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Abstract. We give a short proof of the fact that compact pluricanonical locally confor-
mally Kähler manifolds have parallel Lee form.

1. Introduction

A locally conformally Kähler (lcK) manifold is a complex manifold (M,J) together with
a Hermitian metric g which is conformal to a Kähler metric in the neighbourhood of every
point. The logarithmic differentials of the conformal factors glue up to a globally defined
closed 1-form θ, called the Lee form, such that the fundamental 2-form Ω := g(J ·, ·) satisfies

(1) dΩ = 2θ ∧ Ω.

When θ is parallel with respect to the Levi-Civita connection ∇ of g, the lcK manifold
(M,J, g) is called Vaisman. G. Kokarev introduced in the context of harmonic maps [6]
the seemingly larger class of pluricanonical lcK manifolds, defined as those lcK manifolds
(M, g, J) for which the covariant derivative of the metric dual ξ := θ] of the Lee form
anti-commutes with the complex structure J :

(2) ∇JXξ = −J∇Xξ, ∀X ∈ TM.

In their recent preprint [10], L. Ornea and M. Verbitsky announce the proof of the
following result:

Theorem 1. Every compact pluricanonical lcK manifold (M,J, g) is Vaisman.

The arguments given in [10] are based on an impressive amount of previous results by
numerous authors. Among these we mention: the classification of complex surfaces by
Kodaira, the classification of complex surfaces of Kähler rank 1 by Chiose and Toma [3]
and Brunella [2], some results by M. Kato concerning subvarieties of Hopf manifolds [5],
the classification of surfaces carrying Vaisman metrics by Belgun [1], as well as several
previous results by Ornea, Verbitski and their collaborators [4], [8], [9].

As a matter of fact, while were not able to follow their arguments in detail, we discovered
instead that Theorem 1 can be proved in a more direct way. Our idea is based on the
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observation that on a pluricanonical manifold the metric duals ξ and Jξ of θ and Jθ
commute, and this eventually shows that some partial Laplacian (in the analists sense) of
the square norm of ∇ξ is larger than or equal to the square norm of ∇ξ ◦ ∇ξ. By looking
at a point where |∇ξ|2 is maximal, this shows that ∇ξ ≡ 0. The next section contains the
details of our proof.

In the final section we remark that our argument shows the existence, in every complete
lcK manifold which is pluricanonical but not Vaisman, of a totally geodesic embedded
holomorphic curve isometric either to the euclidean plane or to a flat cylinder.

2. Proof of Theorem 1

It is well known that on Hermitian manifolds, the exterior derivative of the fundamental
2-form determines its covariant derivative. The formula for the covariant derivative of J
determined by (1) is (see e.g. [7]):

(3) ∇XJ = X ∧ Jθ + JX ∧ θ, ∀X ∈ TM,

where if α is a 1-form, Jα denotes the 1-form defined by (Jα)(Y ) := −α(JY ) for all
tangent vectors Y , and X ∧ α is the endomorphism of the tangent bundle defined by

(X ∧ α)(Y ) := g(X, Y )α] − α(Y )X.

Consider the symmetric endomorphism S := ∇ξ. We need to show that, under the
compactness assumption, (2) implies the vanishing of S. By (3) we have

(4) ∇Xξ = SX, ∇X(Jξ) = JSX + θ(X)Jξ + θ(JX)ξ − |θ|2JX,
which by lowering the indices also reads

(5) ∇Xθ = (SX)[, ∇X(Jθ) = (JSX)[ +Xy(θ ∧ Jθ − |θ|2Ω)

Since SJ = −JS by (2), the endomorphism JS is symmetric. From (5) we thus get

(6) d(Jθ) = 2(θ ∧ Jθ − |θ|2Ω),

(7) Lξg = 2g(S·, ·), LJξg = 2g(JS·, ·).
Taking a further exterior derivative in (6) and using (1) yields

0 = d2(Jθ) = 2
(
−θ ∧ d(Jθ)− d(|θ|2) ∧ Ω− |θ|2dΩ

)
= −2d(|θ|2) ∧ Ω,

whence |θ|2 is constant on M . We thus obtain for every tangent vector X

0 = X(|ξ|2) = 2g(∇Xξ, ξ) = 2g(SX, ξ) = 2g(Sξ,X),

showing that Sξ = 0 (and therefore also SJξ = 0 using (2)). From (4) we thus get
∇Jξξ = ∇ξ(Jξ) = ∇Jξ(Jξ) = ∇ξξ = 0, and in particular

(8) [ξ, Jξ] = 0.

We note for later use that the distribution {ξ, Jξ} is integrable, and its integral leaves are
totally geodesic.
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Cartan’s formula shows that on every lcK manifold

(9) LJξΩ = d(JξyΩ) + JξydΩ = −dθ + 2Jξy(θ ∧ Ω) = 0.

Moreover, on pluricanonical manifolds, equation (6) gives

(10) LξΩ = d(ξyΩ) + ξydΩ = d(Jθ) + 2ξy(θ ∧ Ω) = 0.

From (7) and (10) we infer

(11) LξJ = 2JS, LJξJ = −2S.

We notice that (8) implies [Lξ,LJξ] = L[ξ,Jξ] = 0, and thus from (11):

(12) LξS = −1

2
LξLJξJ = −1

2
LJξLξJ = −LJξ(JS) = 2S2 − JLJξS,

which (after composing with J on the left) also reads

(13) LJξS = JLξS − 2JS2.

Taking a further Lie derivative in (12) and using (11) yields

LJξLξS = 2SLJξS + 2(LJξS)S + 2SLJξS − JL2
JξS

= 4SLJξS + 2(LJξS)S − JL2
JξS.

Similarly, from (13) and (11) we obtain:

LξLJξS = 2JSLξS + JL2
ξS − 4JS3 − 2J(LξS)S − 2JSLξS

= JL2
ξS − 4JS3 − 2J(LξS)S

= JL2
ξS − 8JS3 − 2(LJξS)S.

Comparing the last two equations and using LξLJξ = LJξLξ we obtain

(14) J(L2
ξS + L2

JξS) = 4SLJξS + 4(LJξS)S + 8JS3.

We compose with −SJ to the left and take the trace in the above equation:

tr(S(L2
ξS + L2

JξS)) = −4tr(SJS(LJξS))− 4tr(SJ(LJξS)S) + 8tr(S4) = 8tr(S4),

from the trace identity and the hypothesis SJ = −JS. Using this we compute:

(L2
ξ + L2

Jξ)(tr(S
2)) = tr

(
(L2

ξS)S + 2(LξS)2 + S(L2
ξS) + (L2

JξS)S + 2(LJξS)2 + S(L2
JξS)

)
= 2tr((LξS)2) + 2tr((LJξS)2) + 2tr

(
S(L2

ξS) + S(L2
JξS)

)
= 2tr((LξS)2) + 2tr((LJξS)2) + 16tr(S4).

By taking the Lie derivative of the relation g(S·, ·) = g(·, S·) with respect to ξ and using
(7) we immediately get g(LξS·, ·) = g(·,LξS·), i.e., the endomorphism LξS is symmetric.
Taking now the Lie derivative of the relation SJ+JS = 0 with respect to ξ and using (12)
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we obtain that LξS anti-commutes with J . Finally, (13) shows that the symmetric part of
LJξS is JLξS and its skew-symmetric part is −2JS2. The previous relation thus reads

(L2
ξ + L2

Jξ)(tr(S
2)) = 2tr((LξS)2) + 2tr((LJξS)2) + 16tr(S4)

= 2tr((LξS)2) + 2tr((LξS)2)− 4S4) + 16tr(S4)

= 4tr((LξS)2) + 8tr(S4).

We use now the compactness assumption: there exists a point xmax ∈ M where tr(S2),
the square norm of S, attains its supremum. At xmax the left hand side of the equation
above is non-positive, while the right hand side is non-negative (since we have seen that
LξS is symmetric). We deduce that tr(S4) – and thus S itself – both vanish at xmax, so S
vanishes identically. This is the conclusion of Theorem 1.

3. Non-compact pluricanonical manifolds

Our method of proof extends partially to the case where the pluricanonical manifold
(M,J, g) is complete but not compact.

Theorem 2. Let (M,J, g) be a complete pluricanonical manifold which is not Vaisman.
Then there exists a totally geodesic holomorphic curve embedded in M and isometric either
to the standard R2 or to a flat cylinder R2/lZ for some radius l > 0.

Proof. The leaves of the foliation tangent to the totally geodesic distribution {ξ, Jξ} are
totally geodesic holomorphic curves, and consist of complete flat surfaces. The universal
cover of such a surface is isometric to the euclidean plane, hence each leaf is isomorphic
(as Kähler manifold) to either R2, a flat cylinder, or a flat torus.

Over a compact leaf, the endomorphism S vanishes by the same argument as in the last
paragraph of the proof of Theorem 1. So if (M,J, g) is not Vaisman, we must have at least
one non-compact leaf, hence either a flat R2 or a cylinder isometrically and holomorphically
embedded in M . �

We do not know whether there exist complete non-compact pluricanonical manifolds
which are not Vaisman.
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