

Connected Riemann surfaces can therefore be classified in terms of their natural uniform metric
as follows:

• the sphere;
• the complex plane;
• cylinders, i.e., quotients of C by an infinite cyclic group of translations;
• flat tori;
• complete hyperbolic surfaces.

On the sphere, we have remarked that there is a family with 3 parameters of spherical metrics in
each conformal class. Over flat surfaces the complete flat metric is unique up to dilations; and in
the hyperbolic case, the complete hyperbolic metric is unique in each conformal class.
For non-orientable surfaces with a conformal class, the classification includes:

• the real projective plane;
• Möbius bands;
• flat Klein bottles;
• complete non-orientable hyperbolic surfaces.

The method of proof of the Poincaré-Koebe theorem is entirely diferent from the analytical meth-
ods here but it is nevertheless necessary to understand at least the statement of the above classi-
fication.

7. Teichmüller theory in genus g ≥ 2



CHAPTER 4

The Selberg trace formula

1. Classification of homographies

A matrix A ∈ SL2(R) different from the identity is called

• hyperbolic, if tr2(A) > 4;
• parabolic, if tr2(A) = 4;
• elliptic, if tr2(A) < 4.

This definition is invariant under multiplication by −1, hence every element different from the
identity in PSL2(R) is of one of these three types.

EXAMPLE 1.1. For every a > 0, b ∈ R∗ and θ ∈ R consider the matrices

da =

[√
a 0

0 1√
a

]
, τb =

[
1 b
0 1

]
, ρθ =

[
cos( θ

2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
).

]
Then

• da is hyperbolic, and the associated homography is the dilation by a factor of a;
• τb is parabolic and induces the translation by b on H;
• ρθ is elliptic, fixes i ∈ H and acts like the rotation of angle θ on TiH.

It turns out that every homography is conjugated inside PSL2(R) to one from the above example.

PROPOSITION 1.2. Let γ ∈ PSL2(R), γ 6= 1.

• If γ is hyperbolic, there exists a unique a > 1 so that γ is conjugated inside PSL2(R)
to da.
• Every parabolic γ is conjugated to τ1, the horizontal translation by 1.
• If γ is elliptic, it is conjugated to a unique rotation ρθ with θ ∈ (0, 2π).

PROOF. Consider the action of the Möbius group PSL2C on the Riemann sphere Ĉ = C ∪
{∞}: [

a b
c d

]
z =

az + b

cz + d
.

Let now γ ∈ PSL2(R) ⊂ PSL2C and look for fixed points for the action of γ on Ĉ: first,
∞ is a fixed point if and only if c = 0. In that case, a complex number z is a fixed point,
γz = z ⇐⇒ (d − a)z − b = 0. If b 6= a, there is a unique solution z0 = b/(d − a) ∈ R. If
d = a (hence a = b = ±1), we distinguish two cases: either b = 0, which implies γ = 1 and

58
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every point is fixed by γ, or b 6= 0, in which case the only fixed point in Ĉ is∞. This last case
holds when γ is a translation.
Assuming c 6= 0, for z ∈ C,

az + b

cz + d
= z ⇐⇒ cz2 + (d− a)z − b = 0.

The discriminant of this equation is (d− a)2 + 4bc = (d+ a)2− 4 = tr2γ− 4 (using det γ = 1),
hence:

• for tr2γ > 4 there are two distinct real fixed points;
• for tr2γ = 4 there is one double real solution;
• for tr2γ < 4 there are two complex conjugate solutions, hence precisely one solution in

H.

Now use the fact that PSL2(R) acts transitively on triples of distinct points in R̂, so in particular
on pairs: it follows that a transformation γ with two real fixed points can be conjugated to a
transformation fixing 0 and ∞. Similarly, a transformation with only one fixed point in R̂ is
conjugate to a translation. Finally, since PSL2(R) acts transitively on H, a transformation with a
unique fixed point in H is conjugate to a transformation preserving i, hence a rotation. �

2. Dirichlet fundamental domains for compact hyperbolic surfaces

THEOREM 2.1. A subgroup Γ ⊂ PSL2(R) acts properly discontinuously on H if and only if it
is discrete with respect to the topology on SL2(R) ⊂ GL2(R) induced from R4, and does not
contain elliptic elements.

PROOF. The action is continuous, so if γn → 1 in PSL2(R) then γnz → z for every z ∈ H.
Therefore, if Γ is not discrete, the action is clearly not properly discontinuous. Assume now Γ
is discrete, and suppose by contradiction that there exists z ∈ H such that for every ball Vn of
radius 1/n centered in z, there exists γn ∈ Γ and zn ∈ Vn so that γnzn ∈ Vn. Hence zn → z,
γnzn → z. Since γn are isometries, we get γnz → z. By conjugating via a fixed α ∈ PSL2(R)
mapping i to z, we get α−1z = i and α−1γnαα

−1z → i, hence we may assume without loss of
generality that z = i and γni→ i.

Write γn =

[
an bn
cn dn

]
and isolate the real and imaginary parts of γni. We get

andn − bncn
c2
n + d2

n

→ 1,
ancn + bndn
c2
n + d2

n

→ 0.

Since det γn = 1, the first convergence implies that the vectors (cn, dn) ∈ R2 are inside the unit
ball. By compactness, we may extract a convergent subsequence with limit (c, d) ∈ S1, again
indexed by n for convenience. Assume for instance c 6= 0 (the case d 6= 0 is similar). Then the
second convergence above and det γn = 1 imply

an + bn
d
c
→ 0, an

d
c
− bn → 1

c
.
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Together, these two limits show that (1+d2/c2)an has a finite limit, and so γn converges to some
matrix, necessarily of determinant 1. �

DEFINITION 2.2. A discrete subgroup of PSL2(R) is called a Fuchsian group.

We will be interested in Fuchsian groups without elliptic elements, so that the quotient Γ\H
becomes a smooth hyperbolic surface.
Let Γ ⊂ PSL2(R) be a Fuchsian group and p ∈ H.

DEFINITION 2.3. The Dirichlet domain for the action of Γ on H is the set

F = Fp = {z ∈ H; d(z, p) ≤ d(z, γp) for all γ ∈ Γ}.

Directly from the definition, this is a closed, convex subset in H. It is a fundamental domain for
the action of Γ in the following sense:

• the projection Φ : H→ S maps F onto S surjectively;
• the restriction of the projection Φ to the interior of F is injective;
• the set

{z ∈ S; Φ−1(z) contains at least two points in F}
is of measure 0 in S.

LEMMA 2.4. Let Γ be a Fuchsian group and p ∈ H. For every r > 0 let

mΓ(r) = #Br(p) ∩ Γp

(i.e., the number of points in the orbit Γp situated at distance at most r to the base point p). Then
there exists C > 0 independent of p and r such that

mΓ(r) ≤ Cer.

PROOF. There exists r0 > 0 such that the ball of radius r0 centered at p is disjoint from
Bγp(r0) for every γ ∈ Γ∗ (because Γ acts properly discontinuously). Hence the balls Bγp(r0)
for γp ∈ Bp(r) are disjoint and contained in Bp(r + r0) by the triangle inequality. It is easy to
compute the area of a hyperbolic ball (see Lemma 3.4 below):

Area(Br(p)) = 2π(cosh r − 1).

It follows by comparing the areas that

mΓ(r)(cosh r0 − 1) < cosh(r + r0)− 1.

�

PROPOSITION 2.5. Let S = Γ\H be a compact hyperbolic surface. Then

• Γ ⊂ PSL2(R) is a Fuchsian subgroup without elliptic and parabolic elements.
• the Dirichlet fundamental domain F defined with respect to some p ∈ C is a compact

polygon.
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PROOF. For every z ∈ S, there exists a neighborhood Vz adapted to the covering map H →
S. Extract a finite cover Vz1 , . . . , Vzn of S. Let δ be a Lebesgue number for this cover, so for
every z ∈ S the δ-ball Bz(δ) is contained in some open set from the cover. This means in
particular that for every z ∈ H, the ball Bz(δ) projects bijectively onto its image in S, and so it
does not contain conjugate points.
However, if γ is a parabolic element, then there exist pairs of points (z, γz) arbitrarily close to
each other: conjugate γ to the translation τ1, then notice that d(iy, iy + 1)→ 0 as y →∞. This
proves the first statement.
The Dirichlet domain is a countable intersection of hyperbolic half-planes Pγ , defined for every
γ ∈ Γ∗ by

Pγ = {z ∈ H; d(z, p) ≤ d(z, γp)}.

Therefore F is convex.
Let d := sup{d(z, p); z ∈ S}. Since S is compact, d must be finite. Every point in S lives at
distance at most d to p, therefore every point in H lives at distance at most d to the orbit Γp. Let
A := B3d(p) ∩ Γp. By Lemma 2.4, this set is finite. Define

F3d =
⋂

γp∈B3d(p)

Pγ ⊂ F.

The intersection of this set with the annulus {z ∈ H; d < d(z, p) ≤ 2d} is empty: indeed, for
every point z in the annulus, there exists a point γp in the orbit Γp situated at distance at most d
from z. By the triangle inequality, 0 < d(p, γp) ≤ 3d. Thus z /∈ Pγ for some γp ∈ B3d(p), and
so z /∈ F3d.
Hence, the convex set F3d does not meet the annulus, on the other hand it contains p, so in
conclusion F3d ⊂ Bd(p). Since it is bounded, the closed set F3d must be compact. A compact
finite intersection of half-planes is a polygon.
For every γ such that γp /∈ B3d(p), clearly Bd(p) is contained in the half-plane Pγ . Thus
F3d ∩ Pγ = F3d, and so F = F3d is a polygon. �

Therefore for compact surfaces the Dirichlet domain is particularly easy to understand. Below
we will use the following obvious fact: the hyperbolic plane H decomposes as the union over
γ ∈ Γ of all the translates γFof F . These translates can intersect only in the interior of an edge
(two by two) and in vertices (with finite incidence). In particular, the intersections have zero
measure, so for every L1 function f on H we have

∫
H
fdgH =

∑
γ∈Γ

∫
γF

fdgH.
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3. Eigenvalues of the Laplacian on H2

Let φ : R → C be a compactly-supported smooth function. Define the convolution operator
Φ : C∞(H)→ C∞(H) by

(Φf)(z) =

∫
H
g(z, z′)f(z′)dgH(z′), g(z, z′) = φ(2 cosh d(z, z′)− 2).(3.1)

We are interested in the behaviour under convolution of eigenfunctions of ∆ = ∆H .

EXAMPLE 3.1. Let fs : H → C, fs(z) := y
1
2
−is. By a direct computation using (4.1), this

function is an eigenfunction for ∆ of eigenvalue λ = s2 + 1
4
. Note for further use that fs(i) = 1.

THEOREM 3.2. For every s ∈ C there exists u(s) ∈ C with the following property: If f is a
smooth function on H such that

∆f = (s2 + 1
4
)f,

then Φf = u(s)f .

Such a function u is necessarily even in s. Let us first remark that Theorem 3.2 is equivalent to a
seemingly weaker statement:

THEOREM 3.3. For every s ∈ C there exists u(s) ∈ C with the following property: If f is a
smooth function on H such that

∆f = (s2 + 1
4
)f,

then (Φf)(i) = u(s)f(i).

Set λ = λ(s) = (s2 + 1
4
). Clearly, Theorem 3.2 implies Theorem 3.3. Conversely, assume

that (Φf)(i) = u(λ)f(i) for every λ-eigenfunction f of the Laplacian. We would like to see
that (Φf)(z) = u(λ)f(z) for every z ∈ H. Since the isometry group of H acts transitively,
let γ ∈ PSL2(R) be such that γ(i) = z. Let fγ = γ∗f . Since γ is an isometry, the pull-back
operator γ∗ commutes both with ∆ = d∗d and with the convolution operator Φ. Hence fγ is a
λ-eigenfunction f of the Laplacian, so by Theorem 3.3 we have

(Φfγ)(i) = u(λ)fγ(i).

This is the same as the conclusion of Theorem 3.2 at the arbitrarily chosen point z. It is thus
enough to prove Theorem 3.3.

LEMMA 3.4. The hyperbolic plane is isometric with R2 endowed with the metric written in polar
coordinates

g = dt2 + sinh2(t)dθ2.

PROOF. This is just the pull-back of the hyperbolic metric via the exponential map in one
point, written in polar coordinates. Let us give a direct proof. We know that H2 is isometric to B
endowed with the metric (2.6). In polar coordonates, this metric equals

g =
4(dr2 + r2dθ2)

(1− r2)2
.
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Use the new variable t = t(r) = log 1+r
1−r ∈ (0,∞), such that dt = 2dr

1−r2 . Then one computes
2r

1−r2 = sinh t as claimed. �

PROOF OF THEOREM 3.3. We work in the model of the hyperbolic plane given by the above
lemma. Let P0 be the operator of projection onto the zero Fourier mode in the variable θ:

P0 : C∞(R2,C)→ C∞(R2,C), (P0f)(z) =

∫ 1

0

f(e2πiαz)dα.

Clearly P 2
0 = P0, P0f ∈ C∞(R2,C), and (P0f)(0) = f(0). In polar coordinates

P0f(t, θ) =

∫ 1

0

f(t, θ + 2πα)dα

so P0f is a radial function (it does not depend on θ).

LEMMA 3.5. The projector P0 commutes with ∆.

PROOF. The operator P0 is obtained by averaging f along the orbits of the group S1 acting
isometrically by rotations on (R2, dt2 + sinh2(t)dθ2). Since ∆ is functorially defined in terms of
the metric, the conclusion is rather clear. Let us give nevertheless a direct proof. The laplacian
of the metric from Lemma 3.4 is given by

∆ = − 1
sinh t

(∂t sinh(t)∂t + 1
sinh t

∂2
θ ).

By integration by parts, the θ derivatives vanish, so

P0∆f =

∫ 1

0

− 1
sinh t

(∂t sinh(t)∂tf(te2πiα)dα.

Similarly, since P0f is θ-independent,

∆(P0f)(teiθ) = − 1
sinh t

∂t sinh(t)∂t

∫ 1

0

f(te2πiα)dα.

The conclusion follows by reversing the order of integration in α and differentiation with respect
to t. �

For the convolution operator Φ we prove:

LEMMA 3.6. The projector P0 commutes with Φ at the origin, i.e.,

(ΦP0f)(0) = (P0Φf)(0).

PROOF. We have seen above that (P0Φf)(0) = (Φf)(0). Now, by denoting ψ(d) =
φ(2 cosh(d)− 2) and using dg = sinh(t)dtdθ, we compute

(ΦP0f)(0) =

∫
H
g(z, 0)P0f(z)dg

= 2π

∫
R

∫ 1

0

ψ(t)f(te2πiα)dα sinh(t)dt

= (Φf)(0).
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�

We denote by hf : R → C the restriction of P0f to the real axis, so in particular hf (r) =
(P0f)(reiθ) for every θ. Note that hf is a smooth even function.
If we assume that f is a λ-eigenfunction of ∆, it follows from Lemma 3.5 that P0f is a also an
eigenfunction for the same eigenvalue. Since P0f is rotation-invariant, we have

∆P0f(t, θ) = − 1
sinh t

(∂t sinh(t)∂thf )(t).

Hence hf is an eigenfunction of ∆ if and only if it is a solution of the second-order singular
ordinary differential equation

(3.2) h′′(t) + coth(t)h′(t) = −λh(t).

LEMMA 3.7. The equation 3.2 has at most a space of dimension 1 of solutions of class C1 at 0.

PROOF. The Wronskian of equation 3.2 satisfies the differential equation

W ′(t) = − coth(t)W (t),

hence W (t) = c
sinh(t)

for some constant c 6= 0. Since this function is not continuous in 0, it
follows that both fundamental solutions of 3.2 cannot be simultaneously C1. �

A priori it is not clear that there is at least one solution of 3.2 smooth in 0. However we have
at our disposal the function fs from example 3.1, transported on the model R2 of the hyperbolic
plane in such a way that i ∈ H is identified with 0 ∈ R2. This function has the property
hfs(0) = 1. From lemma 3.7, hf must be proportional to hfs , and by comparing them at 0 we
get hf = f(0)hfs . Set

u(s) := (Φhfs)(0).

We deduce be repeatedly using Lemma 3.6

(Φf)(0) = (Φhf )(0) = f(0)(Φhfs)(0) = f(0)(Φfs)(0) = u(s)f(0).

This ends the proof of Theorem 3.3, and hence also of Theorem 3.2. �

3.1. Computation of u(s). Once we know that the universal eigenvalue u(s) exists, we
would like to compute it. For this we use the function fs from example 3.1.
Define the following operators on smooth functions with compact support in [0,∞):

A : C∞c ([0,∞))→ C∞c ([0,∞)), Aφ(x) =

∫ ∞
0

φ(x+ y2)dy,

B : C∞c ([0,∞))→ C∞c ([0,∞)), Bψ(x) = − 4
π

∫ ∞
0

ψ′(x+ y2)dy.(3.3)

An easy computation using polar coordinates shows that

AB = BA = I

(the identity operator on C∞c ([0,∞))).
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THEOREM 3.8. Let φ ∈ C∞c (R), and Φ the convolution operator defined in (3.1). Define

v(t) := 2(Aφ)(4 sinh2( t
2
)), u = v̂,(3.4)

where v̂ denotes the Fourier transform of v. For every λ ∈ C and f ∈ C∞(H) with ∆f =
(s2 + 1

4
)f , we have

Φf = u(s)f.

PROOF. Let f = fs = y
1
2
−is be the function from Example 3.1. From Theorem 3.2 we know

that u(s) exists. Moreover, since ∆f = (s2 + 1
4
)f and f(0) = 1, we have u(s) = (Φf)(i). We

compute

Φf(i) =

∫
H
φ(2 cosh(d(i, z))− 2)f(z)dgH(z)

=

∫
R

∫ ∞
0

φ

(
x2 + (y − 1)2

y

)
y

1
2
−isdx ∧ dy

y2

so by changing variables X = xy−
1
2 and y = et,

=

∫
R

∫
R
φ(X2 + 4 sinh2( t

2
))e−istdXdt.

We first carry out the integral in the variable X: the integrand is even in X , so we obtain
2(Aφ)(4 sinh2( t

2
)) = v(t). The integral in t is the definition of the Fourier transform of v. �

4. Eigenvalues of the Laplacian on compact Riemanian manifolds

Let us recall below the properties of the Laplacian on a closed (ie., compact without boundary)
Riemannian manifold.

THEOREM 4.1. Let (M, g) be a closed Riemannian manifold of dimension n, and ∆ the Laplace
operator. There exists an increasing sequence 0 = λ0 < λ1 ≤ . . . converging to infinity, and a
corresponding sequence {fj}j∈N of smooth real-valued functions on M , such that:

(1) ∆fj = λjfj;
(2) {fj}j∈N form an orthonormal Hilbert basis in L2(M, g).
(3) If h ∈ C∞(M), the series

∑
j〈h, fj〉fj converges in C∞ sense to h.

(4) The growth of the eigenvalues is restricted: there exists C > 1 such that for every
λ ∈ R, the eigenvalue counting function N(λ) = max{j ∈ N;λj < λ} satisfies

C−1λn/2 < N(λ) < Cλn/2.

This result is standard, see for instance [?].
Since the eigenvalues converge to infinity, it follows that each of them has finite multiplicity. In
the corresponding eigenspace there is a choice of orthonormal basis. The family of eigenfunc-
tions {fj}j∈N is uniquely determined up to these choices. Note that even in a 1-dimensional
eigenspace, there exist two functions of L2 norm equal to 1.
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5. Eigenfunctions of the Laplacian on a compact hyperbolic surface

Let S = Γ\H2 be a compact oriented surface of genus g ≥ 2, endowed with its unique hyperbolic
metric. Let f̃j be the lift of the eigenfunction fj to H, thus ∆f̃j = λj f̃j . From Theorem 3.8, f̃j is
also an eigenfunction of the convolution operator Φ:

(5.1) u(sj)f̃j = Φf̃j

for any solution sj of the equation s2
j + 1

4
= λj . Write

g(z, z′) := φ(2 cosh d(z, z′)− 2),

so g is a function depending only on the hyperbolic distance between z and z′. Since f̃j is
Γ-invariant, we can write

Φf̃j(z) =

∫
H
g(z, z′)f̃j(z

′)dgH(z′)

=
∑
γ∈Γ

∫
γF

g(z, z′)f̃j(z
′)dgH(z′) since

⋃
γ∈Γ

γF = H

=
∑
γ∈Γ

∫
F

g(z, γ−1z′)f̃j(z
′)dgH(z′) since f̃j is Γ-invariant

=

∫
F

G(z, z′)f̃j(z
′)dgH(z′)

where G is the kernel defined by

G(z, z′) :=
∑
γ∈Γ

g(z, γ−1z′).

The kernel g is Γ-invariant, i.e., g(αz, αz′) = g(z, z′), because g(z, z′) depends only on the
distance between z and z′. Since G is the average of g over Γ, we see immediately that
G(αz, α′z′) = G(z, z′), i.e., G is Γ × Γ-invariant, hence it descends to S × S. Therefore,
by identifying functions on S with Γ-invariant functions on H, we get

u(sj)fj(z) = Φf̃j(z) =

∫
S

G(z, z′)fj(z
′)dgS(z′).

In other words, if G denotes the smoothing operator on S

Gf(z) =

∫
S

G(z, z′)f(z′)dgS(z′),

we have just proved that fj is an u(sj)-eigenfunction for G.
The trace formula will be derived by looking at the trace of G. First, we have a general fact:

LEMMA 5.1. For every operator defined by a smooth kernel like G above, we have

tr(G) =

∫
S

G(z, z)dgS(z).
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PROOF. The fact that {fj} form an orthonormal basis in L2(S) implies that for every h ∈
C∞(S),

h =
∑
j

〈h, fj〉fj

where by Theorem 4.1, the sum converges in C∞ sense:

h(z) =
∑
j

∫
S

h(z′)fj(z
′)dz′fj(z).

For some fixed z′′ ∈ S, apply the above decomposition to h := G(z′′, ·):

G(z′′, z) =
∑
j

∫
S

G(z′′, z′)fj(z
′)dz′fj(z).

The lemma follows by setting z′′ = z and integrating on S. �

Our particular G is already diagonalized by the ∆-eigenfunctions fj , thus

Tr(G) =
∑
j

u(sj).

Together with the lemma, we get

(5.2)
∑
j

u(sj) =

∫
S

G(z, z)dgS(z).

6. The trace formula for compactly-supported functions v

THEOREM 6.1 (Selberg trace formula, version 1). Let Γ ⊂ PSL2(R) be a co-compact Fuchsian
group, S = Γ\H2 the associated compact surface, and g ≥ 2 its genus. Let {λj}j∈N be the
increasing sequence of eigenvalues of the Laplacian on S, and choose sj ∈ C such that s2

j + 1
4

=
λj . Let φ ∈ C∞c (R) and define

Aφ(x) =

∫ ∞
0

φ(x+ y2)dy, v(t) = 2Aφ(4 sinh2
(
t
2

)
), u = v̂.

Let LΓ be the set of lengths of oriented primitive geodesics in S, counted with their multiplicity.
Then

∞∑
j=0

u(sj) = (g − 1)

∫
R
su(s) tanh(πs)ds+

∑
l∈LΓ

∞∑
n=1

l

2 sinh
(
nl
2

)v(nl).

From the definition, v is a smooth, compactly supported, even function on R. Its Fourier trans-
form u is therefore an even holomorphic function on C, with rapid decay along every horizontal
line. Thus, it does not matter in the right-hand side above which square root of λj − 1

4
we choose

for sj . Moreover the series
∑∞

j=0 u(sj) is absolutely convergent, since λj grows linearly in j,
while u is Schwartz.
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PROOF. We start from (5.2) and compute the right-hand side. We write∫
S

G(z, z)dgS(z) =

∫
F

G(z, z)dgH(z)

=

∫
F

∑
γ∈Γ

g(z, γz)dgH(z)

=
∑
γ∈Γ

∫
F

g(z, γz)dgH(z).(6.1)

Let C be the set of conjugacy classes in γ. One distinguished such class consists of the identity
element. We recall that conjugacy classes of hyperbolic elements are in bijection with the set of
closed oriented geodesics.

LEMMA 6.2. Let γ ∈ Γ, γ 6= 1. The commutant subgroup of γ is infinite cyclic, and there exist a
unique n ≥ 1 and a generator µ of C(γ) such that γ = µn.

PROOF. Use the fact that Γ is discrete. All elements γ of the group (other than the identity)
are hyperbolic, so γ is conjugate inside PSL2(R) to a dilation da, i.e., αγα−1 = da. Conjugate

Γ by the same element α of PSL2(R), thereby assuming that γ =

[√
a 0

0 1√
a

]
. Let ν ∈ C(γ),

ν 6= 1. Then ν preserves the set of fixed points {0,∞} of γ, hence it also preserves the positive
imaginary axis, the unique geodesic linking 0 to∞. If ν transposes these two points, then it must
have a fixed point along the geodesic 0∞, which is impossible since the elements of Γ∗ cannot
be elliptic. Hence ν belongs to the stabilizer of {0,∞}, which is the subgroup of dilations and
hence it is isomorphic to the multiplicative group R∗+. The intersection of this subgroup with Γ is
discrete, hence it is infinite cyclic and there exists a unique generator µ such that γ is a positive
power of µ. �

An element γ ∈ Γ for which the number n given by Lemma 6.2 equals 1 is called primitive.

LEMMA 6.3. Let γ ∈ Γ∗, γ = µn for µ ∈ Γ primitive. Choose a system of representatives Aµ
for the set of cosets Γ/〈µ〉. Then the conjugacy class [γ] of γ is in bijection with Aµ:

[γ] = {αγα−1;α ∈ Aµ}.

PROOF. By definition
[γ] = {αγα−1;α ∈ Γ}.

But it is evident that αγα−1 = βγβ−1 if and only if α−1β ∈ C(γ). By Lemma 6.2, the commu-
tant subgroup C(γ) is the cyclic group 〈µ〉. Thus by restricting α to a set of representatives of
the right-cosets of 〈µ〉, we get each element in the conjugacy class precisely once. �

Denote by C∗prim the set of primitive conjgacy classes in Γ different from the identity. We return
to the identity (6.1) and split the sum along conjugacy classes:∫

S

G(z, z)dgS(z) =

∫
F

g(z, z)dgH(z) +
∑

[µ]∈C∗prim

∑
n≥1

∑
α∈Aµ

∫
F

g(z, αµnα−1z)dgH(z).
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Fix [µ] and n, and compute the sum

Iµ,n :=
∑
α∈Aµ

∫
F

g(z, αµnα−1z)dgH(z)

=
∑
α∈Aµ

∫
F

g(α−1z, µnα−1z)dgH(z)

=
∑
α∈Aµ

∫
α−1F

g(z, µnz)dgH(z)

=

∫
∪α∈Aµα−1F

g(z, µnz)dgH(z).

The set ∪α∈Aµα−1F is a fundamental domain for the quotient 〈µ〉\H, hence

Iµ,n =

∫
〈µ〉\H

g(z, µnz)dz.

Let β ∈ PSL2(R) be such that µ′ := βµβ−1 is the dilation by el, where l is the length of the
geodesic determined by the conjugacy class [µ] (notice that l satisfies |tr(µ)| = 2 cosh(l/2)).
Then β : 〈µ〉\H→ 〈µ′〉\H is an isometry, and∫

〈µ〉\H
g(z, µnz)dz =

∫
〈µ′〉\H

g(z, µ′nz)dz.

Since µ′z = elz, choose as fundamental domain for this quotient the infinite band

{z ∈ H; 1 ≤ =(z) ≤ el}.
It follows

Iµ,n =

∫
R

∫ el

1

g(z, enlz)dgH(z)

=

∫
R

∫ el

1

φ

(
|z|2(1− enl)2

enly2

)
dx ∧ dy
y2

=

∫
R

∫ el

1

φ

(
x2 + y2

enly2
(1− enl)2

)
dx ∧ dy
y2

=

∫
R

∫ l

0

φ((X2 + 1)(4 sinh2(nl/2))dXdt

=
l

2 sinh(nl/2)

∫
R
φ(x2 + 4 sinh2(nl/2))dx.

We have successively changed variables X = x/y; y = et; then x = X · 2 sinh(nl/2). From the
definition of the function v, the last formula is precisely

Iµ,n =
l

2 sinh(nl/2)
2(Aφ)(4 sinh2(nl/2)) =

l

2 sinh(nl/2)
v(nl).
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It remains to compute the term corresponding to the unit conjugacy class, namely∫
F

g(z, z)dgH(z) = Area(F )φ(0).

But by the Gauss-Bonnet (theorem 2.5), Area(F ) = Area(S) = 2π(2g−2). We want to compute
φ(0) in terms of v. For this, we write using (3.3):

φ(0) = BAφ(0)

= − 4

π

∫ ∞
0

(Aφ)′(y2)dy

= − 4

π

∫ ∞
0

(Aφ)′(4 sinh2
(
t
2

)
) cosh

(
t
2

)
dt

= − 4

π

∫ ∞
0

1

4 sinh
(
t
2

)
cosh

(
t
2

)∂t((Aφ)′(4 sinh2
(
t
2

)
)) cosh

(
t
2

)
dt

= − 1

2π

∫ ∞
0

v′(t)

sinh
(
t
2

)dt.
The proof of the trace formula is ended by Lemma 6.4 below. �

LEMMA 6.4. Let u = F(v) for v ∈ C∞c (R) an even function. Then

−2

∫ ∞
0

v′(t)

sinh( t
2
)
dt =

∫
R
su(s) tanh(πs)ds.

PROOF. Write

v(t) = 1
2π

∫
R
eistu(s)ds, v′(t) = i

2π

∫
R
eistsu(s)ds.

Since v′ is odd as a function of t, we get

v′(t) = i
4π

∫
R
(eist − e−ist)su(s)ds.

It follows

−2

∫ ∞
0

v′(t)

sinh( t
2
)
dt = − i

2π

∫
R

∫ ∞
0

(eist − e−ist) dt

sinh( t
2
)
su(s)ds

= − i
π

∫
R
su(s)ds

∫ ∞
0

(eist − e−ist)e−
t
2

∞∑
m=0

e−mtdt

= − i
π

∫
R
su(s)ds

∞∑
m=0

(
1

1
2

+m− is
− 1

1
2

+m+ is

)
.

The result is a consequence of the well-known Lemma 6.5. �
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LEMMA 6.5.

(6.2) i
π

∞∑
m=0

(
1

1
2

+m+ is
− 1

1
2

+m− is

)
= tanh(πs).

PROOF. Let us give a proof using the Poisson summation formula. Assume s > 0, the other
case being similar. Define

f(x) := 1
π

s

(1
2

+ x)2 + s2
,

and notice that the right-hand side of (6.2) equals
∑

m∈Z f(m). The Poisson summation formula
reads

∑
m∈Z f(m) =

∑
n∈Z f̂(2πn). We compute f̂(y) for y > 0 by changing the contour of

integration from the line {=(x) = 0} to {=(x) < −s} across the pole at x = −is− 1
2
:

f̂(y) = 1
π

∫
R
e−ixy

sdx

(1
2

+ x)2 + s2
= e−y(s− i

2
)

(notice a minus sign coming from the clockwise orientation of the contour). Both f and its
Fourier transform f̂ are even, hence for y ∈ R, f̂(y) = e−|y|(s−i/2). It follows∑

n∈Z

f̂(2πn) =
∑
n∈Z

e−2π|n|(s− i
2

)

=
∑
n∈Z

e−2π|n|seiπ|n|

= − 1 + 2
∑
n∈N

(−1)ne−2πns

= tanh(πs).

�

7. Geodesics asymptotics

In order to extend the trace formula for more general functions v, we need some bound on the
growth of the sequence LΓ of lengths of primitive closed geodesics in S = Γ\H.

LEMMA 7.1. LetL(l) denote the number of oriented closed geodesics of length at most l, counted
with their multiplicity. Then there exists a constant C ∈ R such that

L(l) < Cel.

PROOF. Fix z ∈ H and define a set

MΓ(r) := {γ ∈ Γ; d(z, γz) < r}.
The cardinality of MΓ(r) is the number mΓ(r) from Lemma 2.4. Take any closed geodesic of
length less that r − 2d, where d is the diameter of S. Lift this geodesic to H starting from a
point A in the interior of the Dirichlet domain F (possible since the Dirichlet domain surjects
onto S). The end-point B of this lift belongs to the interior of γF for some uniquely determined
γ ∈ Γ, and so B = γA and moreover the geodesic from A to B is the axis of the hyperbolic
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homography γ. Therefore, if we start from a different geodesic we obtain a different γ. From
the triangle inequality, we obtain that d(z, γz) < r, so in this way we have injected the set of
geodesics of length less than r−2d into the finite setMΓ(r) = Br(z)∩Γz of points in the Γ-orbit
of z at distance less than r to z. It follows that L(r − 2d) ≤ mΓ(r). �

Let lj be the j th length in the sequence LΓ. From Lemma 7.1, j = L(lj) < Celj , or equivalently

(7.1) lj > log(j)− c
for some other constant c.

THEOREM 7.2 (Selberg trace formula, general statement). The Selberg trace formula (Theorem
6.1) holds for functions v with the following properties:

• there exists ε > 0 and C ∈ R so that |v(x)| < Ce−|x|(
1
2

+ε).
• There exists ε > 0 and C ∈ R so that |u(s)| < C(1 + s2)−(1+ε).

PROOF. Choose a cut-off function ψ : R → [0,∞), i.e., ψ is smooth, compactly supported
in the interval [−2, 2], and equals 1 on the interval [−1, 1]. Set ψn(x) := ψ(x/n). Then ψnv
converges to v, and |ψn(x)v(x)| < Ce−|x|(1+ε) for every n. �

8. Weyl asymptotics

We apply the Selberg trace formula for the 1-parameter family of functions ut(s) = e−t(s
2+ 1

4
).

We have

vt(x) = 1
2π

∫
R
e−t(s

2+ 1
4

)eisxds =
e−

t
4

√
4πt

e−
x2

4t .

The trace formula reads
∞∑
j=0

e−tλj = R1(t) +R2(t),

where

R1(t) = (g − 1)

∫
R
s tanh(πs)e−t(s

2+ 1
4

)ds,

R2(t) =
e−

t
4

√
4πt

∑
l∈LΓ

∞∑
n=1

l

2 sinh
(
nl
2

)e−n2l2

4t .

Because of the rapidly decaying factor e−
n2l2

4t as t → 0, the term R2(t) converges to 0 as t → 0
together with all its derivatives. By a change of variables s→

√
ts, the term R1 becomes

R1(t) =
(g − 1)e−

t
4

t

∫
R
s tanh(πs/

√
t)e−s

2

ds.

The integral converges to 1 as t→ 0 by Lebesgue’s dominated convergence theorem. Moreover,
all its derivatives vanish at t = 0.
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It follows that the heat trace function

h(t) =
∞∑
j=0

e−tλj

has the following asymptotic as t→ 0:

(8.1) h(t) ∼ (g − 1)t−1e−t.

This implies the Weyl law for the asymptotic distribution of the eignevalues of ∆ via the
tauberain theorem of Karamata.

THEOREM 8.1 (Karamata). Let (λj)j∈N be a non-decreasing sequence of real numbers converg-
ing to∞ such that

lim
t→0

t
∞∑
j=0

e−tλj = 1.

Then the counting function N(r) := max{j ∈ N;λj ≤ r} satisfies

lim
r→∞

N(r)
r

= 1.

PROOF. By replacing t with nt, n ∈ N we get

lim
t→0

t
∞∑
j=0

e−(n+1)tλj = 1
n+1

=

∫ 1

0

xndx.

Therefore, for every polynomial P ∈ R[X], we have

lim
t→0

t
∞∑
j=0

P (e−tλj)e−tλj =

∫ 1

0

P (x)dx.

Using the Weierstrass density theorem, we can uniformly approximate every continuous function
on the compact interval [0, 1] by polynomials. It follows that for every f ∈ C0([0, 1],R) we have

(8.2) lim
t→0

t

∞∑
j=0

f(e−tλj)e−tλj =

∫ 1

0

f(x)dx.

Take now f to be a positive function, f(x) = 0 for 0 ≤ x ≤ a and f(x) = 1
x

for b ≤ x ≤ 1.
Equation (8.2) implies that

lim sup
t→0

tN
(
− log b

t

)
≤ − log a, lim inf

t→0
tN
(
− log a

t

)
≥ − log b

or equivalently

lim sup
r→∞

N(r)
r
≤ log a

log b
, lim inf

r→∞
N(r)
r
≥ log b

log a
.

Since a can be chosen arbitrarily close to b, this finishes the proof. �
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COROLLARY 8.2. Let λj be the j th eigenvalue of ∆, in increasing order counted with multiplicity.
Then

lim
j→∞

λj
j

= 1
g−1

.

PROOF. Follows from Karamata’s theorem applied to the asymptotic law (8.1). �

9. The Selberg zeta function

DEFINITION 9.1. Let L be the set of lengths of oriented closed primitive geodesics on S = Γ\H,
counted with multiplicity. For <(z) > 1 define

Z(z) :=
∏
l∈L

∞∏
m=0

(1− e−l(z+m)).

This function will turn out to extend holomorphically to C. First we must however check that the
product is absolutely convergent in the prescribed half-plane.

LEMMA 9.2. The series ∑
l∈L

∞∑
m=0

e−l(z+m)

is absolutely convergent for <(z) > 1.

PROOF. We show that in fact the sum over all geodesics, not only the primitive ones, is
absolutely convergent. ∑

l∈LΓ

∞∑
m=0

e−l(z+m) <
∞∑
j=1

∞∑
m=0

e−lj(z+m)

=
∞∑
j=1

e−ljz

1− e−lj

The denominator tends to 1. Using the inequality (7.1), the series of numerators is bounded by
∞∑
j=1

e−ljz < C

∞∑
j=1

j−z.

It is well-known that the Riemann zeta function is absolutely convergent for <(z) > 1. �

Fix z, z0 ∈ C with <(z),<(z0) > 1. Define

uz(s) = 1

s2+(z− 1
2)
, u = uz − uz0 ∈ C∞(R).

Notice that |u(s)| ∼ s−4 as s→∞. The Fourier transform of uz is

vz(t) = 1
2π

∫
R
eits 1

s2+(z− 1
2)
ds =

e−t(z−
1
2)

2
(
z − 1

2

) .



9. THE SELBERG ZETA FUNCTION 75

Since <(z) > 1, this decays faster that e−t(
1
2

+ε) for some ε > 0, so we can apply Theorem 7.2.
For each z, z0 with real part greater than 1 we write the Selberg trace formula for the function
u = uz − uz0 as follows:

L(z, z0) = R1(z, z0) +R2(z)−R2(z0)

where

L(z, z0) =
∞∑
j=1

1

s2
j +

(
z − 1

2

)2 −
1

s2
j +

(
z0 − 1

2

)2 ,

R1(z, z0) = (g − 1)

∫
R
s tanh(πs)

(
1

s2 +
(
z − 1

2

)2 −
1

s2 +
(
z0 − 1

2

))2

ds,

R2(z) =
1

2
(
z − 1

2

) ∑
l∈LΓ

∞∑
n=1

l

2 sinh
(
nl
2

)e−nl(z− 1
2).

LEMMA 9.3.

2
(
z − 1

2

)
R2(z) =

Z ′

Z
(z).

PROOF. ∑
l∈LΓ

∞∑
n=1

l

2 sinh
(
nl
2

)e−nl(z− 1
2) =

∑
l∈LΓ

l
∞∑
n=1

∞∑
m=0

e−nl(z−
1
2)e−

nl
2 e−mnl

=
∑
l∈LΓ

l
∞∑
m=0

(−1 +
1

1− e−l(z+m)
)

=
∑
l∈LΓ

∞∑
m=0

le−l(z+m)

1− e−l(z+m)
.

The lemma follows from the definition of the zeta function. �

We re-write the trace formula as follows:

(9.1)
Z ′

Z
(z) =

z− 1
2

z0− 1
2

Z ′

Z
(z0) + (2z − 1)L(z, z0)− (2z − 1)R1(z, z0).

We shall prove that the right-hand side (actually, every term in the right hand side) is meromor-
phic in z ∈ C with simple poles and natural residues. We are also interested in the behaviour of
the right-hand side terms under the involution z → 1− z.

LEMMA 9.4. The term z− 1
2

z0− 1
2

Z′

Z
(z0) is holomorphic on C and odd with respect to z → 1− z.

PROOF. Evident. �
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LEMMA 9.5. The term (2z− 1)L(z, z0) is meromorphic in the variable z ∈ C, with simple poles
at z = 1

2
± isj . The residue of (2z − 1)L(z, z0) at z = 1

2
± isj is equal to the multiplicity µ(λj)

of the eigenvalue λj . In the special case where 1
4

belongs to the spectrum of ∆, the poles at
z = 1

2
± 0 are superposed, and so the residue equals 2µ(1

4
). Moreover, (2z − 1)L(z, z0) is odd

with respect to z → 1− z.

PROOF. The term (2z − 1)L(z, z0) is series of rational functions, absolutely convergent out-
side the poles. As such, the poles of the sum are precisely the union (with multiplicity) of the
poles of each term. It is evident that (2z − 1) 1

s2j+(z− 1
2)

2 has simple poles at z = 1
2
± isj with

residue 1, with the exception of the case where sj = 0. In that case, the pole remains simple but
the residue is 2. The term L is even for the transformation z → 1− z, while (2z− 1) is odd. �

The above poles are called non-trivial poles of the logarithmic derivative of the Zeta function.

LEMMA 9.6. The term −(2z − 1)R1(z, z0) has simple poles at z = −k for k = 0, 1, . . ., with
residue 2(g − 1)(2k + 1).

PROOF. Move the contour of integration in the definition of R1 from =(s) = 0 to =(s) = k
for k ∈ N∗. The function s 7→ tanh(πs) is periodic with period i. The remaining part of the
integrand in R1 decays cubically in |s|, hence as k →∞, the integral along the line {=(s) = k}
converges to 0. This procedure computes R1 as a series over the residues of the integrand. These
residues occur at s = i

(
z − 1

2

)
; at s = i

(
z0 − 1

2

)
; and finally at the poles of tanh(πs) in the

upper half-plane, namely at s = i(n− 1
2
) for n = 1, 2, . . .:

−(2z − 1)R1(z, z0) = − 2πi(g − 1)(2z − 1)
[

1
2

tanh(iπ
(
z − 1

2

)
)− 1

2
tanh(iπ

(
z0 − 1

2

)
)
]

− 2πi(g − 1)(2z − 1)
∞∑
n=1

i(n− 1
2
) 1
π

[
1

(z− 1
2)

2
−(n− 1

2
)2
− 1

(z0− 1
2)

2
−(n− 1

2
)2

]
.

Write now tanh(πiz − iπ
2

) = −i cot(πz). In the right-hand side, the first term has poles in z at
z = m for all integers m, with residue −(g − 1)(2m − 1). The second term has poles at z = n
for n ∈ N∗, with residue (g − 1)(2n − 1), and also at z = 1 − n for all natural n ≥ 1, with
residue (g − 1)(2n− 1). Hence the poles at z = n ∈ N∗ cancel each other. �

From Eq. (9.1), the above three lemmas show that the right-hand side is a meromorphic function
on C, hence ∂z logZ extends meromorphically to C. Remarkably, all the residues are natural
numbers (i.e., positive integers).

THEOREM 9.7. The function ∂z logZ(z) extends meromorphically from {<(z) > 1} to the com-
plex plane, with simple poles and positive integer residues:

• z = 1
2
± isj for s2

j + 1
4

= λj ∈ Spec(∆) and λj /∈ {0, 1
4
}, with residue µ(λj), the

multiplicity of the eigenvalue λj .
• z = 1

2
with residue 2µ(1

4
) (in particular if 1

4
is not an eigenvalue, z = 1

2
is not a pole).

• z = 1 with residue 1.
• z = 0 with residue 2g − 1, where g is the genus of S.
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TABLE 1. Poles and residues of the logarithmic derivative of the Selberg zeta function

Pole Residue
1
2
± isj µ(λj)

−k for k = 0, 1, . . . 2(g-1)(2k+1)

• z = −k for k = 1, 2, . . . with residue 2(g − 1)(2k + 1).

PROOF. The right-hand side of (9.1) is meromorphic and has the required poles and residues.
�

The poles and residues coming from the term R1 are common to every compact surface S of
genus g, and for this reason they are called trivial. The other poles, those coming from the
spectrum of ∆, are the so-called non-trivial poles. Note that z = 0 is both non-trivial (coming
from the eigenvalue λ0 = 0 with multiplicity 1) and trivial, with residue 2(g − 1). Together the
two types of poles lead to the residue 2g − 1 at z = 0.

10. Holomorphic extension of the Selberg zeta function

PROPOSITION 10.1. Let f be a meromorphic function on C with simple poles and residues
belonging to N∗. Then there exists a holomorphic function F on C, unique up to a multiplicative
constant, so that F ′ = fF . Moreover F vanishes exactly at the poles of f , at order equal to the
residues of f .

PROOF. Fix z0 not a pole of f . For z not a pole, define

F (z) = e
R z
z0
f(s)ds

.

Here the integral is along any piece-wise smooth path from z0 to z. The value of the integral is
path-independent as long as we deform the path in a homotopy class relative to the end-points.
Choose now two different paths γ, γ′ from z0 to z, so that the concatenation c := γ̄.γ′ is a closed
loop. The poles of f are discrete, so only a finite number of them are enclosed by the loop
c. The integral

∫
c
f(s)ds equals 2πi times the sum of the residues at these poles, each of them

multiplied by the winding number of c around it. By hypothesis, all residues are integers, so the
exponential exp

(
2πi
∫
c
f(s)ds

)
equals 1. It follows that F (z) is well-defined, independently of

the path from z0 to z. It is evident that F is holomorphic where it is defined, i.e., outside the
poles of f . Near a pole a ∈ C, write f(z) = n(z − a)−1 + u(z) with u holomorphic near a
and n ∈ N∗. Then the primitive of f equals n log(z − a) + U(z) for some primitive of u which
clearly extends to z = a. Although the logarithm is well-defined only up to multiples of 2πi,
the exponential is well-defined near a and equals (z − a)neU(z), hence it vanishes to order n at
z = a. Clearly the exponential does not vanish outside the poles of f . �

A more intrinsic way of proving this proposition goes as follows: look at a meromorphic 1-form
α on any simply-connected Riemann surface S, not necessarily C (in case S = C we can choose
α = f(z)dz). Let M denote the complement of the poles of f in S, and let π : M̃ → M be the
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universal cover of M . The 1-form α lifts to M̃ and is ∂-exact there by simple-connectedness.
Let h be a primitive of π∗α on M̃ . Let p, p′ be two points in M̃ in the fiber of a point P ∈ M ,
and γ a path from p to p′. Then h(p)− h(p′) =

∫
γ
π∗α, independently of γ. Let π∗γ = π ◦ γ be

the closed path in M obtained by projecting onto M via π. By the change of variables formula,∫
γ

π∗α =

∫
π∗γ

α.

But the integral over the oriented loop π∗γ is ±2πi times the sum of the residues enclosed by
π∗γ (when M is the Riemann sphere Ĉ, the loop separates the surface in two disks, and the sum
of residues of α is 0). Hence the exponential of u agrees at the points p and p′, so it descends to
M as a holomorphic function.

COROLLARY 10.2. The Selberg zeta function extends analytically to C with zeros precisely at
the points from Table 9, with orders of annulation equal to the residues of Z ′/Z.

11. The functional equation of the Selberg zeta function

We have seen in the proof of the holomorphic extension of Z(z) that Z ′(z)/Z(z) is not only
meromorphic on C, but also that the components (2z − 1)L(z, z0) and z− 1

2

z0− 1
2

Z′

Z
(z0) are odd with

respect to the involution z 7→ 1 − z. Moreover, by the proof of Lemma 9.6, the meromorphic
function of z −(2z − 1)R1(z, z0) satisfies the identity

−(2z − 1)R1(z, z0)− (2(1− z)− 1)R1(1− z, z0) = −2π(g − 1)(2z − 1) cot(πz).

It follows that
Z ′(z)

Z(z)
+
Z ′(1− z)

Z(1− z)
= −2π(g − 1)(2z − 1) cot(πz)

and by integrating we deduce
Z(z)

Z(1− z)
= exp

(
−2π(g − 1)

∫ z

1/2

(2w − 1) cot(πw)dw

)
.

The meromorphic function−2π(g−1)(2w−1) cot(πw) is odd with respect to z 7→ 1−z and its
residues are even positive integers, hence by Proposition 10.1 the square root of the exponential
in the right-hand side is well-defined. We can thus rewrite the functional equation as

Z̃(z) = Z̃(1− z)

where Z̃(z) = Z(z) exp
(
−π(g − 1)

∫ z
1/2

(2w − 1) cot(πw)dw
)

.


