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REGULARITY OF THE ETA FUNCTION ON MANIFOLDS WITH

CUSPS

PAUL LOYA, SERGIU MOROIANU, AND JINSUNG PARK

Abstract. On a spin manifold with conformal cusps, we prove under an invertibility
condition at infinity that the eta function of the twisted Dirac operator has at most
simple poles and is regular at the origin. For hyperbolic manifolds of finite volume, the
eta function of the Dirac operator twisted by any homogeneous vector bundle is shown to
be entire.

1. Introduction

The eta invariant was first introduced in [1] as a real number associated to certain elliptic
first-order differential operators on compact manifolds with boundary, which happened to
equal the difference between the Atiyah-Singer integral and the index with respect to
the Atiyah-Patodi-Singer spectral boundary condition. During the thirty years since its
discovery, this invariant has risen from the status of “error term” to that of a subtle tool,
highly efficient in solving otherwise intractable problems from various fields of mathematics.
Let us mention in this respect its recent application in finding obstructions for hyperbolic
and flat 3-manifolds to bounding hyperbolic 4-manifolds [17].

For a Hermitian vector bundle E over a closed manifold M , consider an elliptic self-
adjoint first-order differential operator D : C∞(M,E) → C∞(M,E). Then the L2 spectrum
of D is purely discrete and distributed according to the classical Weyl law. It follows that
the complex function

η(D, s) :=
∑

λ∈Spec(D)\{0}

λ|λ|−s−1

is well-defined (and holomorphic) when ℜ(s) > dim(M). This function admits a mero-
morphic extension to the complex plane with possible simple poles. If dim(M) is odd, the
possible poles are located at dim(M) − 1 − 2N where N = {0, 1, 2, . . .}. If dim(M) is even
and D is a Dirac operator associated to a Clifford connection, the eta function is entire [6].

It is a byproduct of the index theorem of Atiyah, Patodi and Singer that when M is a
boundary and D is the tangential part of an elliptic operator as above, the point s = 0
is always regular for the eta function. In fact, the eta function is always regular at the
origin for general elliptic pseudodifferential operators; this was proved using K-theory in
the spirit of early index theory by Atiyah, Patodi, and Singer [3] in the odd-dimensional
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case, and by Gilkey [9] for arbitrary dimensions. The eta invariant of D is defined as

η(D) = η(D, 0) + dim ker(D).

Still on a closed manifold another question arises: it is easy to note that the possible
residue of the eta function at the origin is the integral on M of a well-defined density
determined locally by D, called the local eta residue. Is this density zero? For arbitrary
differential operators the answer is negative, but for Dirac operators it was proved by
Bismut and Freed [5] that this is indeed the case. The proof uses the properties of the heat
coefficients in terms of Clifford filtration, along the lines of Bismut’s heat equation proof
of the local index formula.

In this note we first revisit the vanishing of the local eta density from the point of view
of conformal invariance. We give a self-contained proof, using the APS formula, of the fact
that the eta invariant of the spin Dirac operator is insensible to conformal changes. This
important fact belongs to the mathematical folklore but we could not find a complete proof
in the literature. The existing proofs (e.g. [2, pp. 420-421]) tend to use the index formula
of [1] for metrics which are not of product type near the boundary, without explaining why
one can do so. In section 2 we show how to apply the APS formula to a true product-
type metric in order to prove the conformal invariance of the eta invariant. We deduce
the vanishing of the local eta residue from this conformal invariance, by interpreting the
variation of the eta invariant in terms of the Wodzicki residue.

Our main results concern the eta function on noncompact spin manifolds with conformal
cusps, in particular on complete finite-volume hyperbolic spin manifolds. More precisely,
let M be a compact manifold with boundary and [0, ǫ)x × ∂M a collar neighborhood of
its boundary. The interior M◦ of M is called a conformally cusp manifold if it is endowed
with a metric gp which near x = 0 takes the form

(1) gp = x2p

(

dx2

x4
+ h

)

,

for some p > 0, where h is a metric on ∂M independent of x. The main examples are
complete hyperbolic manifolds of finite volume, for which p = 1 and h is flat. Assume now
that M is spin. Let E be a bundle with connection over M which is of product-type on
the collar, and let Dp denote the associated twisted Dirac operator on Σ ⊗ E where Σ is
the spinor bundle over M . We assume that the spin structure and the connection on E
are “nontrivial” (Assumption 1 in Section 5) in the sense that the twisted Dirac operator
D(∂M,h) for the induced spin structure on (∂M, h) is invertible. Under this assumption,
the twisted Dirac operator Dp is essentially self-adjoint with discrete spectrum obeying
the Weyl law and the corresponding eta function η(Dp, s) has a meromorphic extension
to C with possible double poles [23]. For the untwisted Dirac operator on finite-volume
hyperbolic manifolds, it was already noted by Bär [4] that the spectrum of D = D1 is
discrete if and only if the spin structure is “nontrivial” on the cusps in the above sense,
otherwise the continuous spectrum of D is R. In Appendix A we prove that the same
occurs for conformal cusp metrics: If D(∂M,h) fails to be invertible, then for p ≤ 1 the
twisted Dirac operator Dp has essential spectrum equal to R. In the case p > 1, Dp fails
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to be essentially self-adjoint and although every self-adjoint extension of Dp has discrete
spectrum, nothing is known about the meromorphic properties of the corresponding eta
functions. These are the reasons the “nontriviality” assumption plays an important rôle in
this theory. The main results of this paper are that under Assumption 1 the eta function
η(Dp, s) in fact has at most simple poles, and is always regular at the origin. Moreover,
the poles disappear for hyperbolic manifolds, thus the eta function is entire in that case.

Main Theorem. Let M◦ be an odd-dimensional spin manifold with conformal cusps, E
a twisting bundle of product type on the cusps, and let Dp be the associated twisted Dirac

operator to (1) on Σ ⊗ E satisfying Assumption 1. Then

(1) The eta function η(Dp, s) of the twisted spin Dirac operator is regular for ℜ(s) > −2
and has at most simple poles at s ∈ {−2,−4, . . .}.

(2) When p = 1, M◦ is hyperbolic of finite volume and E is a homogeneous vector

bundle, the eta function η(D, s) of the twisted Dirac operator is entire.

In even dimensions the eta function vanishes identically since the spectrum is symmetric,
see Section 2.

A related question may be asked on more complicated metrics at infinity, like the fibered-
cusp metrics arising on Q-rank one locally symmetric spaces. A similar problem arose
from [18], where we could obtain a meromorphic extension of the eta function for cofinite
quotients of PSL2(R) by using the Selberg trace formula. The methods employed here do
not seem to extend easily to such spaces.

We now outline this paper. We begin in Section 2 by proving that on a closed spin
manifold the eta invariants are identical for two Dirac operators associated to conformal
metrics. In Section 3 we review the Guillemin-Wodzicki residue density and residue trace
and derive some of their elementary properties that we need in the sequel. In Section 4
we give a new proof that on any spin manifold, the local eta residue of a twisted Dirac
operator vanishes. In Sections 5 and 6 we prove the main theorem based on Melrose’s cusp
calculus [20], which we review in Appendix B.

2. Conformal invariance of eta invariants on closed manifolds

The eta invariant of the spin Dirac operator and of the odd signature operator are
known to be invariant under conformal changes of the metric. Since on one hand we need
to understand this fact in depth, and on the other hand we were unable to find a good
reference, we chose to give here a complete proof.

Let (M, g) be a closed spin Riemannian manifold of dimension n, (E,∇) a Hermitian
vector bundle on M with compatible connection ∇, and D the twisted Dirac operator.
Note that when n is even, the eta invariant reduces to dim ker(D) (which is known to be a
conformal invariant, see (2)). Indeed, in even dimensions the operatorD is odd with respect
to the splitting in positive and negative spinors. Thus the eta function itself vanishes in
these dimensions because the spectrum is symmetric around 0. For the untwisted spin
Dirac operator, the same vanishing occurs in dimensions 4k+ 1: for n = 8k+ 1 the spinor
bundle has a real structure (i.e. a skew-complex map C with C2 = 1) which anti-commutes
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with D, while in dimensions 8k + 5 it has a quaternionic structure (i.e. a skew-complex
map J with J2 = −1) which anti-commutes with D [1, pp. 61, Remark (3)].

Let f ∈ C∞(M) be a real conformal factor, g′ := e−2fg a metric conformal to g and D′

the corresponding Dirac operator.

Proposition 1. The eta invariants of D and D′ coincide.

Proof. The map of dilation by ef gives an SO(n)-isomorphism between the orthonormal
frame bundles of g and g′. Thus the principal Spin(n)-bundle (for the fixed spin structure)
corresponding to g and g′ are also isomorphic via the lift of this map. This identifies the
spinor bundles for the two metrics; the Dirac operators are linked by the formula

g′ = e−2fg, D′ = e
n+1

2
fDe−

n−1

2
f(2)

(see e.g. [25, Proposition 1] for a proof). In particular, the null-spaces of these two operators
have the same dimension.

Let ψ : I = [0, 1] → R be a smooth function which is 0 for t < 1/3 and which is
identically 1 for t > 2/3. Set ft := ψ(t)f and define a metric on X := I ×M by

h = dt2 + e−2ftg.

We denote again by E the pull back of E from the second factor, together with its connec-
tion. Therefore, the curvature tensor of E on X satisfies

(3) ∂tyR
E = 0.

The metric h is of product type near ∂X and hence the Atiyah-Patodi-Singer formula
can be applied to the (chiral) twisted Dirac operator D+ on X:

index(D+) =

∫

X

Â(Rh)ch(RE) −
1

2
η(D) +

1

2
η(D′).

On the other hand, this index is also equal to the spectral flow in the space of Riemannian
metrics from D to D′; again by (2), there is no spectral flow so the index vanishes. The
proof will be concluded by showing that the top component of the integrand in the APS
formula vanishes.

From (3) we deduce ∂ty exp(RE) = 0 so it is enough to show that ∂tyÂ(Rh) = 0. Recall

that Â is a polynomial in the Pontrjagin forms tr(Rh)2k ∈ Ω4k(X). Also, recall that the
Pontrjagin forms are conformal invariant (they only depend on the Weyl tensor – first
proved by Chern and Simons [8]). Let

h′ = e2fth = e2ftdt2 + g.

We claim that ∂tytr((R
h′

)2k) = 0 for all k. Indeed, let ∇ be the Levi-Civita connection of

h′. For every vector field V on M denote by Ṽ its pull-back to X, which is orthogonal on
the length-1 vector field T := e−ft∂t. Note that

[Ṽ , T ] = −ψ(t)V (f)T, [Ṽ , Ũ ] = [̃V, U ].
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We deduce that

2〈∇Ṽ T, Ũ〉 =Ṽ 〈T, Ũ〉 + T 〈Ṽ , Ũ〉 − Ũ〈Ṽ , T 〉

+ 〈[Ṽ , T ], Ũ〉 + 〈[Ũ , Ṽ ], T 〉 + 〈[Ũ , T ], Ṽ 〉

=0.

Clearly, since also 〈∇Ṽ T, T 〉 = 0, we infer ∇Ṽ T = 0. Directly from the definition of the
curvature this implies that Rh′

Ṽ Ũ
T = 0. If we split TX into TI ⊕ TM , we see from the

symmetry of the curvature tensor that Rh′

Ṽ Ũ
is a diagonal linear map, while Rh′

Ṽ T
is off-

diagonal. It follows that ∂Ty(R
h′

)2k is an off-diagonal form-valued endomorphism (since it
contains exactly one curvature term involving T ). Hence its trace is zero. �

Remark 2. The same proof applies as well to the (twisted) odd signature operator on any

orientable manifold, since the Hirzebruch L-form, like the Â-form, is also a polynomial in
the Pontrjagin forms.

3. The residue trace and the residue density

We review a refined construction of the residue trace. Let A be a classical pseudodiffer-
ential operator A of integer order on a smooth closed manifold M of dimension n, acting
on the sections of a vector bundle E. We will later be interested in twisted spinor bun-
dles over spin manifolds, but the description of the residue density does not need these
assumptions. Let κA(m,m′) be the Schwartz kernel of A, which is a distributional section
in E ⊠ (E∗ ⊗ |Ω|) over M ×M with singular support contained in the diagonal. Choose a
diffeomorphism

Φ : U → V ⊂M ×M, Φ(m, v) = (m,φm(v))(4)

from a neighborhood of the zero section in TM to a neighborhood of the diagonal in
M , extending the canonical identification of M with the diagonal. Cut-off κA away from
the diagonal, i.e., multiply it by a function ψ with support in V which is identically 1
near the diagonal. Fix a connection in E, so that we can identify E∗

φm(v) with E∗
m using

parallel transport along the curve t 7→ φm(tv). Then Φ∗(ψκA) is a compactly-supported
distributional section over TM in the bundle End(E) pulled back from the base, tensored
with the fiberwise density bundle. This distribution is conormal to the zero section, thus
by definition there exists a classical symbol a(m, ξ) on T ∗M (with values at (m, ξ) in
End(Em)) such that

Φ∗(ψκA)(m, v) =
1

(2π)n

∫

T ∗M/M

eiξ(v)a(m, ξ)ωn.

Here ω is the canonical symplectic form on T ∗M , and
∫

T ∗M/M
means integration along

the fibers of T ∗M . The result on the right-hand side is an End(E)-valued density in the
base variables; however since the vertical tangent bundle to TM at (m, v) is canonically
isomorphic to TmM , this can be interpreted as a vertical density.
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Let R be the radial (vertical) vector field in the fibers of T ∗M . Let a[−n] denote the
component of homogeneity −n of the classical symbol a. Fix a Euclidean metric g in the
vector bundle T ∗M (this amounts to choosing a Riemannian metric on M), thus defining
a sphere bundle S∗M inside T ∗M .

Definition 3. The residue density of A is the smooth End(E)-valued density

res(A) :=
1

(2π)n

∫

S∗M/M

a[−n] Ryω
n.

At this stage, res(A) depends on a number of choices: the embedding Φ, the cut-off ψ,
the connection in E and the metric g.

One way to show that res(A) is defined independently of the choices involved is through
holomorphic families. Let (As)s∈C be a holomorphic family of pseudodifferential operators
on E such that As is of order k − s, where k is the order of A, and A0 −A ∈ Ψ−∞(M,E).
Then for ℜ(s) sufficiently large, restricting the Schwartz kernel of As to the diagonal ∆
gives a well-defined and holomorphic End(E)-valued density

F (s) := κAs
|∆.

This density extends to C with possible simple poles at s ∈ n+k−N, where k is the order
of A and N = {0, 1, 2, 3, . . .}. One natural choice of a holomorphic family is As = AQs

or As = QsA where (Qs)s∈C is a holomorphic family of pseudodifferential operators on E
such that Qs is of order −s and Q0 − Id ∈ Ψ−∞(M,E). It is then straightforward to check
that

(5) Ress=0F (s) = res(A).

Thus, the residue Ress=0F (s) is well-defined irrespective of the choice of As, and also res(A)
is well-defined independently of choices. The residue trace of A is defined by

(6) TrR(A) = Ress=0Tr(As) =

∫

M

tr(res(A)).

Armed with this holomorphic family interpretation of res(A) and TrR(A), one can deduce
without effort various properties of res and TrR. For example, it follows that TrR vanishes
on commutators. Indeed, given integer order operators A and B and taking any auxiliary
family Qs as explained above, we can write

Tr([A,B]Qs) = Tr(Cs) + Tr([AQs, B]),

where Cs = ABQs − AQsB is a holomorphic family of operators that is smoothing at
s = 0. One can check that Tr[S, T ] = 0 for any pseudodifferential operators S and T
with ord(S) + ord(T ) < −n, so for ℜ(s) sufficiently large, the trace Tr([AQs, B]) vanishes.
Therefore, by analytic continuation, Tr([AQs, B]) vanishes for all s ∈ C; in particular, we
have Tr([A,B]Qs) = Tr(Cs). Now C0 is smoothing, and since the residue density of a
smoothing operator is zero, we have Ress=0Tr(Cs) = TrR(C0) = 0. Thus, TrR([A,B]) = 0.

Furthermore, if S is any section in End(E), using the fact that

κSAs
= SκAs

and κAsS = κAs
S,
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where As is a holomorphic family as in the formula (5), we have res(SA) = Sres(A) and
res(AS) = res(A)S. That res(SA) = Sres(A) also follows directly from Definition 3. In
particular, we have

(7) res(uA) = res(Au) = u res(A)

for every function u ∈ C∞(M,C). Finally, observing that

κAs
|∆ =

(

κA∗

s
|∆

)∗

,

taking the residue at s = 0 of both sides we obtain res(A) = res(A∗)∗; that is, we have
res(A∗) = res(A)∗.

4. Vanishing of the local eta residue

Let (Dt)t∈I be a smooth 1-parameter family of elliptic self-adjoint pseudodifferential
operators of order 1 on a closed manifold M . For simplicity assume for a moment that D0

is invertible, hence Dt is invertible for small enough t. Then

∂tη(Dt, s) =∂tTr
(

Dt(D
2
t )

− s+1

2

)

=Tr
(

Ḋt(D
2
t )

− s+1

2

)

−
s+ 1

2
Tr

(

Dt(D
2
t )

− s+3

2 (ḊtDt +DtḊt)
)

= − sTr
(

Ḋt(D
2
t )

− s+1

2

)

= − sTr
(

Ḋt|Dt|
−1(D2

t )
− s

2

)

.

Now Qs := (D2
t )

− s
2 is an analytic family of operators of order −s and Q0 = Id, therefore

(8) ∂tη(Dt) =
[

−sTr
(

Ḋt|Dt|
−1Qs

)]

s=0
= −TrR(Ḋt|Dt|

−1).

From (6), the Wodzicki residue trace vanishes on smoothing operators, so as a corollary we
see that the eta invariant is constant under smoothing perturbations. By this argument,
the above expression makes sense even when Dt is not invertible.

In the same spirit, let D be an elliptic self-adjoint invertible pseudodifferential operator
of order k ∈ (0,∞). Then the residue at s = 0 of the eta function η(D, s) is

Ress=0Tr(D|D|−1(D2)−
s
2 ) =

1

k
TrR(D|D|−1) =

1

k

∫

M

tr(res(D|D|−1)).

We have been assuming thatM is closed, so that the trace on the left is defined. However,
notice that by definition, tr(res(D|D|−1)) is a local quantity in the sense that it depends
only on finitely many terms of the local symbol of D|D|−1; moreover, each homogeneous
term of D|D|−1 is given by a universal formula in terms of the local symbol of D in any
coordinate patch. Using this universal formula for the −n degree homogeneous term allows
us to define the local eta residue on the interior of any manifold (with or without boundary,
compact or not), even in the case that |D|−1 does not exist.
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Definition 4. Let M be a possibly non-compact manifold, E → M a vector bundle and
z ∈ C. For any elliptic pseudodifferential operator D ∈ Ψz(M,E), the density

tr(res(D|D|−1)) ∈ |Ω(M)|.

is called the local eta residue of D.

From the definition of the residue density, the local eta residue is constant under smooth-
ing perturbations, so the definition makes sense when D is not invertible, non symmetric.
The local eta residue can be non-vanishing in general (when M is compact, its integral
always vanishes for self-adjoint operators of positive order since the eta function is regular
at s = 0 [9]). However, for Dirac operators we have:

Theorem 5. [5] Let (M, g) be a spin Riemannian manifold and E a twisting bundle. Then

the local eta residue tr(res(D|D|−1)) of the twisted Dirac operator vanishes.

Proof. We give here a new, easy proof. Assume that M is closed; this theorem is a local
question, so this case suffices. Let f be an arbitrary smooth real function on M . Define Dt

as the Dirac operator associated to the family of conformal metrics e−2tfg. This operator
is an unbounded operator in the L2 space associated to the measure e−ntfµg. To work in
the fixed Hilbert space L2(µg), conjugate through the unitary transformation

L2(M,Σ ⊗E, e−ntfµg) → L2(M,Σ ⊗ E, µg) φ 7→ e−
ntf
2 φ

where Σ denotes the spinor bundle over M . Using (2), Dt conjugates to

D̃t =e
tf
2 De

tf
2 acting in L2(M,Σ ⊗E, µg)

and we compute

∂tD̃t =
1

2
(fD̃t + D̃tf).(9)

Using Proposition 1 we have on one hand

∂tη(D̃t) = ∂tη(Dt) = 0.

On the other hand, plugging (9) at t = 0 into (8) we write:

−∂tη(D̃t)|t=0 =TrR

[

1

2
(fD +Df)|D|−1

]

since D̃0 = D

=
1

2
TrR(fD|D|−1 + f |D|−1D) since TrR is a trace

=TrR(fD|D|−1) since D commutes with |D|

=

∫

M

tr(res(fD|D|−1)).

From the definition (see also (7)), res(fD|D|−1) = fres(D|D|−1). Since f was arbitrary,
we deduce tr(res(D|D|−1)) = 0 as claimed.

�
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We will need such a vanishing result for a larger class of first-order symmetric differential
operators:

Corollary 6. Let D be a twisted Dirac operator on a spin manifold (M, g). For any

u ∈ C∞(M,R), the operator Du := e−uDeu is symmetric on M with respect to the measure

µu := e2uµg, and the local eta residue of Du vanishes.

Proof. It is clear that Du is formally self-adjoint with respect to the measure µu. As in
the proof of Theorem 5, to prove that the local eta residue of Du vanishes we can assume
that M is compact. Then |Du| = e−u|D|eu, hence Du|Du|

−1 = e−uD|D|−1eu. By (7),
res(Du|Du|

−1) = res(e−uD|D|−1eu) = res(D|D|−1). The trace of this last endomorphism-
valued density vanishes by Theorem 5. �

5. Eta function on conformally cusp manifolds

We turn now to our main object of study.
Let M◦ be the interior of a compact manifold with boundary M of dimension n. We

assume that M is spin with a fixed spin structure, and that the metric is of conformally
cusp type as in [23]. To explain this notion, let x : M → [0,∞) be a boundary-defining
function for the smooth structure of M , namely

(1) x ∈ C∞(M);
(2) {x = 0} = ∂M ;
(3) The 1-form dx is non-vanishing on ∂M .

There exists a neighbourhood U ⊂ M of ∂M and a diffeomorphism ΦU : U → [0, ǫ) × ∂M
such that x|U is the composition of ΦU with the projection on the first factor. In the sequel
we fix such a product decomposition near the boundary.

The metric g on M◦ is said to be of conformally cusp type if on U ∩M◦ it is of the form

(10) gp = x2p

(

dx2

x4
+ h

)

where p ∈ (0,∞) and h is a metric on ∂M which does not depend on x. Thus gp = x2pgc,
where gc is a particular case of an exact cusp metric as in [20, 23] and also an exact b-metric

in the sense of Melrose. Geometrically, gc, which takes the form gc = dx2

x4 +h on U ∩M◦, is
simply a metric with infinite cylindrical ends, as one can see by switching to the variable
v = 1/x. Recall that x is a global function, thus gp is defined on M◦. The motivating
example is given by complete hyperbolic manifolds of finite volume. Outside a compact
set, such a hyperbolic manifold is isometric to an infinite cylinder (1,∞)× T where (T, h)
is a (possibly disconnected) flat manifold; the metric takes the form

dt2 + e−2th

which is easily seen to be of the form (10) with p = 1 if we set x := e−t.
Let E be a twisting bundle on M , with a connection which is flat in the direction of ∂x.

This implies that near the boundary, E together with its connection are pull-backs of their
restrictions to the boundary E|∂M . Finally, let Dp (where 2p is the power in the conformal
metric gp) denote the twisted Dirac operator associated to the aforementioned data.
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The main assumption under which we work is the invertibility of the boundary Dirac
operator. More precisely,

Assumption 1. For each connected component N of ∂M , we assume that the Dirac op-

erator D(∂M,h) on N with respect to the metric h and twisted by E, is invertible.

Under this assumption, the results of [23] imply that the L2 spectrum of the essentially
self adjoint operator Dp is discrete and obeys a Weyl-type law; moreover the eta function
η(Dp, s) is holomorphic for ℜ(s) > n and extends to a meromorphic function with possible
double poles at certain points. In particular, for n odd, s = 0 is such a possible double
pole.

Theorem 7. Under Assumption 1, the eta function of the twisted Dirac operator on M◦

is regular at s = 0.

It follows that we can define a “honest” eta invariant, depending on the eigenvalues of
Dp, as the regular value at s = 0 of η(Dp, s).

Proof. We need to revisit the construction giving the meromorphic extension and the struc-
ture of the poles of the eta function. The main tool is the calculus of cusp pseudodifferential
operators first introduced in [20], whose definition we review in Appendix B.

The spinor bundles for conformal metrics are canonically identified together with their
metrics. It follows that Dc, the Dirac operator for gc, is linked to Dp by formula (2).
However these two operators act on different L2 spaces because the measures µp and µc

induced by the metrics gp, gc are not the same. We view Dp as acting in L2(M◦,Σ⊗E, µp)
and we conjugate it through the Hilbert space isometry

L2(M◦,Σ ⊗ E, µp) → L2(M◦,Σ ⊗ E, µc), σ 7→ xnp/2σ.

It follows that Dp is unitarily equivalent to the operator

A = x
np

2 Dpx
−np

2 acting in L2(M◦,Σ ⊗ E, µc).

Using the formula (2) with e−f = xp, we see that

Dp = x−p n+1

2 Dcx
p n−1

2 .

In the sequel we thus replace Dp by the unitarily equivalent operator

A = x−
p

2Dcx
− p

2 acting in L2(M◦,Σ ⊗E, µc).

This operator is an elliptic operator in the weighted cusp calculus x−pDiff1
c(M,Σ ⊗ E).

The normal operator of a cusp operator P in Diff1
c(M,Σ⊗E) is the 1-parameter family of

operators on ∂M defined by

N(P )(ξ)φ = [ei ξ
xP (e−i ξ

x φ̃)]|x=0

for ξ ∈ R, where φ̃ is any extension of the spinor φ from ∂M to M .
Since gc and the twisting bundle E and its connection are products near infinity, we have

Dc = c(ν)x2∂x +D(∂M,h), A = x−p
[(

x2∂x −
px

2

)

c(ν) +D(∂M,h)

]

(11)
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where D(∂M,h) is the Dirac operator on ∂M , ν = dx
x2 , and c(ν) is Clifford multiplication by

ν. It follows from the definition that

(12) N(Dc)(ξ) = c(ν)iξ +D(∂M,h).

The boundary operator D(∂M,h) anti-commutes with c(ν) for algebraic reasons and is in-
vertible by Assumption 1. Since

N(Dc)(ξ)
2 = ξ2 +D2

(∂M,h)

is strictly positive, it follows that N(Dc)(ξ) is invertible for all ξ. Such an operator is called
fully elliptic. From [23], we know that A has essentially the same properties as an elliptic
operator on a closed manifold: it is Fredholm, has compact resolvent and (in the self-adjoint
case) has pure-point spectrum. The eigenvalues are distributed according to a suitable
Weyl-type law; in particular, the eta function η(A, s) is well-defined for large real parts of

s. Moreover, A(A2)−
s+1

2 is a holomorphic family of cusp operators in xpsΨ−s
c (M,Σ ⊗ E)

if we define it to be 0 on the finite-dimensional null-space of A, see [23, Proposition 15].
It follows from [23, Proposition 14] that the trace of this family (i.e., the eta function)
extends meromorphically to C with possible poles when s ∈ {n, n−1, n−2, . . .} and when
ps ∈ {1, 0,−1,−2 . . .}; the poles are at most double at points in the intersections of these
two sets, otherwise they are at most simple. The content of the theorem is that s = 0 is
in fact a regular point. We will see later that some of the above singularities do not occur
in our setting.

To start the proof, consider the holomorphic family in two complex variables

(s, w) 7→ xwA(s), A(s) = x−psA(A2)−
s+1

2 ∈ Ψ−s
c (M,Σ ⊗E)(13)

and the function

F (s, w) := Tr(xwA(s)).

Clearly F (s, ps) = η(Dp, s).

Lemma 8. The operator xwA(s) is of trace-class for ℜ(s) > n,ℜ(w) > 1. Moreover,

F (s, w) is holomorphic for ℜ(s) > n,ℜ(w) > 1 and extends to C × C as a meromorphic

function with possibly simple poles in s at s ∈ {n, n − 1, n − 2, . . .} and in w at w ∈
{1, 0,−1,−2, . . .}.

Proof. The operator kernel of xwA(s) is smooth outside the diagonal and continuous at
the diagonal for ℜ(s) > n. Its restriction to the diagonal is a smooth multiple of the cusp
volume density for such s, and has an asymptotic expansion in powers of x as x → 0,
starting from xw. This is due to the fact that A(s) is a conormal distribution on the cusp
double space M2

c , with Taylor expansion at the front face.
The trace of xwA(s) equals the integral on the lifted diagonal of the above density. The

normal bundle to ∆c in M2
c is canonically identified with cTM . By the Fourier inversion

formula, this is equal to

(14)

∫

cT ∗M

xwas(p, ξ)ω
n
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where as(p, ξ) is a holomorphic family of classical symbols of order −s on cT ∗M (smooth
down to x = 0) and ω is the canonical symplectic form on cT ∗M . The volume form ωn is
singular at M , however x2 times it extends smoothly to the boundary of cT ∗M . It follows
that the integral is absolutely convergent (hence holomorphic in s, w) for ℜ(s) > n,ℜ(w) >
1.

It is now easy to construct the analytic extension of (14) in w by expanding as(p, ξ) in
Taylor series at x = 0, using that for any k ∈ N, we have

∫ 1

0

xw+k dx

x2
=

1

w + k − 1
.

To get the analytic extension of (14) in s we expand as(p, ξ) in homogeneous components
in ξ of order −s− k where k ∈ N, then switching to polar coordinates and using that

∫ ∞

1

r−s−k+n−1dr =
1

s− n + k
.

�

We first note that there is no pole at s = 0. From here on, we assume that the dimension
of the manifold M is odd, otherwise the eta function is 0 so there is nothing to prove.

Proposition 9. The function F (s, w) is regular in s at s = 0.

Proof. From the construction of the analytic extension of F it follows that for every w with
ℜ(w) > 1,

Ress=0F (s, w) =

∫

M

xwtr(res(A|A|−1)).

As A is unitarily conjugated to Dp by a real function, we see from Corollary 6 that the
density tr(res(A|A|−1)) vanishes identically. In other words, the holomorphic function
w 7→ Ress=0F (s, w) is identically 0 on a half-plane, and by unique continuation it is
identically zero for all w. �

It remains to show that there is no pole in w at w = 0 either. This will imply Theorem
7 since η(Dp, s) = F (s, ps).

For this, we fix s with ℜ(s) > n and we examine F (s, w) as a meromorphic function in
the complex variable w.

For any cusp operator B ∈ xzΨ−s
c (M) (where we suppress the bundles for brevity)

consider the power series expansion of its Schwartz kernel x−zκB at the front face of the
cusp double space. Although x is not everywhere a defining function for the front face, we
do get such an expansion since κB vanishes in Taylor series at faces other than the front
face. Taking the inverse Fourier transform of the coefficients we can regard the coefficients
as lying in the suspended calculus Ψ−s

sus(∂M). This gives a short exact sequence of spaces
of operators

(15) 0 7→ x∞Ψ−s
c (M) →֒ xzΨ−s

c (M)
q
→ xzΨ−s

sus(∂M)[[x]] → 0.
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For a weighted cusp operator B ∈ xzΨ−s
c (M), we write

q(B) = xz
(

q0(B) + xq1(B) + x2q2(B) + . . .
)

It is easy to see that we have q0(B) = N(x−zB), see [20].
We use a result from [14]. Let s > n and P ∈ Ψ−s

c (M) with ℜ(s) > n. Then xwP is
trace-class for w > 1, and for k ∈ N,

(16) Resw=1−kTr(xwP ) =
1

2π

∫

R

Tr(qk(P )(ξ))dξ.

Proposition 10. The function F (s, w) does not have any poles in w.

Proof. Let R ∈ Diff1
c(M,Σ ⊗ E) be any cusp differential operator which equals D∂ :=

c(ν)D(∂M,h) near the boundary. This makes sense since we have a fixed product decompo-
sition near the boundary. By definition we have

q(R) = D∂ .

We notice that near ∂M , D∂ anticommutes with the cusp differential operator A from (11).
Therefore, if we denote by Is := ker(q) ⊂ Ψs

c(M,Σ ⊗ E) the subspace of operators which
vanish to every order at the front face, we have

RA+ AR ∈ I
2.

This implies

[R,A2] ∈ I
3, [R, (A2)−

s+1

2 ] ∈ I
−s;

the latter, by the construction of the complex powers [7]. Together with the obvious
commutation [R, x−ps] ∈ I0, we get for the operator A(s) defined in (13)

RA(s) + A(s)R ∈ I
−s.

Now for every cusp operator Q we have

q(RQ) = D∂q(Q), q(QR) = q(Q)D∂

because R is constant in x near the boundary. Therefore D∂q(A(s)) = −q(A(s))D∂. Using
conjugation with the invertible operator D∂ on ∂M , we see that for every ξ,

Tr (q(A(s))(ξ)) = Tr
(

D∂q(A(s))(ξ)D−1
∂

)

= −Tr
(

q(A(s))(ξ)D∂D
−1
∂

)

so Tr (q(A(s))(ξ)) = 0. Thus for all k ∈ N the integrand in (16) for P = A(s) vanishes. �

Together with Proposition 9 this finishes the proof of Theorem 7 since η(Dp, s) =
F (s, ps). �

In fact, by invoking the regularity results of Bismut and Freed [5], we can restrict further
the possible poles of the eta function. By a different argument, it turns out that if M◦

is a hyperbolic manifold, then there are no poles at all (see Theorem 12)! Of course, we
assume that n is odd since otherwise the eta function is 0.

Theorem 11. Under Assumption 1, the eta function η(Dp, s) is regular for ℜ(s) > −2
and has at most simple poles at s ∈ {−2,−4, . . .}.
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Proof. We have written η(Dp, s) = F (s, ps) for an analytic function F (s, w) in w ∈ C, s ∈
C \ {n, n − 1, . . . , 1,−1,−2,−3, . . .} by Theorem 7, Lemma 8, and Proposition 10. We
claim that F (s, w) is in fact regular at s ∈ C \ {−2,−4, . . .}. Indeed, for ℜ(w) > 1 the
residue in s at s = n− k is given by

∫

M

xw−p(n−k)tr(res(A|A|k−n−1)).

Since A = x
np

2 Dpx
−np

2 , we have A|A|k−n−1 = x
np

2 Dp|Dp|
k−n−1x−

np

2 , so by (7),

Ress=n−kF (s, w) =

∫

M

xw−p(n−k)tr(res(Dp|Dp|
k−n−1)).

Consider the well-known odd heat kernel small-time expansion given in Lemma 1.9.1 of
[10]

(17) Dpe
−tD2

p(y, y) ∼

∞
∑

k=0

t
−n+k−1

2 bk(y)

valid on the interior of any manifold, by locality of the coefficients; moreover, for k even,
we have bk ≡ 0. From the relationship

(18) Dp|Dp|
−s−1 =

1

Γ
(

s+1
2

)

∫ ∞

0

t
s−1

2 Dpe
−tD2

pdt

we deduce that

(19) res(Dp|Dp|
k−n−1) =

2

Γ(n−k+1
2

)
bk.

In particular, when k is even, this residue vanishes. By the regularity results of Bismut-
Freed [5], the pointwise traces of the local coefficients b0, b1, . . . , bn vanish identically, i.e.
tr(bk(y)) ≡ 0 for k = 0, . . . , n so for these k the density tr(res(Dp|Dp|

k−n−1)) also vanishes.
(The vanishing of the term with k = n, corresponding to the residue of the eta function
at the origin, has already been proved in Proposition 9 by using conformal invariance,
although here we could have also deduced this fact from the regularity results of Bismut-
Freed [5].) This proves that F (s, w) is regular at s ∈ C \ {−2,−4, . . .}. �

In the hyperbolic case we have a stronger result. The necessary local vanishing of the
heat trace is proved in the next section.

Theorem 12. If M◦ is an odd dimensional hyperbolic manifold of finite volume, the eta

function of the Dirac operator twisted by a homogeneous vector bundle is entire.

Proof. By Proposition 13 in Section 6, we have that for m ∈ Hn(R) with n = 2d+ 1,

tr(De−tD2

(m,m)) = 0.

This implies that tr(bk) = 0 for all the coefficients bk on Hn(R), and thus also on the
locally symmetric space M◦. In view of (19), the possible poles in s of the function F (s, w)
actually do not occur. Together with Proposition 10, this shows that the eta function is
entire since η(D, s) = F (s, s). �
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6. Odd heat kernels for homogeneous vector bundles over hyperbolic

space

The real hyperbolic space Hn(R) is given as the symmetric space SO(n, 1)/SO(n). But,
for our purpose, we use the realization of Hn(R) = G/K where G = Spin(n, 1), K =
Spin(n), which are the double covering groups of SO(n, 1), SO(n). We denote the Lie
algebras of G and K by g and k, respectively. The Cartan involution θ on g gives the
decomposition g = k ⊕ p where k and p are, respectively, the +1 and −1 eigenspaces of θ.
The subspace p can be identified with the tangent space To(G/K) ∼= g/k at o = eK ∈ G/K.
Let a be a fixed maximal abelian subspace of p. Then the dimension of a is one. Let
M = Spin(n− 1) be the centralizer of A = exp(a) in K with Lie algebra m. We put β to
be the positive restricted root of (g, a). Note that A ∼= R via ar = exp(rH) with H ∈ a,
β(H) = 1.

From now on we assume that n is odd, that is, n = 2d+ 1.
The spinor bundle Σ over Hn(R) = G/K = Spin(n, 1)/Spin(n) is defined by

(20) Σ = Spin(n, 1) ×τs
Vτs

−→ Hn(R) = Spin(n, 1)/Spin(n)

where (τs, Vτs
) denotes the spin representation of Spin(n). Here points of Spin(n, 1)×τs

Vτs

are given by equivalence classes [g, v] of pairs (g, v) under (gk, v) ∼ (g, τs(k)v). In general,
any G-homogeneous Clifford module bundle over Hn(R) is associated to (τs ⊗ τ, Vτs

⊗ Vτ )
for a unitary representation (τ, Vτ ) of Spin(n) as in (20), which we denote by Σ ⊗ E. For
instance, the representation τs ⊗ τs of Spin(n) determines a homogeneous vector bundle
Σ ⊗ Σ over Hn(R) whose fiber is Vτs

⊗ Vτs
∼= ⊕d

k=0 ∧
k (p ⊗ C).

The space of smooth sections from Hn(R) to Σ⊗E is denoted by C∞(Hn(R),Σ⊗E) and
can be identified with [C∞(G) ⊗ Vτs

⊗ Vτ ]
K where K acts on C∞(G) by the right regular

representation R. Now a natural connection ∇ : C∞(Hn(R),Σ⊗E) → C∞(Hn(R),Σ⊗E⊗
T ∗(G/K)) is given by

(21) ∇f =

n
∑

i=1

(R(Xi) ⊗ Id)f ⊗X∗
i

where {Xi} is an orthonormal basis of p and {X∗
i } is its dual basis. This connection is

the unique connection on C∞(Σ ⊗ E) which is G-homogeneous and anti-commutes with
the Cartan involution θ (see Lemma 3.2 of [24]). Now the Dirac operator D on Σ ⊗ E
associated to the connection ∇ is defined by

D =

n
∑

i=1

R(Xi) ⊗ c(Xi)

where c(Xi) denotes the Clifford multiplication.

Proposition 13. For m ∈ Hn(R), we have tr(De−tD2

(m,m)) = 0.

Proof. Recalling C∞(Hn(R),Σ⊗E) ∼= [C∞(G)⊗Vτs
⊗Vτ ]

K , the Schwartz kernel of De−tD2

is given by a section Ht in [C∞(G) ⊗ End(Vτs
⊗ Vτ )]

K×K satisfying

(22) Ht(k1gk2) = (τs ⊗ τ)−1(k2)Ht(g)(τs ⊗ τ)(k1)
−1
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for k1, k2 ∈ K, g ∈ G, which acts on [C∞(G)⊗Vτs
⊗Vτ ]

K by convolution. For each t > 0, Ht

lies in [S(G) ⊗ End(Vτs
⊗ Vτ )]

K where S(G) = ∩p>0S
p(G) with Sp(G) the Harish-Chandra

Lp-Schwartz space. For more details, we refer to Section 3 of [24]. Taking the local trace
of Ht, we have that ht := tr(Ht) ∈ S(G). From (22) and recalling that a point in the
homogeneous vector bundle Σ ⊗ E is given by an equivalence class through the relation
(gk, v) ∼ (g, (τs⊗τ)(k)v), we can see that the local trace of De−tD2

(m,m) is given by ht(e)
for the identity element e ∈ G.

By the Plancherel theorem (see Theorem 4.1 in [22]), we have the following expression
for ht at e ∈ G (up to a constant depending on a normalization),

(23) ht(e) =
∑

σ∈M̂

∫ ∞

−∞

Θσ,iλ(ht) p(σ, iλ)dλ,

where M̂ denotes the set of equivalence classes of irreducible unitary representations of M ,

Θσ,iλ(ht) = Tr

∫

G

ht(g)πσ,iλ(g) dg,

and p(σ, iλ) denotes the Plancherel measure associated to the unitary principal represen-
tation πσ,iλ. Here the unitary principal representation πσ,iλ = IndG

MAN(σ ⊗ eiλ ⊗ Id) acts
by the left regular representation on

Hσ,iλ = { f : G→ Vσ | f(gmarn) = e−(iλ+d)rHσ(m)−1f(g) }

where n = 2d+ 1. By Proposition 3.6 in [24], it follows that

(24) Θσ,iλ(ht) = [(τs ⊗ τ)|M : σ]([σ : σ+] − [σ : σ−])λe−tλ2

where σ± denotes the half spin representation of M such that τs|M = σ+ ⊕ σ−. By the
branching rule from K = Spin(2d+1) to M = Spin(2d) given in Theorem 8.1.3 of [13], we

have that for any τ ∈ K̂, σ ∈ M̂ , [τ |M : σ] ≤ 1 and [τ |M : σ] = 1 if and only if

ai − bi ∈ Z (i, j = 1, 2, . . . , d), a1 ≥ b1 ≥ . . . ad−1 ≥ bd−1 ≥ ad ≥ |bd|

where τ =
∑d

i=1 aiei, σ =
∑d

i=1 biei. Here we denote the highest weights of the representa-
tions τ, σ with respect to the standard basis. This implies that

[(τs ⊗ τ)|M : σ][σ : σ+] = [(τs ⊗ τ)|M : σ+] = [(τs ⊗ τ)|M : σ−]

= [(τs ⊗ τ)|M : σ][σ : σ−]

since σ± = 1
2
(e1 + e2 + . . . + ed−1 ± ed). Now, by Theorem 3.1 of [21], we also have

p(σ+, iλ) = p(σ−, iλ). This implies ht(e) = 0 by (23) and (24), which completes the
proof. �

Remark 14. It can be proved, using the Selberg trace formula, that the eta function vanishes
at negative odd integers under the condition Γ ∩ P = Γ ∩ N for the fundamental group
Γ of the given hyperbolic manifold where P = MAN (Langlands decomposition) denotes
a parabolic subgroup of G fixing the infinity point of a cusp. Recall that this fact is true
for arbitrary operators of Dirac type over closed manifolds, as follows immediately from
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(18) and from the odd heat trace expansion (17). We believe that this vanishing holds also
in the context of manifolds with conformal cusps without this technical condition but the
necessary work, which surpasses the scope of this paper, is left for a future publication.

Appendix A. The spectrum of the Dirac operator

Recall that under Assumption 1, the Dirac operator Dp is always essentially self-adjoint
with discrete spectrum [23]. One may ask what happens with the eta invariant when
Assumption 1 does not hold. Like in [4], for p ≤ 1 when the manifold is complete with
respect to gp, the answer is that the continuous spectrum of the twisted Dirac operator
(which is essentially self adjoint by [28], [27]) becomes the full real line, hence the usual
definition of the eta invariant breaks down. We will not attempt here to extend the
definition in that case, note however that for finite-volume hyperbolic manifolds this has
been done in [26]. The proof of the following result is very similar to the corresponding
statements from [11, 12] concerning magnetic and Hodge Laplacians.

Theorem 15. Let M be a spin manifold with conformal cusps and E a twisting bundle of

product type near the cusps. Let Dp denote the Dirac operator associated to the metric (1)
on M , twisted by E. If Assumption 1 does not hold, then

• if 0 < p ≤ 1, the essential spectrum of Dp is R.

• if p > 1, then Dp is not essentially self-adjoint, and every self-adjoint extension of

Dp in L2 has purely discrete spectrum.

Proof. The idea is to reduce the problem to a 1-dimensional problem, essentially to the
computation of the spectrum of i∂t on an interval.

When p > 1, the metric is of metric horn type, and self-adjoint extensions of Dp on M
(given by boundary conditions at x = 0) are in 1-to-1 correspondence with Lagrangian
subspace in ker(D(∂M,h)) with respect to the symplectic form

ω(u, v) := 〈c(ν)u, v〉L2(∂M,Σ⊗E),

see [16]. Such subspaces exist by the cobordism invariance of the index (note that ∂M
may be disconnected). Moreover, since Assumption 1 does not hold, there exist infinitely
many Lagrangian subspaces in ker(D(∂M,h)) thus Dp is not essentially self-adjoint.

We work with the operator A from (11), which is unitarily conjugated to Dp hence has
the same spectrum as Dp. When p > 1, for each Lagrangian subspace W ⊂ ker(D(∂M,h)),
A is essentially self-adjoint on the initial domain

DW (A) = C
∞
c (M,Σ ⊗E) ⊕ {φ(x)xp/2w;w ∈W}

for some fixed cut-off function φ supported in the cusps which equals 1 near infinity. When
0 < p ≤ 1, A is essentially self-adjoint on D(A) = C∞

c (M,Σ ⊗E).
The essential spectrum of A (with the above boundary condition when p > 1) can be

computed on the complement of any compact set in M , i.e., on the union of the cusps,
by imposing self-adjoint boundary conditions. More precisely, consider the non-compact
manifold with boundary Mǫ := {x ≤ ǫ}. We need to specify a self-adjoint boundary
condition for A at x = ǫ, which is obtained by the APS condition and by choosing yet
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another Lagrangian subspace in ker(D(∂M,h)). With these self-adjoint boundary conditions,
the decomposition principle (see [4, Prop. 1]) states that the essential spectrum of A on
Mǫ coincides with the essential spectrum of A on M .

We decompose the space of L2 spinors on ∂M twisted by E into the space of zero-modes
(i.e., the kernel of D(∂M,h)) and its orthogonal complement consisting of “high energy
modes”. Accordingly we get an orthogonal decomposition of L2(Mǫ,Σ ⊗ E) into zero-
modes and high energy modes, the main point being that A preserves this decomposition.
As in [12, Prop. 5.1] the high energy modes do not contribute to the essential spectrum.
The reason is that there exists a cusp pseudodifferential operator R ∈ x−2pΨ−∞

c (M,Σ⊗E),
localized on the cusps and acting as 0 on high energy modes, such that A2 + R is fully
elliptic. Therefore this operator has discrete spectrum so in particular, on high energy
modes A2 has discrete spectrum as claimed. We are left with the formally self-adjoint
operator

A0 := x1−pc(ν)
(

x∂x −
p
2

)

acting in L2(0, ǫ)⊗ker(D(∂M,h)) with respect to the volume form dx
x2 (with a certain boundary

condition at x = ǫ).
We claim that A0 is unitarily equivalent to c(ν)t∂t over a certain interval depending on

ǫ and p, with respect to the measure dt
t
. We start by conjugating with x1/2, so the volume

form becomes dx
x

and

x−
1

2A0x
1

2 = x2−pc(ν)∂x +
c(ν)

2
(1 − p)x1−p.

For p = 1, we already obtain the desired expression for our operator by setting t := x. For
p 6= 1, we write

x2−p∂x = y2∂y, y := (1 − p)x1−p.

Then, after conjugating with y−1/2, we obtain the operator c(ν)y2∂y acting in L2 with

respect to the measure dy
y2 . With the change of variable cusp-to-b

t := e−1/y

we get the desired operator.
Now for p ≤ 1 the operator c(ν)t∂t acts on an interval of the form (0, β), while for p > 1

it acts on (1, β) for some strictly positive β. Here c(ν) is a diagonalizable automorphism
with ±i eigenvalues. For every self-adjoint extension, in the first case the spectrum is R
while in the second case it is discrete. �

Alternatively, one could prove the first part of the theorem similarly to [4] by constructing
Weyl sequences for each real number.

Although for p > 1 the spectrum of any self-adjoint extension of Dp is discrete even
when Assumption 1 does not hold, the methods of this paper do not show the meromorphic
extension of the eta function in that case.
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Figure 1. Compactifying X into M .

Appendix B. Elements of the cusp calculus

In this appendix we give a short introduction to the cusp calculus (first defined by
Melrose and Nistor [20]). Consider a Riemannian manifold X with a cylindrical end as
shown in the left-hand side of Figure 1. The metric takes the form dt2 + h on the cylinder
where h is a metric on the cross section N . Changing coordinates to x = 1/t and noting
that for t ∈ (1,∞) we have x ∈ (0, 1), and t → ∞ implies x → 0, it follows that we
can view X as the interior of the compact manifold M obtained from X by replacing the
infinite cylinder (1,∞)t ×N with the finite cylinder [0, 1)x ×N , see Figure 1.

A cusp pseudodifferential operator is just a “usual” pseudodifferential operator on X
that “behaves nicely” near t = ∞. To make this precise, recall that in local coordinates
on the cylinder, the Schwartz kernel of an m-th order (m ∈ C) pseudodifferential operator
A on X takes the form

(25) κA =

∫

ei(t−t′)τ+i(y−y′)·η a(t, y, τ, η) d̄τ d̄η,

where (t, t′, y, y′) ∈ (1,∞)2 ×U
2 with U local coordinates on N and a is a classical symbol

of order m in τ and η. We say that the operator A is, by definition, an m-th order cusp

pseudodifferential operator if in the compactified coordinates,

ã(x, y, τ, η) := a(1/x, y, τ, η)

is smooth at x = 0 (and is still classical in τ and η). This definition only works on the
cylinder, so to be more precise, A is a cusp operator if it can be written as A1 + A2 + A3,
where A1 is of the form (25) such that ã(x, y, τ, η) := a(1/x, y, τ, η) is smooth at x = 0,
A2 is a usual pseudodifferential operator on the compact part of X, and finally, where A3

is a smoothing operator on X that vanishes, with all derivatives, at ∞ on the cylinder (or
equivalently, the Schwartz kernel of A3 is a smooth function on M2 vanishing to infinite
order at ∂(M2)). The space of cusp pseudodifferential operators of order m ∈ C is denoted
Ψm

c . If the symbol a is polynomial in τ, η, the resulting operator is differential, and can
be written near x = 0 as sums of compositions of partial differentials on N and of ∂t =
−x2∂x with smooth coefficients on the compactification M . The space of cusp differential
operators of order m ∈ Z is denoted Diffm

c .
Cusp operators are usually presented geometrically in relation to blown-up spaces, which

might obscure their straightforward definition, so we shall explain this relationship. Setting
z = (t − t′, y − y′), which is a normal coordinate to the set {z = 0} = {t = t′, y = y′} =
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Figure 2. The blown-up manifold M2
c . (We omit the N2 factor.)

diagonal in X2, we see from (25) that κA is written as the inverse Fourier transform of
a symbol using the normal coordinate z. Hence κA is a distribution on X2 that is, by
definition, conormal to the diagonal in X2. Expressing the kernel (25) in the compactified
coordinates, we obtain

(26) κA =

∫

eiz·(τ,η) ã(x, y, τ, η) d̄τ d̄η , where z =
(1

x
−

1

x′
, y − y′

)

.

Note that z is not a normal coordinate to the diagonal (given by {x = x′, y = y′}) in M2

because the coordinate 1
x
− 1

x′
fails to be smooth at the corner x = x′ = 0. Thus, it seems

like switching to compactified coordinates destroys the conormal distribution portrayal of
pseudodifferential operators. However, we now show how to interpret this kernel as being
conormal, not in M2, but on a related blown-up manifold. The idea is to blow-up the
singular point x = x′ = 0 until the kernel (26) can be interpreted as conormal. To begin
this program, we first write

M2 ∼= [0, 1)x × [0, 1)x′ ×N2

near the corner {x = x′ = 0} as shown pictorially on the left in Figure 2. Next, we

introduce polar coordinates (r, θ) in the x, x′ variables, where r =
√

x2 + (x′)2 and θ =
arctan(x′/x). Geometrically we can think of introducing polar coordinates as “blowing
up” the set {x = x′ = 0} by replacing it with a quarter-circle (the angular θ coordinate).
The resulting manifold is called the b-double space M2

b , see the middle picture in Figure 2.
Actually, instead of using the standard polar coordinates (r, θ), in the sequel it is helpful
to use the projective coordinates (x, s) where s = x/x′, which can be used as coordinates
instead of (r, θ) for θ away from 0 and π/2. Here, x represents the radial coordinate and s
represents the angular coordinate along the quarter circle.

Now we form the cusp double space M2
c . To do so, we introduce polar coordinates where

s = 1 and x = 0, in M2
b , as shown in Figure 2. This blow-up geometrically replaces the

set s = 1, x = 0 in M2
b with a half circle, which is called the cusp front face and which we

denote by ffc. Since the set s = 1, x = 0 is the set of points where 1− s = 0 and x = 0, we
can use the projective coordinate

w =
1 − s

x
=

1

x
−

1

x′
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as an angular coordinate along ffc and we can use x as the radial variable, at least if we
stay away from the extremities of ffc. Thus, (x, w) can be used as coordinates near the
blown-up face ffc. Note that the set {x = x′} corresponds to the set {w = 0} in M2

c ,
therefore w is a normal coordinate to {x = x′}. Moreover, in view of the formula (26), we
see that κA is, by definition, a distribution conormal to the set {w = 0, y = y′} in M2

c ,
which is called the cusp diagonal. In fact, one can prove the following theorem.

Theorem 16. The Schwartz kernels of cusp pseudodifferential operators are in one-to-one

correspondence with distributions on M2
c that are conormal to the cusp diagonal and vanish

to infinite order at all boundary hypersurfaces of M2
c except the cusp front face where they

are smooth.

Our original definition of a cusp pseudodifferential operator as presented after (25) is
usually disregarded in favor of the more geometric definition presented in the above the-
orem. It is evident how to extend the definition from the scalar case to cusp operators
acting on sections of vector bundles which are of product type in t near t = ∞.
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