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Abstract. We consider a compact manifold X whose boundary
is a locally trivial fiber bundle, and an associated pseudodifferen-
tial algebra that models fibered cusps at infinity. Using trace-like
functionals that generate the 0-dimensional Hochschild cohomol-
ogy groups we first express the index of a fully elliptic fibered cusp
operator as the sum of a local contribution from the interior of X
and a term that comes from the boundary. This leads to an ab-
stract answer to the index problem formulated in [11]. We give a
more precise answer for first-order differential operators when the
base of the boundary fiber bundle is S1. In particular, for Dirac
operators associated to a metric of the form gX = dx2

x4 + dθ2

x2 + gF

near ∂X = {x = 0} with twisting bundle T we obtain

index(A) =
∫

X

Â(X) ch(T )−
lima η(A|∂X)

2
in terms of the integral of the Atiyah-Singer form in the interior of
X, and the adiabatic limit of the η-invariant of the restriction of
the operator to the boundary.

1. Introduction

Let X be a compact manifold whose boundary is the total space of
a locally trivial fiber bundle ϕ : ∂X → Y of closed manifolds. Let
x : X → R+ be a defining function for ∂X, i.e., ∂X = {x = 0} and
dx does not vanish at ∂X. As shown by Melrose [13], the choice of an
appropriate Lie algebra of vector fields (boundary fibration structure) is
the first step towards a pseudodifferential calculus on X. This choice is
by no means unique, and different such structures on X require in fact
completely different analytic tools – see, for instance, [6, 7, 9, 10, 11, 15].
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In this paper we study the boundary fibration structure determined by
the Lie algebra VΦ(X) of fibered-cusp or briefly Φ-vector fields where a
smooth vector field V on X belongs to VΦ(X) provided V is tangent
to the fibers of ϕ at the boundary and satisfies V x ∈ x2C∞(X). It
is instructive to picture Φ-vector fields in local coordinates. Let y be
a local coordinate system on Y lifted to ∂X via ϕ. Complete y to a
local coordinate system (y, z) on ∂X and extend this smoothly to an
open set U ⊂ X. Then (x, y, z) : X ⊇ U → R+ × Rn

y × Rm
z are local

coordinates near ∂X. In these variables, V ∈ VΦ(X) can be written as

V |U(x, y, z) = a(x, y, z)x2∂x +
n∑

j=1

bj(x, y, z)x∂yj
+

m∑
k=1

ck(x, y, z)∂z

with coefficients a, bj, and ck smooth down to x = 0. Taking these
coefficients as local trivializations we see that the Lie algebra VΦ(X)
can be realized as the space of smooth sections of a smooth vector
bundle ΦTX → X that comes equipped with a natural homomorphism
ΦTX → TX.

The algebra of Φ-differential operators is by definition the envelop-
ing algebra Diff∗Φ(X) of VΦ(X) over C∞(X). A corresponding Φ-
pseudodifferential calculus Ψ∗

Φ(X) has been constructed by Mazzeo and
Melrose in [11]. First, Φ-pseudodifferential operators act canonically
on C∞(X), but since Diff∗Φ(X) as well as Ψ∗

Φ(X) are C∞(X)-modules we
can consider Φ-(pseudo)differential operators acting between sections of
smooth vector bundles E ,F → X over X and we write Diff∗Φ(X; E ,F)
(resp. Ψ∗

Φ(X; E ,F)) for the corresponding spaces. Important examples
of Φ-differential operators are the Laplacian and the Dirac operators
corresponding to exact Φ-metrics, for instance (1) (see [11]; these are
certain complete metrics on X◦ which induce Euclidean metrics on
ΦTX over X).

Note that almost the same calculus of pseudodifferential operators can
be constructed by integrating an appropriate Lie algebroid as in [19].

As in the closed case, a Φ-pseudodifferential operator of order m0 acts
continuously as an operator of order m0 on a scale of Φ-Sobolev spaces
Hs

Φ, s ∈ R. The Φ-pseudodifferential operators that induce Fredholm
operators Hs

Φ → Hs−p
Φ have been characterized by Mazzeo and Melrose

[11] as being those operators with invertible principal symbol as well as
invertible normal operator (see Section 3). Such operators are called
fully elliptic. The index of a fully elliptic operator A is independent
of the particular s ∈ R. A preliminary index formula for fully elliptic
operators has been obtained in [6] under the assumption that E =
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F (this assumption is not a restriction if we already have an elliptic
operator from E to F ; an isomorphism E → F is given by the principal
symbol of the operator applied to a non-vanishing Φ-vector field, which
exists whenever ∂X 6= ∅).

Let us recall the index formula. We need several trace-like functionals
on the Φ-calculus whose definition has been adapted from a similar
context in [16]. Let Q ∈ Ψ1

Φ(X) be a positive self-adjoint fully elliptic
operator and Q−λ ∈ Ψ−λ

Φ (X) the family of complex powers constructed
as in [5]. Then for A ∈ Ψm0

Φ (X), the operator xzAQ−λ is of trace
class for <(z) > n + 1 and <(λ) > m0 + dim(X) (recall that n =
dim(Y ) and dim(X) = n+m+1) and the map (λ, z) 7→ zλTrxzAQ−λ

admits a meromorphic extension to C2 with at most simple poles in
each variable, which is analytic near (z, λ) = (0, 0); thus, we can define

zλTr(xzAQ−λ) =: Tr∂,σ(A) + λT̂r∂(A) + zT̂rσ(A)

+ λ2W (λ, z) + λzW ′(λ, z) + z2W ′′(λ, z),

where the error terms W,W ′,W ′′ are holomorphic near 0 ∈ C2. The
functionals obtained in this way have been studied in [6].

Theorem 1 ([6]). Let A ∈ Ψm0
Φ (M, E) be a fully elliptic Φ-operator.

Then
indexA = T̂rσ(A[logQ,B])− T̂r∂([A, log x]B)

where B ∈ Ψ−p
Φ (X) is any inverse of A up to trace class remainders,

and

[logQ,B] :=
d

dλ
(QλBQ−λ)|λ=0 ∈ Ψ−p

Φ (X, E);

[log x,A] :=
d

dz
(xzAx−z)|z=0 ∈ xΨp−1

Φ (X, E).

This is similar to the improvement of the original computation of Mel-
rose and Nistor [16] given in [8]. From [6] we know already that the first
contribution to the index is local, i.e., does not change if we modify A
by an operator of sufficiently negative order, whereas the second con-
tribution is global but depends only on the behavior of the operators
at the boundary, i.e., it does not change if we modify A by an operator
that vanishes to sufficiently high order at the boundary. We identify
in Proposition 16 the local term in Theorem 1 with the regularized
Atiyah-Singer integral for the index, defined in terms of heat kernel
asymptotics.

In general, the boundary term is rather inexplicit. In this paper we
compute this boundary term (and hence the index) for a class of fully
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elliptic first-order Φ-differential operators which includes Dirac oper-
ators. We can treat the case where the base Y of the fiber bundle
ϕ : ∂X → Y is the circle S1. Choose a connection in ϕ, i.e., a rule for
lifting the horizontal vector field ∂θ. Fix a smooth metric on X◦ which
in a product decomposition ∂X × [0, ε) ⊂ X close to the boundary has
the form

(1) gX =
dx2

x4
+
dθ2

x2
+ gF ,

where θ is the variable in the circle and gF is a family of metrics on
the fibers. Such a metric is called a product Φ-metric; it induces an
Euclidean metric on the vector bundle ΦTX.

Theorem 2. Let X be a compact manifold with boundary fibered over
S1 and metric (1) over X◦. Let E ,F → X be Hermitian vector bundles
together with an orthogonal decomposition E|∂X = E+⊕E−, Hermitian
connections ∇ in E± and an isometry σ : E|∂X → F|∂X . Let

A : C∞c (X◦, E) → C∞c (X◦,F)

be an elliptic first-order differential operator which in the fixed product
decomposition ∂X × [0, 1] ⊂ X looks like

(2) A = σ

(
(x2∂x −

x

2
)

[
1 0
0 1

]
+

[
−ix∇̃∂θ

D∗

D ix∇̃∂θ

])
where D is a family of invertible operators on the fibers of ϕ, D∗ is
the formal adjoint of D, and ∇̃∂θ

:= ∇∂θ
+ 1

4
Tr(L∂θ

gF ). Then A is
Fredholm as an unbounded operator in L2(X, E ,F , gX), and its index
is given by

index(A) = AS(A)− lima η(δx)

2
.

Here AS(A) is the integral on X of the pointwise supertrace of the heat
kernel of A, which is a local expression in the full symbol of A and in
the metric, while lima η(δx) is the adiabatic limit (the limit as x tends
to 0) of the eta invariant of the one-parameter family of “boundary
operators” indexed by x ∈ [0,∞)

δx :=

[
−ix∇̃∂θ

D∗

D ix∇̃∂θ

]
: C∞(∂X, E) → C∞(∂X, E).(3)

Note that we do not need to actually construct the heat kernel of A in
order to define the local index density. This density is slightly less than
L1, see Proposition 23. It is compelling to look for a proof by a passage
to the limit in the classical Atiyah-Patodi-Singer formula, however this
is too hard even for product fibrations.
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Corollary 3. Let (X, gX) be a compact spin manifold with boundary
and T → X a Hermitian vector bundle with constant metric and con-
nection near ∂X. Then the twisted Dirac operator A on (X, gX) is of
the form (2). Moreover, A is Fredholm on L2(X, E ,F , gX) if and only
if the family D of Dirac operators on the fibers is invertible, and

index(A) =

∫
X

Â(X) ch(T )− lima η(δx)

2
.

This follows immediately from the local index theorem (see [2]) and
Theorem 2. One checks directly in this case that the curvature of gX

is a smooth 2-form on X with values in End(ΦTX) so Â(X) ch(T ) is a
smooth form on X, thus in L1 (see Proposition 17).

Paolo Piazza suggested to us that Corollary 3 may be equivalent to
the same statement for the conformally equivalent metric gd := x2gX ,
which is a particular case of Vaillant’s index formula [21]. We stress
however that Theorem 2 is inaccessible with the standard heat operator
techniques. It is remarkable that while the local index formula fails for
our more general operators, the boundary correction term is still the
same as in the case of compatible Dirac operators.

Corollary 4. Let A be as in Theorem 2. Then the integral of the
index density is an integer if and only if the determinant bundle of the
boundary family D has trivial holonomy.

Indeed, the adiabatic limit of the eta invariant equals the logarithm of
the holonomy (see Section 2 for the definitions). In particular, under
the assumptions of Corollary 3 the Atiyah-Singer volume form defines
an integral cohomology class.

A related index formula has been obtained by Nye and Singer [20] for
the spin Dirac operator on X = S1×R3 where the boundary fiber bun-
dle is the projection S1 × S2 → S2. More generally, Vaillant [21] gave
a formula for the index of a Dirac operator of a d-metric on arbitrary
manifolds with fibered cusps under some mild conditions. Vaillant’s
formula contains the adiabatic limit of the eta invariant in the form
computed by Bismut and Cheeger [3]. It seems therefore likely that
our Theorem 2 also continues to hold for boundary fiber bundles with
higher dimensional base.

The paper is structured as follows: in Section 2 we recall results about
the eta invariant of self-adjoint operators. Section 3 is devoted to an
introduction to fibered cusp pseudodifferential operators, with a focus
on traces. The index theorem 1 is reviewed in Section 4. Finally the
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proof of Theorem 2 occupies Section 5. A surprising feature of the
proof is the appearance and then cancellation of the integral over S1 of
the determinant of D∗D in the boundary term of the index formula. As
noted above, our results and Vaillant’s have a non-empty intersection
(Corollary 3) and we close the paper by explaining this link.

Acknowledgments. We are grateful to Richard Melrose, Michael
Singer and Boris Vaillant for helpful discussions about Φ-geometry and
analysis. We thank Victor Nistor and Paolo Piazza for their remarks.
Last but not least, our thanks go to the anonymous referee for the
excellent and friendly advice.

2. Review of eta invariants and adiabatic limits

The eta function of an elliptic self-adjoint differential operator δ was
defined by Atiyah, Patodi and Singer [1] as

η(δ, s) := Tr
(
(δ2)−

s+1
2 δ
)
.

(assuming that δ is invertible).

Lemma 5. The operator δx defined in (3) for 0 ≤ x <∞ is symmetric

on L2(∂X, E , dθ2

x2 + gF ).

Proof. We must show that ∇̃∂θ
is skew-symmetric. Let s1, s2 ∈

C∞(∂X, E). Then

(∇̃∂θ
s1, s2) + (s1, ∇̃∂θ

s2)

=

∫
∂X

(
(∇̃∂θ

s1, s2) + (s1, ∇̃∂θ
s2)
)
dgFdθ

=

∫
∂X

(∂θ(s1, s2) +
(s1, s2)

2
Tr(L∂θ

gF ))dgFdθ

=

∫
∂X

L∂θ
((s1, s2)dg

F )dθ

=

∫
S1

∂θ

(∫
∂X/S1

(s1, s2)dg
F

)
dθ = 0. �

We will see in Section 5 that δx is also invertible for small enough x > 0.

The eta invariant of δx is by definition the regularized value of η(δx, s)
at s = 0. In fact, the eta function is regular at s = 0 (see [1]). By
the adiabatic limit, denoted lima η(δx), we mean the limit limx→0 η(δx).
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Intuitively it corresponds to separating the fibers of ∂X → S1 in the
limit since the Riemannian distance between distinct fibers tends to
infinity.

Recall the definition of the determinant line bundle of the familyD with
the Bismut-Freed connection. Since D is invertible, det(D) is defined
as the trivial bundle C × S1 → S1 with the connection d + ωBF (0),
where ωBF (0) is the finite value at s = 0 of the meromorphic family of
1-forms

ωBF (s) := Tr
(
(D∗D)−

s
2D−1∇̃∂θ

(D)
)
.

Clearly, the holonomy of the Bismut-Freed connection is

hol(det(D), ωBF (0)) = e−
R

S1 ωBF (0).

We define the logarithm of the holonomy of det(D) as

(4) log hol(det(D)) = −
∫

S1

ωBF (0) ∈ iR.

Determinant bundles and eta invariants are linked by the global anom-
aly formula of Witten [22], initially proved in [4] for Dirac opera-
tors. For more general operators the result that we need is taken from
[17, 18].

Theorem 6. Let D be a family of first-order elliptic differential op-
erators on the fibers of ϕ, and δx the family of operators indexed by
x ∈ (0,∞) defined by (3). The limit as x → 0 (i.e., the adiabatic
limit) of the eta invariant of δx satisfies

limaη(δx) = − 1

iπ
log hol(det(D)).

3. The fibered cusp calculus of pseudo-differential
operators

In this section we introduce the basic facts about the fibered cusp
calculus from [6] that are used in the next sections. For a thorough
treatment of the fibered cusp calculus we refer the reader to [11, 21].
We continue to use the notations from [6].

Blowing-up a submanifold N of a smooth manifold M means replacing
N by the set of its real normal directions inside M , i.e., the sphere
bundle of its inner-pointing normal bundle; this procedure is equally
defined for manifolds with corners. The result of the blow-up is a new
manifold with corners of codimension possibly higher by 1 than those
of the initial manifold.
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3.1. The construction of Φ-operators. Let

X2
Φ := [X ×X; ∂X × ∂X, (∂X)2

ϕ × {0}]
be the fibered-cusp double space, obtained by an iterated real blow-up
from X2 as follows: first blow up the corner ∂X×∂X (at this stage we
get the celebrated b-double space X2

b ). The new boundary hyperface
introduced by this blow-up is diffeomorphic to ∂X×∂X× [−1, 1] under
the following map: the class (modulo R∗

+) of the non-zero normal vector

(V1, V2) at (y1, y2) maps to V1(x)−V2(x)
V1(x)+V2(x)

. Thus ∂X × ∂X × {0} is a well-

defined submanifold of X2
b provided we fixed the boundary-defining

function x. The second stage of the construction involves blowing-up
the fiber diagonal

(∂X)2
ϕ := ∂X ×ϕ ∂X = {(p, q) ∈ ∂X × ∂X;ϕ(p) = ϕ(q)}

of the boundary fiber bundle, which by the discussion above is also a
submanifold of X2

b . The space X2
Φ comes equipped with a canonical

smooth structure as a manifold with corners of codimension at most 2,
and with a smooth blow-down map

β : X2
Φ → X2

which extends the identity (X2
Φ)◦ = (X2)◦ of the interiors. The last

face introduced by blow-up is called the Φ-front face, denoted ffΦ. The
lifted diagonal ∆Φ is by definition the closure in X2

Φ of the preimage
under β of the interior of the diagonal in X2.

The motivation of the construction is the fact [11, Corollary 1] that
the space of Φ-differential operators described in the Introduction is
canonically isomorphic to the space of distributions on X2

Φ supported
on ∆Φ, conormal to ∆Φ and extendible across ffΦ, with values in the
bundle F � E∗ ⊗ Ω′. Here Ω′ is the pull-back through the projection
on the right factor of the Φ-density bundle Ω(ΦTX). Note that

C∞(X,Ω(ΦTX)) = x− dim(Y )−2C∞(X,Ω(TX)).

This singularity of order dim(Y )+2 will play a great role in the rest of
the paper. In fact, the main reason for assuming Y = S1 in Theorem 2
is making this order of singularity relatively small. One defines then [11]
Ψm0

Φ (X) as the space of linear operators A : Ċ∞(X, E) → Ċ∞(X,F)
such that the lift κA of the Schwartz kernel kA to X2

Φ is a classical
conormal distribution of order m0 on X2

Φ with values in E∗ � F ⊗ Ω′,
vanishing rapidly to all boundary faces other than ffΦ and extendible
across ffΦ. These operators extend to bounded operators between ap-
propriate Φ-Sobolev spaces. The fibered cusp calculus is closed under
composition [11, Theorem 2].
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If ϕ is the identity map, fibered-cusp operators are nothing else than
scattering operators [12]. In that case the identifier Φ for double spaces,
tangent bundles etc. will be replaced by sc.

3.2. The normal operator. There exist two symbol maps on ΨΦ(X),
both multiplicative under composition of operators. One is the usual
conormal principal symbol (living on ΦT ∗X). To describe the second
symbol N , called the normal operator, first assume that Y = S1. In
this case the interior of the Φ-front face ffΦ is the total space of a trivial
2-dimensional real vector bundle over (∂X)2

ϕ. The two real directions
correspond to the normal direction to ∂X in X, and to the normal
direction to (∂X)2

ϕ inside ∂X × ∂X. Then N is obtained by “freez-
ing coefficients” at ffΦ and then Fourier–transforming in the two real
directions:

N (A) := κ̂A|ffΦ
.

Note that in the general case there are dimY +1 suspending variables.
This new symbol map N surjects onto the algebra ΨZ

sus(ΦN∗Y )−ϕ(∂X) of

families of classical pseudo-differential operators on {Zp × R2}p∈S1 in-
variant with respect to translations in R2 (2-suspended operators in the
terminology of [14]) where Zp is the fiber over p ∈ S1 of the boundary
fiber bundle ϕ : ∂X → S1. An operator A in ΨΦ(X) is called elliptic
if its principal conormal symbol is pointwise invertible on the sphere
bundle of ΦT ∗X, and fully elliptic if, in addition, the corresponding nor-
mal operator N (A) consists of a family of invertible pseudodifferential
operators.

Lemma 7. Fix a boundary-defining function x inside the fibered cusp
structure, and a product decomposition ∂X × [0, ε) of X near ∂X. Let
P be a family of fiberwise differential operators (i.e., composition of
endomorphisms and vertical vector fields). Then

N (x∇̃∂θ
) = iτ

N (x2∂x) = iξ

N (P ) = P|x=0

where τ, ξ are the variables on R2.
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Proof. For Φ differential operators there exists an alternate definition
of N (see [11]):

N (A)(exp(iθ), ξ, τ)

=

(
exp

(
i
ξ + τ(θ − θ′)

x

)
A exp

(
−iξ + τ(θ − θ′)

x

))
x=0
θ′=θ

.

The lemma follows easily. �

Note that the choices of connection, horizontal lift and product decom-
position are not detected by N .

3.3. The formal boundary symbol. The principal symbol and the
normal operator are invariantly defined. As for standard pseudodiffe-
rential operators there exists a more refined notion of formal symbol
map, associating to an operator the Laurent series of its full symbol at
the sphere at infinity inside the radial compactification ΦT ∗X (however,
this symbol depends on choices except for its first term, the principal
symbol). Similarly, we associate to a Φ operator A its formal boundary
symbol q(A):

(5) q : ΨΦ(X) → Ψsus(ΦN∗Y )−ϕ(∂X)[[x]] .

To construct q, first choose a product decomposition ∂X × [0, ε) ↪→ X
of X near ∂X so that x(y, t) = t. Let Xε be the image of this map,
and Yε := Y × [0, ε). Thus Xε fibers over Yε via ϕ× Id with fiber type
F and (Xε)

2
Φ fibers over (Yε)

2
sc with fiber type F × F [6, Section 3].

Lift through β the diagonal embedding (∂X)2
ϕ × [0, ε) ↪→ X2 to an

embedding

(6) (∂X)2
ϕ × [0, ε) ↪→ X2

Φ.

Note that (∂X)2
ϕ × {0} maps identically to itself as the zero section in

ffΦ. Moreover, the image of (6) is exactly the preimage of ∆sc under
the fibration

(7) (Xε)
2
Φ → (Yε)

2
sc.

Thus the normal bundle to (∂X)2
ϕ × [0, ε) inside X2

Φ is the pull-back
via (7) of the normal bundle to ∆sc, which is canonically isomorphic to
scTYε. Consequently we use the notation

N((∂X)2
ϕ × [0, ε)) = (∂X)2

ϕ ×Y
scTYε =: scTXε.

The total space of scTXε|x=0 coincides with the interior of the front face,
while the zero section of scTXε is included in X2

Φ by Eq. (6). Choose an
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open neighborhood U ⊂ scTXε of scTXε|x=0

⋃
(∂X)2

ϕ × [0, ε), a collar

neighborhood map µ : scTXε ⊃ U ↪→ X2
Φ and a cut-off function χ equal

to 1 on scTXε|x=0

⋃
(∂X)2

ϕ × [0, ε) and supported in U .

Given A ∈ ΨΦ(X, E ,F) let κA be its lifted Schwartz kernel. Then
χµ∗(κA) is a well-defined distribution on scTXε. Choose covariant
derivatives in E ,F and trivialize E �F radially in the fibers of scTXε.
Note that µ∗(Ω′) = Ωfiber,R⊗π∗(Ω(scTYε)) is the tensor product of the
density bundle in the right factor of (∂X)2

ϕ and the pull-back of the
scattering density bundle from Yε. This last factor allows us to take
the Fourier transform of χµ∗(κA) in the fibers. Recall that besides the
tautological map scTYε → TYε, there exists an isomorphism

scTYε → TYε x2∂x 7→ ∂x, x∂yi
7→ ∂yi

.(8)

It follows that scTXε is also a product:

scTXε ' (∂X)2
ϕ ×Y TY × T [0, ε).

Therefore q̃(A, x) := ̂χµ∗(κA) is a smooth family of suspended opera-
tors in Ψsus(ΦN∗Y )−ϕ(∂X) indexed by x ∈ [0, ε). The Taylor series of

q̃(A, x) at x = 0 is by definition q(A). Note that, unlike q̃(A, x), q(A)
is independent of the choice of χ.

We now specialize to the case Y = S1, so TYε is the trivial bundle R2

over S1 × [0, ε). Let (τ, ξ) ∈ R2 be the cotangent variables in scT ∗Yε

in the trivialization induced by the dual of (8). Fix a connection in ϕ.
For u ∈ R denote by ρu the horizontal lift to ∂X of the rotation by
angle u. Then we define µ for x > 0, (y1, y2) ∈ (∂X)2

ϕ and u, v ∈ R by

µ(y1, y2, ux∂θ, vx
2∂x, x) := ((y1, x), (ρxu(y2), x+ x2v)).

with values in the interior of X2
Φ. This glues smoothly at x = 0 with

the canonical identification of scTXε|x=0 with the interior of ffΦ. Fix a
product connection in E over ∂X × [0, ε) and identify Eρxu(y1) with Ey1

using parallel transport along the lifted rotation curve.

Proposition 8. Assume that the product decomposition, connection in
ϕ and covariant derivative in E used in the definition of µ are those
from Theorem 2. Then the resulting map q satisfies

q(x∇̃∂θ
) = iτ

q(x2∂x) = iξ

q(P ) = [P ]
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and more generally

q
(
xaP (x∇̃∂θ

)αx2β∂β
x

)
(ξ, τ) = iα+βxa[P ]ταξβ,

for any family P of vertical differential operators depending smoothly
on x, where [P ] denotes the Taylor series of P at x = 0.

Proof. Note that the leading part of q is already fixed by Lemma 7.

For x > 0 the map µ may as well be considered as being defined on
(∂X)2

ϕ×R2× [0,∞), since then scTYε and TYε are equal. The fibration
with connection ϕ is locally a product with the fiber F (since the base
is 1-dimensional) so near the zero-section {u = 0, v = 0}, the map µ
takes the following form: for p ∈ S1, z1, z2 ∈ F ,

µ(p, z1, z2, u∂x, v∂θ, x) = ((p, z1, x), (ρu(p), z2, x+ v)).

The pull-back of the Schwartz kernels of the operator xaP ∇̃α
∂θ
∂β

x under

this map is δ(z1, z2)δ(u)δ(v)x
aPz2∂

α
u∂

β
v (we have used the fact that we

trivialize E using precisely ∇̃). It is superfluous to cut off since the
support is already inside the zero section. By Fourier transform in
(u, v) we get

F(µ∗(xaP ∇̃α
∂θ
∂β

x ))(Ξ, T ) = xaPiα+βTαΞβ

as a family of operators on F indexed by T ∗Yε. We now push forward
this operator-valued symbol to (∂X)2

ϕ ×Y
scT ∗Yε via the tautological

map (this amounts to doing nothing for x > 0) and use the dual of (8)
to trivialize scT ∗Yε, which amounts to the change of variables

Ξ = ξ/x2, T = τ/x.(9)

Therefore q̃(xaP ∇̃α
∂θ
∂β

x ))(ξ, τ) = xa−α−2βPiα+βταξβ, and the result fol-
lows by taking Taylor series at x = 0. �

3.4. Product on formal boundary symbols. The formal boundary
map q depends on choices of connections and trivializations except for
its leading term which is just the normal operator. Recall that in the
standard pseudo-differential case a right quantization as above induces
a formal symbol map so that the induced product on formal series of
homogeneous symbols (the so-called star product) takes the form

a(y, ξ) ∗ b(y, ξ) = a(y, ξ)b(y, ξ) +
1

i

∑
∂ξj
a(y, ξ)∇∂yj

b(y, ξ) + . . .

Similarly, identify Diff(F ×Rk, E) with the algebra of families of differ-
ential operators on F with polynomial coefficients in the fibers of T ∗Rk
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via the right quantization map. As above, we fix a covariant derivative
∇ to trivialize E on Rk before taking Fourier transforms.

Lemma 9. Assume that the curvature of ∇ vanishes on {z} × Rk for
each z ∈ F . Then the product on Diff(F × Rk, E) takes the form

(10) A(y,Υ) ∗B(y,Υ) =
∑
J∈Nk

1

i|J |J !

∂JA

∂J
Υ

∇J
∂y
B.

Proof. Note first that the right-hand side of (10) has a finite number of
terms for each fixed A,B; moreover the order of covariant derivatives
is irrelevant since the curvature vanishes. We identify E with its pull-
back from F × {0} by radial parallel transport. The condition on the
curvature means that ∇∂yj

becomes the partial derivative ∂yj
under

this identification. If F is reduced to a point, Eq. (10) with ∇ = d is
the usual Moyal product. In general, Diff(F × Rk, E) is isomorphic to
Diff(F, E)⊗ Diff(Rk) so Eq. (10) follows from the Moyal formula with
coefficients in the algebra Diff(F, E). �

We denote by ∗ the product on Ψm
sus(ΦN∗Y )−ϕ(∂X)[[x]] induced by q, so

by definition the map q is multiplicative.

Lemma 10. For U, V ∈ ΨZ
sus(ΦN∗Y )−ϕ(∂X)[[x]], the product induced by

q takes the form

U ∗ V = UV +
x

i

∂U

∂ξ

(
x
∂V

∂x
+ τ

∂V

∂τ
+ 2ξ

∂V

∂ξ

)
+
x

i

∂U

∂τ
∇̃∂θ

(V ) +O(x2)

= Prod [(1⊗ 1− ix∂ξ ⊗ (x∂x + τ∂τ + 2ξ∂ξ)

−ix∂τ ⊗ ∇̃∂θ
+O(x2))(U ⊗ V )

]
(11)

where the product in the right-hand side is the standard product of power
series with coefficients in the algebra ΨZ

sus(ΦN∗Y )−ϕ(∂X), and the error

term increases the total x degree by at least 2.

Proof. Note that although it involves multiplication by x2, the term
ix∂ξ ⊗ x∂x increases the x-degree only by 1. It is enough to prove
the formula for Φ-differential operators since the product is given by
bi-differential operators with polynomial coefficients along the fibers
(see e.g. [9, Proposition 3.11] for details of this argument in a similar
context). Furthermore, it is enough to prove the formula over ϕ−1(I)×
(0, ε), where I is an interval in S1. But then we are in the setting
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of Lemma 9 (since we can integrate horizontal curves to get a product
decomposition of ϕ together with its connection over I), so the product
of q̃(A) and q̃(B) has the form (10) with Υ = (Ξ, T ). Under the change
of variables (9),

∂Ξ 7→ x2∂ξ ∂T 7→ x∂τ

∂θ 7→ ∂θ ∂x 7→ ∂x +
2ξ

x
∂ξ +

τ

x
∂τ .

We remark here that the terms containing |J | partial derivatives from
(10) increase the x degree by exactly |J |. Thus, the limited Taylor
expansion of (10) at x = 0 consists of the first two terms (|J | = 0, 1).

�

3.5. Traces densities of Φ-operators. Of main interest for us are
traces of Φ-operators. We study them using the more refined notion of
trace density. It is a standard fact that on a closed manifold M , any
operator A ∈ Ψλ(M, E) with <(λ) < − dim(M) is of trace class, and

Tr(A) =

∫
∆

tr(kA|∆)

(the Schwartz kernel kA is continuous on M ×M and its restriction
to the diagonal is a smooth 1-density with values in End(E)). The
same remains true for Φ-operators modulo an integrability issue at the
boundary. By pulling-back via the blow-down map we write

Tr(A) =

∫
∆Φ

tr(κA|∆Φ
).

We identify ∆Φ with X via the projection on the right factor. Recall
the notation n = dim(Y ), N = dim(X). The restriction to ∆Φ

∼= X
of the density bundle Ω′ is precisely Ω(ΦTX) = x−n−2Ω(X). It is
then clear that A is of trace class if and only if A ∈ xzΨλ

Φ(X, E) with
<(z) > n+ 1,<(λ) < −N . The density tr(κA|∆Φ

), viewed as a density
on X, is called the trace density of A.

Recall that for the definition of the formal boundary symbol we have
chosen a product decomposition of X near ∂X, as well as a local iso-
morphism of E with its pull-back from ∂X. We can thus expand κA|∆Φ

in powers of x near x = 0. Let ΦN∂X be the restriction of the vector
bundle scTXε to ∂X×{0} embedded diagonally in ffΦ, and ΦN∗∂X its
dual.

Proposition 11. Let A(λ) ∈ xzΨλ
Φ(X, E) be a holomorphic family of

Φ-operators. Then λ 7→ κA(λ)|∆Φ
extends to a meromorphic family of
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densities on ∆Φ with the following asymptotic expansion at x = 0:

κA(λ)|∆Φ
∼x→0

1

(2π)n+1

∫
ΦN∗∂X/∂X

κq(A(λ))
ωn+1

sc

(n+ 1)!

where ωsc is the canonical (singular) symplectic form on scT ∗Yε pulled
back to scT ∗Xε.

Proof. Note that in the right-hand side, q(A(λ)) is a formal series in
x. At a pole, the meaning of the expansion is the equality of the
residues and of the regularized parts. First set A := A(λ) for a fixed
λ with <(λ) < −N . The statement is local near x = 0, so we can
suppose that κA, a distribution with continuous kernel, is supported
in a neighborhood of ffΦ. By hypothesis the cut-off function χ does
not affect the restriction of χµ∗κA to the zero section. The Fourier
inversion formula in each fiber of scTXε shows

κA|(∂X)2ϕ×[0,ε) =
1

(2π)n+1

∫
scT ∗Xε/(∂X)2ϕ×[0,ε)

κq̃(A)
ωn+1

sc

(n+ 1)!
.

Further restricting this identity to ∆∂X × [0, ε) gives

(12) κA(λ)|∆∂X×[0,ε) =
1

(2π)n+1

∫
∆Φ×Y

scT ∗Yε/∆Φ

κq̃(A(λ))
ωn+1

sc

(n+ 1)!

for <(λ) < −N . It is routine to show that κq̃(A(λ))|∆Φ×Y
scT ∗Yε and

κA(λ)|∆Φ
extend meromorphically to C (by pulling back κA(λ) to ΦTX

and by the Fourier inversion formula, the statement is reduced to a
meromorphic extension result for integrals of analytic families of clas-
sical symbols). By unique continuation, (12) holds on C. Take now
Taylor series at x = 0 in both sides to get the result (remember that
ωn+1

sc introduces a singularity of order n+ 1). �

In the case Y = S1 this takes a somewhat simpler form in which the
singularity is more evident.

Corollary 12. Let A(λ) ∈ xzΨλ
Φ(X, E) be an entire family of Φ-

operators and assume Y = S1. Then

κA(λ)|∆Φ
∼x→0

(
1

(2π)2

∫
R2

κq(A(λ))(τ, ξ)dτdξ

)
dθdx

x3
.

Proof. Observe that ΦN∂X is a trivial R2 bundle in this case, while

ωsc =
dξ ∧ dx
x2

+
dτ ∧ dθ

x
− τ

dx ∧ dθ
x2

. �
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We close this section with a description in terms of the map q of

the trace functional T̂r∂ defined in the Introduction (compare with
[6, Proposition 7.6]).

Lemma 13. Let A ∈ Ψm0
Φ (X). Then T̂r∂(A) is explicitly given by

T̂r∂(A) =
1

(2π)2

(∫
S1×R2

Tr(q(AQ−λ)[−2])dθdτdξ

)
λ=0

where Tr in the right-hand side denotes the trace of operators on the
fibers of ϕ : ∂X → S1, (·)[k] is the coefficient of x−k in a power expan-
sion in x, and (·)λ=0 stands for the regularized value at λ = 0.

Proof. We can assume that κAQ−λ is supported in (Xε)
2
Φ. Then

T̂r∂(A) = Resz=0 Tr(xzAQ−λ)|λ=0

= Resz=0

∫
∆Φ

tr(κxzAQ−λ)|λ=0

= Resz=0

∫ ε

0

∫
∂X

xz tr(κAQ−λ)|λ=0

Obviously,

Resz=0

(∫ ε

0

xz−kdx

)
=

{
1 if k = 1;

0 otherwise,

so, using Corollary 12,

T̂r∂(A) =

(∫
∂X

tr(κAQ−λ)[1]

)
|λ=0

=

(∫
S1

∫
∂X/S1

(
1

(2π)2

∫
R2

trκq(AQ−λ)[−2]
dτdξ

)
dθ

)
|λ=0

.

Now ∫
∂X/S1

trκq(AQ−λ)[−2]
= Tr(q(AQ−λ)[−2])

so the result follows by Fubini’s theorem. �

4. The abstract index formula

The results of this section hold for general boundary fiber bundles, i.e.,
not necessarily with base S1.
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Fibered-cusp operators have two types of principal symbols. Accord-
ingly, elliptic regularity has a new aspect in fibered-cusp theory con-
cerning regularity at the boundary. The proof of the following lemma
is standard; we include it for future reference.

Lemma 14. Let A ∈ ΨΦ(X, E ,F) be fully elliptic. Then the L2 solu-
tions of Aψ = 0 belong to x∞C∞(M, E).

Proof. Since A is fully elliptic there exists a parametrix B of A inverting
A up to R ∈ x∞Ψ−∞

Φ (X, E). Let ψ be a distributional solution of the
pseudo-differential equation Aψ = 0. It follows

0 = BAψ = (I +R)ψ = ψ +Rψ

so ψ = −Rψ. But R ∈ x∞Ψ−∞
Φ (X, E) implies Rψ ∈ x∞C∞(M, E). �

Since R is compact on L2
Φ (the compact operators in ΨZ

Φ(X) are pre-
cisely those in xΨ−1

Φ (X)) it follows that kerA is finite dimensional
and moreover the orthogonal projection Pker A belongs to the ideal
x∞Ψ−∞

Φ (X, E). We can define therefore invertible Φ-operators

Q1 := (AA∗ + Pker A∗)1/2,

Q2 := (A∗A+ Pker A)1/2.

Note that q(Q1) = q(AA∗)1/2. Let

B := A∗Q−2
1 = Q−2

2 A∗

be a parametrix of A.

4.1. The index formula. Let us reprove the index formula from [6].
Assume for simplicity that A is of order 1. For technical reasons we
would like to work with operators acting from E to itself. Recall that
∂X 6= ∅ implies the existence of a nowhere-vanishing section in ΦT ∗X
(since the dimension of the fiber of ΦT ∗X equals dimX, the obstruction
to the existence of such a section lives in Hdim(X)(X) and this space
is 0 when ∂X 6= ∅). The principal conormal symbol of A evaluated
on this section gives an isomorphism u between E and F . Finally,
v := u∗(uu∗)−1/2 is an isometry F → E . Thus U := vA ∈ Ψ1

Φ(X, E)
has the property

R1 := (UU∗ + Pker U∗)1/2 = vQ1v
∗

R2 := (U∗U + Pker U)1/2 = Q2.
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Set

V := Bv∗ = U∗R−2
1 = R−2

2 U∗.

Note the commutations

UR−λ
2 = R−λ

1 U, V R−λ
1 = R−λ

2 V.

The index formula is obtained as follows:

index(A) = index(U)

= Tr(UV − V U)

= Tr(xz(UV − V U)R−λ
2 )λ=0,z=0.

Recall that Tr[C,D] = 0 for C ∈ xcΨa
Φ(X), D ∈ xdΨb

Φ(X) with
a, b, c, d ∈ C, <(a + b) < − dim(X), <(c + d) > 1 + dim(Y ). Ap-
ply this to U and xzV R−λ

1 , and use UR−λ
2 = R−λ

1 U . The identity
below holds for large real parts of λ and z, hence for any λ, z ∈ C by
unique continuation:

Tr(xz(UV − V U)R−λ
2 ) = Tr(xzUV R−λ

2 − UxzV R−λ
1 )

= Tr(xzUV (R−λ
2 −R−λ

1 ) + [xz, U ]V R−λ
1 )

= Tr(xz(R−λ
2 −R−λ

1 ) + Tr([xz, A]BQ−λ
1 )

+ Tr(xz(UV − 1)(R−λ
2 −R−λ

1 ))

(13)

since [xz, U ]V R−λ
1 = v[xz, A]BQ−λ

1 v∗ and by the trace property,

Tr([xz, U ]V R−λ
1 ) = Tr([xz, A]BQ−λ

1 ).

Also, UV − 1 ∈ x∞Ψ−∞
Φ (X, E) so Tr(xz(UV − 1)(R−λ

2 −R−λ
1 )) is holo-

morphic on C2 and vanishes at λ = 0. It follows that

(14) index(A) = (Tr(xz(R−λ
2 −R−λ

1 ))λ=0,z=0+Tr([xz, A]BQ−λ
1 )λ=0,z=0.

For the sake of clarity we stress the main point of such Melrose-Nistor
style computations: the evaluation at λ = 0, z = 0 occurs at a point
where the operators involved are not of trace class; therefore, although
the operators inside the trace do vanish for λ = 0, z = 0, their regu-
larized trace may be non-zero. We mentioned in the Introduction (see
also [6]) that the meromorphic extension of the trace of a holomorphic
family of Φ operators may have first-order poles (in both λ and z) at
the origin. Vanishing of the family e.g., at λ = 0 implies regularity of
the extension at λ = 0.

For future reference, note that the left-hand side and the third term in
the right-hand side of (13) are holomorphic on C2. The first term of
the right-hand side is regular in λ at λ = 0, the second is regular in
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z at z = 0 because the families of operators involved vanish at those
values. The identity (13) implies

Corollary 15. Both terms in the right-hand side of (14) are regular
both in λ at λ = 0 and in z at z = 0.

4.2. The interior term. We claim that the first term in (14) is the
regularized integral on X of a local expression in the full symbol expan-
sion of U . Indeed, for j = 1, 2 let rj(λ) ∈ C∞(X,End(E)⊗ ΦΩ(X)) be
the meromorphic extension of the lifted Schwartz kernel κR−λ

j
restricted

to ∆Φ. As in the case of closed manifolds it is easy to see that rj(λ) is
regular at λ = 0 (the residue of the possible pole is the residue density
of the identity). The first term in (14) is

∫
X
xz tr(r2(0)− r1(0))|z=0.

By Corollary 12 and the remark after it, the density tr(r2(0)) has a
Laurent expansion at x = 0 starting with x−3 so the previous integral
is absolutely integrable and holomorphic in z for <(z) > 2 and extends
to C with possible simple poles at z = 2− N. Now

R−λ
2 −R−λ

1 = U [V,R−λ
2 ] +O(λ)x∞Ψ−∞

Φ (X)

= λU [logR2, V ]R−λ
2 +O(λ)x∞Ψ−∞

Φ (X) +O(λ2)Ψλ
Φ(X)

where O(λ) denotes an analytic multiple of λ near λ = 0. Clearly then

(15) (Tr(xz(R−λ
2 −R−λ

1 ))λ=0,z=0 = T̂rσ(U [logR2, V ]).

On the more refined level of trace densities, by [6, Proposition 7.4],

r2(0)− r1(0) =
1

(2π)N

∫
ΦS∗X/X

σ[−N ](U [logR2, V ])ıRω
N
Φ

is given in terms of the component of homogeneity − dim(X) of the
formal symbol of U [V, logR2], so clearly depends only on the jets of
the full symbol of U .

4.3. The boundary term. Similarly for the second term from (14)
we have

[xz, A]B = zxz[log x,A]B +O(z2)

and Tr(O(z2)) = O(z) so

(16) Tr([xz, A]BQ−λ
1 )λ=0,z=0 = −T̂r∂([A, log x]B).

By Lemma 13 this last quantity is concentrated at the boundary.

So far, combining (14), (15) and (16) we have proved the general index
Theorem 1. Note that in (15) we can assume v = 1 (and so U = A,
V = B, Q = R2) since in Theorem 1 we suppose E = F .
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4.4. Relationship with heat kernel expansions. Here is a more
familiar interpretation of the local term (15). It is worth stressing that
we do not prove a heat kernel expansion for A∗A. Rather we use the
existence of heat kernel expansions for pseudo-differential operators on
closed manifolds as well as the locality of the two quantities we want
to relate.

Proposition 16. The local quantity tr(r2(0)− r1(0)) equals the index
density, defined as the pointwise supertrace of the constant term in the
heat kernel expansion of [ 0 A∗

A 0 ]
2
.

Proof. Fix a point p in the interior of X and modify the operator U
far from p so that it extends to an elliptic operator on the double of
X. Denote the extensions to 2X by the same letters as before. Then
for j = 1, 2 use the Mellin transformation formula

Γ(λ)R−2λ
j =

∫ ∞

0

tλ−1e−tR2
jdt

to identify the value at λ = 0 of the analytic extension of the Schwartz
kernel of R−λ

j on the diagonal with the coefficient of t0 in the asymptotic

expansion as t ↘ 0 of the Schwartz kernel of e−tR2
j on the diagonal.

Remember that R2 = Q2, and observe that Q2
1 and R2

1 are conjugate
via v, so the pointwise trace of their heat kernels is the same. �

Such a formula for the local term is not surprising in index theory.
Our point is getting it without having to construct heat kernels for
Φ-operators. In this respect the approach via complex powers, which
are already objects in the calculus, presents a great advantage.

Although the local term (15) is smooth on X up to the boundary as
a Φ-density, its integral might in principle diverge since as an usual
density on X it has a singularity of order 3 at x = 0. Thus, we cannot
set directly z = 0 in the above evaluations. To prove Theorem 2 we
must identify the boundary term with the adiabatic limit of the eta
invariant and show that the index density is integrable in a restricted
sense. We will do this in Section 5.

However, we can prove directly that when A is a twisted Dirac operator
corresponding to the metric gX , and with twisting bundle T with metric
and connection constant in x in a neighborhood of the boundary, the
local term in the index formula equals the integral of the Atiyah-Singer
density Â(X, gX) ch(T ) without regularization. Indeed,
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Proposition 17. The Riemannian curvature R of (X, gX) induces a
smooth 2-form on X with values in End(ΦTX) down to x = 0. Thus

Â(X, gX) and ch(T ) are smooth forms on X.

Proof. Let e1, . . . , em be a local orthonormal frame in the fibers of ϕ.
It is straightforward to compute R(gX) using the local orthonormal
Φ-vector fields x2∂x, x∂θ (lifted to ∂X using the connection involved
in the definition of gX), e1, . . . , em. We observe that while for instance
R(∂x, ei)∂θ diverges like 1/x as x→ 0, the induced action of R on ΦTX

is smooth down to x = 0. To conclude that Â(X, gX) is smooth it is
enough to prove that tr(Rk) is smooth down to x = 0 for all k ∈ N.
Of course it does not matter for the trace if we view the 2-form R as
acting on TX or on ΦTX, so the conclusion follows. ch(T ) is obviously
smooth in x (it is in fact constant in x in a neighborhood of x = 0). �

5. The index of first-order Φ-differential operators

For the rest of the paper we assume that Y = S1 and that A satisfies
the hypothesis of Theorem 2.

Lemma 18. The operator x2∂x−x/2, defined on C∞c (X◦, E) in a neigh-
borhood of ∂X, is skew-symmetric with respect to the metric gX .

Proof. From (1), the volume form dgX equals dx
x3dθdg

F . Let φ1, φ2 ∈
C∞c ((0, ε)× ∂X, E). Then∫

X

〈
(x2∂x − x/2)φ1, φ2

〉
+
〈
φ1, (x

2∂x − x/2)φ2

〉
dgX

=

∫
∂X×(0,ε)

(∂x − 1/x)〈φ1, φ2〉
dx

x
dθdgF

=

∫
∂X

dθdgF

∫
(0,ε)

∂x (〈φ1, φ2〉/x) dx

= 0

since 〈φ1, φ2〉 is assumed to have compact support. �

We compute directly from Proposition 8 the values of the map q on
the operators involved in Theorem 2. Set

∆ :=

[
D∗D 0

0 DD∗

]
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seen as a family of elliptic operators over the fibers of ϕ, and also as a
constant formal series in x of such operators.

q(δ2
x) =

[
τ 2 +D∗D −ix∇̃∂θ

(D∗)

ix∇̃∂θ
(D) τ 2 +DD∗

]
q(A) = σ

[
iξ − x

2
+ τ D∗

D iξ − x
2
− τ

]
N (A∗) =

[
−iξ + τ D∗

D −iξ − τ

]
σ∗

q(A∗) =

[
−iξ + x

2
+ τ D∗

D −iξ + x
2
− τ

]
σ∗

N (AA∗) = σ

([
ξ2 + τ 2 +D∗D 0

0 ξ2 + τ 2 +DD∗

])
σ∗

q(AA∗) = σ

([
ξ2 + τ 2 +D∗D 0

0 ξ2 + τ 2 +DD∗

]
+ x

[
−iξ + τ −i∇̃∂θ

(D∗)

i∇̃∂θ
(D) −iξ − τ

]
+
x2

4

)
σ∗.

(17)

Lemma 19. The operator A defined by (2) is a fully elliptic Φ-operator
if and only if the family D is invertible.

Proof. It is clear from (17) that N (AA∗) = σ(ξ2 + τ 2 + ∆)σ∗ is elliptic
and non-negative as a 2-suspended operator; moreover it is invertible
for each value of the parameters τ, ξ ∈ R (thus invertible as a suspended
operator, see [14]) if and only if D is invertible. �

Lemma 20. [17, 18] The differential operator δx ∈ Diff1(∂X, E) is
invertible for 0 < x < ε for some ε > 0.

Proof. (sketch) We can view δx as an adiabatic family of operators (i.e.,
an adiabatic differential operator in the sense of [18]). The adiabatic
normal operator of this family is invertible as in Lemma 19, so exactly
like in Lemma 14 there exists an inverse µx ∈ Ψ−1

a (∂X, E) modulo
x∞Ψ−∞

a (∂X, E):

δxµx = I + rx

Now the residual adiabatic ideal x∞Ψ−∞
a (∂X, E) equals the space of

rapidly vanishing families of smoothing operators on ∂X as x → 0.
Thus rx → 0 inside bounded operators as x → 0. The conclusion
follows for ε chosen small enough so that ‖rx‖ < 1,∀x < ε. �
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Proposition 21. The boundary term T̂r∂([A, log x]B) from the index
formula (14) equals i

2π
log(hol(detD)).

Proof. From (2) we know q([A, log x]) = xσ. We claim that we can
assume σ = 1. Let S, T ∈ C∞(X,End(E)) ⊂ Ψ0

Φ(M, E) be such that
q(S) = σ, q(T ) = σ−1. Since q(ST ) = 1 it follows

Tr(xz[A, log x]BQ−λ
1 ) = Tr(xzST [A, log x]BQ−λ

1 ) +O(z0)

= Tr(xzT [A, log x]BQ−λ
1 S) +O(z0).

Observe that q(T [A, log x]) and q(BQ−λ
1 S) do not contain σ anymore;

on the other hand the term regular in z at z = 0 does not affect the
residue, which proves our claim. From now on, we assume that σ = 1
in (2), so q([A, log x]) = x. From Lemma 13,

T̂r∂([A, log x]B)

=
1

(2π)2

∫
S1×R2

Tr
(
q([A, log x]BQ−λ

1 )[−2]

)
dτdξdθ|λ=0

=
1

(2π)2

∫
S1×R2

Tr
(
q(A∗) ∗ q(AA∗)−

λ
2
−1)
)

[−1]
dτdξdθ|λ=0.

(18)

The plan is to use Eq. (17) for q(A∗), q(AA∗) with σ = 1, as well as
the explicit form of the leading terms in (11). There are three types of
terms occurring in (18) as explained below and we write accordingly

T̂r∂([A, log x]B) = (I(λ) + II(λ) + III(λ))|λ=0.

The terms of type I. First there are those terms (called of type I)
where q(A∗) and N ((AA∗)−λ/2−1) are composed according to the prod-
uct rule (11). Since N ((AA∗)−λ/2−1) is constant in x, the term coming

from ix∂ξ ⊗ x∂x vanishes. Since ∂N (A∗)
∂τ

is constant, the integrands cor-

responding to x∂τ ⊗ ∇̃∂θ
is an exact form whenever it is of trace class

by the following lemma, so the term coming from it also vanishes by
unique continuation.

Lemma 22. Let π : M → Y be a locally trivial fiber bundle with
compact fiber F with a fixed connection, ∂θ a vector field on the base
lifted to M and ∇ a covariant derivative in a vector bundle E → M .
Let P be a family of pseudodifferential operators of order k on the fibers
of π with coefficients in E, with k < − dimF . Then

Tr(∇∂θ
(P )) = ∂θ Tr(P ).
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Proof. First notice that the family P is of trace class. Choose a Rie-
mannian metric on the fibers and a hermitian metric on E . The state-
ment is linear in P ; by decomposing P = P1 + iP2 with P1, P2 self-
adjoints we can assume that P is self-adjoint. Let {sj(b)}j∈N be a
smooth family of orthonormal eigensections of Pp for b ∈ M of eigen-
value λj(b). Evidently

(∇∂θ
(P ))sj(b) = (∂θλj(b))sj(b)

which implies the lemma. �

The non-vanishing terms of type I come from 1 ⊗ 1, i.e., involving
x
2
N (AA∗)−λ/2−1 (we call this term of type I1) and from −ix∂ξ⊗ (τ∂τ +

2ξ∂ξ), namely involving

x

i

∂N (A∗)

∂ξ

(
τ
∂N (AA∗)−λ/2−1

∂τ
+ 2ξ

∂N (AA∗)−λ/2−1

∂ξ

)
(this term does not vanish as above, because of the τ and ξ factors; we
call it of type I2). For the term I1, using (17) and polar coordinates in
the (τ, ξ) plane we get

I1(λ) =
1

(2π)2

∫
S1×R2

1

2
Tr
(
N (AA∗)−λ/2−1

)
dθdτdξ

=
1

4πλ

∫
S1

Tr
(
∆−λ

2

)
dθ.

(19)

Thus at λ = 0 we get the average of the logarithm of the determinant of
the family ∆1/2 indexed by eiθ ∈ S1. Although in the end this term will
cancel away, it is worth recalling the definition of the determinant, not
to confuse with the determinant line bundle with connection (detD, d+
ωBF ) defined in Section 2. The zeta function of ∆1/2 is by definition

ζ(λ) := Tr(∆−λ/2).

This function is analytic for <(λ) > m (recall that m is the dimension
of the fibers of ϕ), extends meromorphically to C and is regular at
λ = 0; the logarithm of the determinant of ∆1/2 is defined as −ζ ′(0).
Coming back to I1, this derivative clearly equals the finite part at λ = 0

of − 1
λ

Tr(∆−λ
2 ).
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Similarly we get

I2(λ) =
1

(2π)2

∫
S1×R2

Tr

(
1

i

∂q(A∗)

∂ξ(
τ
∂

∂τ
+ 2ξ

∂

∂ξ

)
N (AA∗)−

λ
2
−1

)
dθdτdξ

=
3

(2π)2

∫
S1×R2

Tr(τ 2 + ξ2 + ∆)−
λ
2
−1dθdτdξ

=
3

2πλ

∫
S1

Tr
(
∆−λ

2

)
dθ

(20)

We used integration by parts in τ and ξ, Eq. (17) with σ = 1 and then
polar coordinates in the (τ, ξ) plane.

The terms of type II. The second type of terms in (18) come from
1⊗1 applied to N (A∗) and to the coefficient of x in (ξ2+τ 2+∆)−λ/2−1,
where the power is taken with respect to the product (11). The diagonal

matrix (ξ2 + τ 2 + ∆)
−λ/2−1
[−1] is not explicitly computable; however we

can compute Tr
(
N (A∗)(ξ2 + τ 2 + ∆)

−λ/2−1
[−1]

)
as if all the operators

involved commute because of two facts:

• The diagonal of N (A∗) is made of central elements modulo x.
• The partial derivatives of ξ2 + τ 2 + ∆ with respect to ξ and τ ,

are central elements in ΨZ
Φ(X)/x∞ΨZ

Φ(X) modulo x.

II(λ) =
1

(2π)2

∫
S1×R2

Tr
(
N (A∗)(ξ2 + τ 2 + ∆)

−λ/2−1
[−1]

)
dτdθdξ

=
1

(2π)2

∫
S1×R2

Tr

((
−iξ + τ

[
1 0
0 −1

]) (−λ
2
− 1
) (
−λ

2
− 2
)

2(
4

i
ξ(τ 2 + 2ξ2) +

2

i
τ∇̃∂θ

(∆)

)
(ξ2 + τ 2 + ∆)−

λ
2
−3

)
dτdξdθ

(the coefficient
(

λ
2

+ 1
) (

λ
2

+ 2
)

is obtained by formally assuming that

−λ
2
− 1 is a non-negative integer). We first eliminate the terms which

are odd in ξ or τ and thus vanish after integration. The term containing
τ 2 [ 1 0

0 −1 ] ∇̃∂θ
(∆) is also seen to vanish because the traces on E+ and E−
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cancel each other. We are left with the term containing −4ξ2τ 2 − 8ξ4.

II(λ) = − 1

(2π)2

(
−λ

2
− 1
) (
−λ

2
− 2
)

2∫
S1×R2

4(ξ2τ 2 + 2ξ4) Tr(ξ2 + τ 2 + ∆)−
λ
2
−3dτdξdθ

= − 1

(2π)2

∫
S1×R2

(1 + 6) Tr(ξ2 + τ 2 + ∆)−
λ
2
−1

= − 7

4πλ

∫
S1

Tr(∆)−
λ
2 dθ.

(21)

(we integrated by parts in τ and ξ and then used polar coordinates in
the plane (τ, ξ).)

The terms of type III. These are the terms coming from 1 ⊗ 1
applied to N (A∗) and to the coefficient of x in q(AA∗)−λ/2−1 where
now the power is with respect to the product of formal power series in
x of fiberwise operators:

III(λ) =
1

(2π)2

∫
S1×R2

Tr (N (A∗)(
N (AA∗) + x

[
−iξ+τ −i∇̃∂θ

(D∗)

i∇̃∂θ
(D) −iξ−τ

])−λ
2
−1

)[−1]dτdξdθ

Again, it is impossible to compute the integrand before taking the
trace; however, the suspended operators N (A) and N (A∗) commute
(Nota bene, with respect to the product of suspended algebra, not the
product (11)). Indeed, under the assumption σ = 1, N (A) and N (A∗)
consist of the same symmetric operator plus a scalar multiple of the
identity. Thus the leading factors N (A∗) and N (AA∗) also commute
so the trace behaves as if all operators involved commuted. We get the
following contribution to (18):

III(λ) =

(
−λ

2
− 1
)

(2π)2

∫
S1×R2

Tr

([
−iξ + τ D∗

D −iξ − τ

]
(ξ2 + τ 2 + ∆)−

λ
2
−2

[
−iξ + τ −i∇̃∂θ

(D∗)

i∇̃∂θ
(D) −iξ − τ

])
dτdξdθ.
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The middle term is a diagonal matrix. Let us look first at the terms
coming from the diagonal entries in the first and third matrix, disre-
garding those which are odd in τ or ξ. They give

III1(λ) =

(
−λ

2
− 1
)

(2π)2

∫
S1×R2

(−ξ2 + τ 2) Tr(ξ2 + τ 2 + ∆)−
λ
2
−2dτdξdθ

= 0

by symmetry in τ and ξ. Finally let us compute the contribution
coming from anti-diagonal entries. Again we use polar coordinates in
the (τ, ξ) plane.

III2(λ) =
i

(2π)2

(
−λ

2
− 1

)∫
S1×R2[

Tr
(
D∗(ξ2 + τ 2 +DD∗)−

λ
2
−2∇̃∂θ

(D)
)

−Tr
(
D(ξ2 + τ 2 +D∗D)−

λ
2
−2∇̃∂θ

(D∗)
)]
dτdξdθ

= − i

4π

∫
S1

(
Tr
(
D∗(DD∗)−

λ
2
−1∇̃∂θ

(D)
)

− Tr
(
D(D∗D)−

λ
2
−1∇̃∂θ

(D∗)
))

dθ

= − i

2π

∫
S1

ωBF (λ)dθ.

(22)

In the last equality we used the identity

0 = −2

λ

∫
S1

∂θ Tr(DD∗)−
λ
2 dθ

= −2

λ

∫
S1

Tr(∇̃∂θ
(DD∗)−

λ
2 )dθ by Lemma 22

=

∫
S1

(
Tr
(
D∗(DD∗)−

λ
2
−1∇̃∂θ

(D)
)

+ Tr
(
D(D∗D)−

λ
2
−1∇̃∂θ

(D∗)
))

dθ

The terms (19), (20) and (21) cancel so Proposition 21 follows from
(22) specialized at λ = 0 and from (4). �

By Theorem 6 the quantity computed in Proposition 21 equals half the
adiabatic limit (the limit as x tends to 0) of the eta invariant of the
family δx. To complete the proof of the index Theorem 2 we show now
the integrability of the index density.
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Proposition 23. Under the assumptions of Theorem 2, the local index
density tr(r1(0)− r2(0)) is a smooth multiple of 1/x. Moreover,

lim
ε→0

∫
X∩{x≥ε}

tr(r1(0)− r2(0))

exists and gives the AS term in the index formula without regularization
with xz.

Proof. By Corollary 12 we know that

(23) tr(rj(0)) ∼x→0
1

(2π)2

(∫
R2

tr q(R−λ
j )dξdτ

)
dθdx

x3

has a Laurent expansion at x = 0 with a possible singularity of order
3. Thus we first want to show that the coefficients of x−3, x−2 in
tr(r1(0))− tr(r2(0)) vanish. Since tr is invariant under conjugation by
linear isomorphisms, we can replace the operator U near x = 0 with

P := (x2∂x −
x

2
)

[
1 0
0 1

]
+ δx.

We have

q(PP ∗) = ξ2 − ixξ +
x2

2
+ q(δ2

x) + xτ

[
−1 0
0 1

]
q(P ∗P ) = ξ2 − ixξ +

x2

2
+ q(δ2

x)− xτ

[
−1 0
0 1

]
.

From this we see thatN (PP ∗)−λ = N (P ∗P )−λ, so the coefficient of x−3

vanishes. Also, (q(PP ∗)−λ − q(P ∗P )−λ)[−1] is odd in τ hence vanishes
after integration. Therefore (23) proves the first part of the proposition.

It follows that xρ(x) is smooth for x ∈ [0, ε), where

ρ(x) :=

∫
∂X×{x}

tr(r1(0)− r2(0)).

Therefore ∫ ε

0

∫
∂X×{x}

xz tr(r1(0)− r2(0))

is holomorphic in z for <(z) > 0. By Corollary 15 this integral is also
regular at z = 0, so the coefficient of x−1 in the asymptotic expansion
of ρ(x) at x = 0 vanishes. Thus, ρ is smooth on [0, ε) as claimed. �

By computing explicitly traces of star-products as above, we could
show that the integral along the fibers of the index density is smooth
on S1 × [0, ε). It seems reasonable to ask if the index density itself is
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smooth down to x = 0 (as in the case of Dirac operators), however we
were unable to prove or to disprove this fact.

6. Link with d-geometry

In the case of Dirac operators our result (Corollary 3) is related to
Vaillant’s index formula [21]. Consider the so-called d-metric on X
given by gd := x2gX where gX is the product Φ-metric (1). Then
the Dirac operator Dd corresponding to gd, acting in L2(X,Σ, gd) with
domain C∞c (X,Σ), is isometric to x−1/2Ax−1/2 acting in L2(X,Σ, gX)
with the same domain, where A is the Dirac operator from Corollary 3.
By Lemma 14 the L2-nullspace of A is isomorphic to the L2-nullspace
of x−1/2Ax−1/2 via the map of multiplication by x1/2. In particular,
we deduce that index(Dp) = index(A). The (extended) L2 index of Dp

was computed by Vaillant for arbitrary fibrations and for possibly non-
invertible normal operators, under the assumption that the fiberwise
kernels form a vector bundle. Thus Corollary 3 is a particular case
of his result. Note that our method of proof, unlike the heat kernel
technique of Vaillant, applies to operators which are not of Dirac type,
see Theorem 2.
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