BOUNDARIES OF LOCALLY CONFORMALLY FLAT MANIFOLDS IN
DIMENSIONS 4k

SERGIU MOROIANU

ABSTRACT. We give global restrictions on the possible boundaries of compact, ori-
entable, locally conformally flat manifolds of dimension 4k in terms of integrality of
eta invariants.

1. INTRODUCTION AND STATEMENT

There exist obstructions for 4k — 1-manifolds bounding a compact 4k-dimensional Rie-
mannian manifold with special geometry.

e Chern and Simons [6] showed that the Chern-Simons invariant of a closed oriented
3-manifold conformally immersed in R* must vanish modulo Z.

e Atiyah, Patodi and Singer [2] proved that the eta invariant of the odd signature
operator on a closed 3-manifold conformally embedded in R* must vanish.

e Long and Reid [16] considered a possibly noncompact hyperbolic 4-manifold with
totally geodesic boundary. They allowed non-compact cuspidal ends, and cut out
the cusp by a flat totally umbilic section. They obtained a compact hyperbolic
manifold whose boundary components are either totally geodesic or umbilic and
flat. They proved that the eta invariant of the boundary must be an even integer.

e Xianzhe Dai [8] showed that the eta invariant of a locally conformally flat manifold
(M, h) vanishes modulo 2Z whenever M is the oriented, totally umbilic boundary
of a locally conformally flat compact manifold (X, g). Dai’s result contains Long
and Reid’s as a particular case.

With the notable exception of [6], the essential ingredient in the proof of the above results
is the Atiyah-Patodi-Singer signature formula for manifolds with boundary equipped with
metrics of product type near the boundary [1]. In dimension 4, this formula reads for
instance:

(1) . / te(R?) — (M, h) = signature(X) € Z.
X
Our main result here is:

Theorem 1. Let (X, g) be a compact oriented locally conformally flat Riemannian man-
ifold of dimension 4k, with smooth boundary (M,h). Then the eta invariant of the odd
signature operator of (M, h), and also the eta invariant of the Dirac operator if M has a
spin structure, belong to 27.
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Compared to the corresponding results of [2] and [8], we do not ask the interior metric g
to be flat (but only locally conformally flat), respectively we do not impose any restrictions
on the second fundamental form other than the usual Codazzi-Mainardi equation.

The proof is algebraic in nature, and relies on the analysis of a transgression form for
the Pontriagin forms appearing in the Atiyah-Patodi-Singer index formula.

In dimension 4, Hitchin [14] showed that for a compact manifold with boundary whose
metric is conformally equivalent to an Einstein metric, the transgression of the first Pon-
triagin form vanishes. Thus our Theorem 3 could be viewed as a partial generalization of
Hitchin’s result to higher dimensions.

Acknowledgements. [ am grateful to the referee for several useful comments about
boundary-value problems, and for pointing out valuable bibliographical references.

2. THE INDEX FORMULA FOR PRODUCT METRICS

Let us recall the index formula of Atiyah, Patodi and Singer [1]. Let (X,g) be a
Riemannian metric on a oriented compact manifold X, with boundary M, and denote by
h the induced metric on M. The metric g is said to be of product type if there exists an
embedding of manifolds with boundary [0,¢) x M < X such that the pull-back of the
metric g takes the form

g=dt* +h.
Intrinsically, this condition can be reformulated as
L,g =0 near M,

where L denotes Lie derivative and v is the geodesic unit vector field normal to the
boundary.

Theorem 2 ([1]). Let (X,g) be a compact Riemannian manifold with boundary, and
assume that the metric is of product type near the boundary (M,h). Let (D, A) denote
one of the following pairs of elliptic operators on X, respectively on M :

(1) D is the signature operator on X, and A is the odd signature operator on M ;
(2) When X has a fized spin structure with spinor bundle S, D is the Dirac operator
on (X,S), and A is the Dirac operator on M for the induced spin structure.

Then the index of DT (with the non-local APS boundary condition defined by A) equals

2) Z > index(D") = / exp [Ltrlog (P (£2))] — In(A).
b'e
where R is the Riemannian curvature tensor of g, and P is a specific Taylor series:

—L or the signature operator;
P(CL’) — {tanh}m) f g P

sin&ﬁ for the Dirac operator.

Only the monomials of degree at most 2k in the series P contribute to the integrand.

The reader unfamiliar with the definition of the index, the signature and the Dirac
operator, the chiral operator D, the eta invariant, the non-local APS boundary condition,
and the proof of the index formula is referred to the original paper of Atiyah, Patodi and
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Singer [1]. We review them in section A for metrics which are not necessarily of product
type. But in fact, none of these ingredients really matter in the present work. Indeed, as a
consequence of the index formula, the eta invariant of A on M, defined in [1] as a spectral
invariant intrinsic to M and the operator A, can be computed modulo Z using the index
formula on some oriented manifold X bounding M (if any) with metric of product type:

R

(3) 51(A4) E/ 28 P(35)  mod Z.
X

Reversing the logical order of thought, assuming that M is the boundary of some oriented
X we could define the eta invariant modulo 2Z by this equation. The independence of
the right-hand side on (X, g) (with g of product type) is a consequence of Hirzebruch’s
signature formula, respectively of the Atiyah-Singer index theorem.

If g is locally conformally flat, the Weyl curvature tensor vanishes, and so the integrand
in (3), which only depends on the Weyl tensor, vanishes in positive degrees. It follows
that for such metrics on X the eta invariant of A is an even integer, under the condition
that g is of product type. But theorem 1, our main result, proved in section 5, shows that
this last hypothesis is not necessary!

As a corollary of our proof of theorem 1, we obtain an algebraic extension of the index
formula to certain metrics which are not of product type. The precise formulation of the
boundary-value problem in this non-product case is recalled in Appendix A.

Theorem 3. The index formula (2) is valid for metrics g which are not necessarily of
product type near M, but are locally conformally flat to the first order near M, in the
sense that the Weyl tensor of g vanishes at every p € M.

3. TRANSGRESSION FORMS

The Atiyah-Patodi-Singer index formula can be extended to metrics which are not of
product type, by adding a boundary correction term [10]. The rough nature of this term
is well-understood: it is a polynomial in the second fundamental form, its twisted exterior
derivative, and the curvature tensor of the boundary. In dimension 4k = 4 the correction
term is explicitly given in [9]. This boundary term vanishes when the boundary is totally
geodesic, or even just umbilic. We want to prove that this transgression form vanishes
under the hypothesis of theorem 3. Proposition 6 is quite general and also well-known,
it follows for instance as a particular case of the results from [11], but we are obliged to
include the proof below since it forms the starting point of our computations.

Let

[0,¢) x M — X, (t,p) — exp,(tv)

be the embedding defined by the geodesic normal flow from the boundary, where v is the
unit inner normal field. The pull-back of the metric g takes the form

g = dt* + h(t)
where h(t) is a smooth family of metrics on M starting at h(0) = h. We can then compute

Lo,g = O;h(t) near M,
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Let gy be any metric on X which equals dt?> + h near M. Clearly g is of product type,
and shares with g the same geodesics normal to the boundary. Let V!, V° denote the
Levi-Civita covariant derivatives with respect to g, go, and define

0 :=V' -V’ e AYX,End(TX)).

Let also VM denote the Levi-Civita connection of (M, h). The second fundamental form
Il of the inclusion (M, h) — (X, g) is defined for vector fields U, V' tangent to M by

ViV =VHV +1(U, V)0,

Notice that V¥V = V%V because ¢° is of product type. Let W be the Weingarten
operator, h(WU, V) = (U, V). Then for vectors U,V tangent to M we have:

(4) o(U)V = 1(U, V)3, o(U)d, = —W(U), 0(9,) = —W.

The last identity holds because 9, is a geodesic vector field both for g and g¢°.
Consider the segment of connections

VE=V+ 6

linking V° to V! for s € [0,1], and let R® be the curvature tensor of V* (so R! is the
curvature of the initial metric g). We have

(5) R = R’ + sd""0 + s°6> € A*(X, End(TX))[s].

Here we pause to explain the notation. Whenever w,w’ € A*(X) and B, B’ € End(T'X),
we define the product of the endomorphism-valued forms w ® B and w’ ® B’ as follows:

wRB -WwWB =wAWw Q@ BB

Thus 6? is an endomorphism-valued 2-form. The bracket [s] signifies that the dependence
of R® on s is polynomial (of degree 2). For later use, define the trace:

tr(w ® B) = tr(B)w € A*(X).
We note the obvious trace identity:
(6) tr(w® B - o' @ B) = (—1)%e@ ety @ B w @ B).

Lemma 4. Let {S;}1<j<ar—1 be a local orthonormal basis for T M consisting of eigenvec-
tors of W, namely W.S; = X\;S; for Aj € R. Then on the boundary M we have

w0 =) ANS AT R[S @8] =D ANSAT [RS8
i#j i<j
Proof. Evident from (4). O

From this lemma, we compute immediately +5,6° = 0 on M.
The following proposition is standard:

Proposition 5. Let () be a polynomial. Then
1
tr (Q(R")) —tr (Q(R")) = d/ tr (Q'(R®)) ds.
0

Here Q(R?) is an endomorphism-valued form as explained above.
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Proof. Since %Vs = 0, we have d%Rs = dV’0. Therefore, using the trace identity,
i Q) = tr (47 (B)Q'(R))
By the second Bianchi identity, dV" R® = 0, so d¥ Q'(R*) = 0 and therefore
47 (O)Q (1) = d¥ (6Q'(1)).
To conclude, use the identity tr(dV-) = dtr(-) and integrate from 0 to 1. O

The trace tr (Q(R?)) is a differential form depending polynomially on s. Its exponential
is well-defined, and is again a polynomial in s with coefficients in A*(X). Moreover we
have:

Proposition 6. Let () be a polynomial. Then

1
e (QAN) _ (@A) — ¢ / tr(0Q'(R*))e™ QN s,
0

The proof goes exactly like in the preceding proposition. We use the fact that tr (Q(R?))
is an even form and the trace identity to obtain

2 exp(ir (Q(R")) = dir(6Q'(R)) exp(ir (Q(R).

4. TRANSGRESSION FOR LOCALLY CONFORMALLY FLAT METRICS ON X
The Schouten tensor of the metric ¢ is defined by
_ 1 : scal
Sch = —; (i)%w — 2(n_1)) ,

where n = dim(X) = 4k. We henceforth assume that the Weyl component of the curva-
ture tensor of ¢ vanishes at a point p € M. At such p we then have [5, 1.116]

R'=6ch o g,

meaning that
) (&ch @ g)(Ur,Us, Us, Us) = &ch(Uy, Us)(Us, Us) + Sch(Us, Us) (U, Us)

— &ch(Uy, Us)(Us, Uy) — Sch(Us, Uy){(Uy, Us).
In particular, we deduce the following:

Lemma 7. Assume that the Weyl tensor of g vanishes at p € M. Then for mutually
orthogonal vectors Uy, Uy, Us, Uy € T,X we have (R}, ;,Us,Us) = 0.

Proof. If the vectors U;’s are mutually orthogonal, all the scalar products in (7) vanish. O

From g we have constructed a product type metric gg, and we have denoted by 6 the
difference between the covariant derivatives corresponding to g and to go. Let 15, : M —
X denote the inclusion map. The main result of this section is the following vanishing
result:



6 SERGIU MOROIANU

Proposition 8. If the Weyl tensor of (X, g) vanishes at p € M, then for every polynomial
Q, the pull-back

itr(0Q(R%)) € A™(M)

vanishes at p.

Proof. Let {Sj}?gl be an orthonormal basis of T,M consisting of eigenvectors for the

Weingarten operator W. We have

4k—1
(8) nl =Y NS R[S0 —dt®S)
=1
vy R® = RM,
(9) (dV°0(S:, S;)Sn, 0) = (d¥ W (Si, S;), Su) = (Rb.s, Sn, Oh) =2 Rij,.

Also from (8), using the fact that 0, is parallel with respect to gq,

(10) (d°0(S;, S;)Sh, S1) = 0.

Equation (9) is just the Codazzi-Mainardi constraint for the isometric embedding (M, h) C
(X,g). Since 9; L M, from (9), (10) and lemma 7 we deduce

(11)  o3,d¥’0 = D 5UAS" @ [Riyy, (S ® 0y — dt @ Sy) + Riy, (S* @ 0, — dt @ S,)).

abav
a<b

Lemma 9. Let 1 < i,j,h,l <4k — 1 be four distinct indices, and assume that the Weyl
tensor of g vanishes at p € M. Then <Rosisj5h: S;) = 0.

Proof. From equation (5) with s = 1, Lemma 4 becomes
(R.s Sn, S1) + (d¥°0(S:, S;)Sh, S1) + (0%(S:, S;)Sh, Si) = 0.
But the last two terms vanish by (11) and Lemma 7. O

By linearity, we may assume that @ is a monomial, Q(x) = z!. Notice that 23,0 and
1y R° are skew-adjoint endomorphism-valued forms, the latter being also of even degree.

If [ is even, by taking adjoints it follows that the trace of 43,0 (Rs)l vanishes. Assume now
that [ is odd. We will show below that the diagonal of the form-valued endomorphism

25,0 (R = 13,0(R° + sd¥"0 + s20%) € A?+1 (M, gl(n))

written in the basis {0;, S1,. .., Sik_1} consists of 0’s. Rewrite (4) as

k-1
(12) nl=> NSRS @0 —dt® S
i=1
and decompose 13,60 into
k-1 dk—1

G0 =0 —0" 0 =) NS'®[S @d, 0" :=> NS @005
=1 =1
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Since 6" is the transpose of 6’ and R* is skew-symmetric, it follows that
2 tr(0(R + sdV° 0 + s20%)!) = 2tr(0'2%, (R + sd¥' 0 + 526°)").
Introduce the following unified notation for the 2-forms entering in the expression of ¢}, R*:
A' =25, R = RM, A% =,dY"0, A =5,(0-0).
Lemma 10. For everyl > 1, and oy, ...,aq € {1,2,3}, the 21 4+ 1-form
oA A0

can be written as
4k—1

YD CiuS' @ [Si® S

i,j=1 1T
where I is a multi-index of length 21 + 1, and the coefficient C; ;1 € C®(M) equals zero
unless 1,7 € I and i # j.

Proof. Remark that 6’ A% = 0 unless a@ = 2, because the endomorphism component of 6’
restricted to T,M vanishes, while A and A* map 7,X into 7,M. Thus we can assume

that o(1) = 2. The form 0'2%,dY"6 can be written, using (12) and (11), a
k-1

Y aS' eS8, ® 5"

Iy,12,13=1

In the above sum, the wedge product ST = St A S22 A S5 clearly vanishes unless the
three indices are mutually distinct, so we retain only the terms with I; # I3. Once we
established this initial step, the proof proceeds by induction. Assume that the conclusion
of the lemma holds for [. We want to prove it for the product with one additional factor
AU We claim that under the hypotheses i, j € I, I # j, the product

vanishes for a(l+1) = 2. Indeed, using (11), we see that in order to have a non-zero term
in the product

ST@[Si®87]- 5" NS @ [Ray,, (S° @ O — dt © Sp) + Ry, (S° @ 0 — dt © S,)],

we should have either j = a or j = b. Since by the induction hypothesis 5 € I, it follows
that in such a case the exterior product S’ A S% A S® vanishes.

Using Lemma 4, exactly the same argument as above shows the vanishing of the product
(13) in the case where a(l + 1) = 3, i.e., A2+ = A3 = 9. 4.

In the remaining case a(l +1) = 1 we multiply ST ® [S; ® S7] to the right by A' = RM.

By Lemma 9,
4k—1

M= 3" NS ® [RYe(8a ® 5° — S, @ 5)].
a,b,c=1
The term corresponding to a triple (a,b,c) in the product ST ® [S; ® S7] - RM is non-
zero only if j = a or j = c. In the first case, the wedge product ST A S¢ vanishes since
by induction j € I. Thus the result of the product (13) consists of terms of the form
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STASYAS*® [S; ® S¢]. By the induction hypothesis i € I. If a = 4, again the wedge
product vanishes, so we may retain only the terms with a # . Evidently a € I U {a},
proving the induction step. 0

This lemma implies that for [ > 1, the endomorphism-valued differential form 62}, ( R*)!
is off-diagonal. For [ = 0 the same holds due to (12). Its trace thus vanishes, and since 2,0
is the skew-symmetric component of 26’ and [ is odd, we conclude that v},tr(6(R*)") = 0
as claimed. O

5. CONCLUSION

Let us derive the proofs of the statements announced in the beginning of the paper.
Let g be a metric on X which is not necessarily of product type. Let (D, A) be one of
the pairs of elliptic operators from the statement of theorem 2 corresponding to g and
the induced metric h on M. Let gy be the product type metric constructed from g in the
beginning of section 3 by using the normal geodesic flow from the boundary, and Dy the
corresponding operator on X.

From the Atiyah-Patodi-Singer index theorem for the product-type metric gy, we write

(14) index(Dg) = /Xexp [Ltrlog(P(R"/2mi))] — in(A).

Define a power series Q(z) := 1log(P(x/27i)) (only the truncation up to degree 4k

matters here). From proposition 6
1 0 1
etrQ(R ) . etrQ(R ) _ d/ tr (QQI (Rs)) etrQ(Rs)dS
0

hence by the Stokes formula,

(15) /X erQ(R') _ otrQ(R) /0 1 ( /M tr (0Q (RS))e“Q(RS)) ds.

Lemma 11. If the Weyl tensor of g vanishes at every p € M, then

index(Dy) = / exp [Strlog(P(R'/2mi))] — in(A).
X

Proof. By proposition 8, the hypothesis ensures that the right-hand side of (15) vanishes,

so the lemma follows from the index formula (14). O

Proof of theorem 1. We use now the hypothesis that ¢ is locally conformally flat, i.e., the
Weyl tensor of g vanishes on X. On the one hand, lemma 11 applies since the Weyl
tensor in particular vanishes at every point p € M. On the other hand, the Pontriagin
form trlog(P(R'/27i)) vanishes identically, since in general it only depends on the Weyl
tensor. We deduce

@ = —index(Dy) € Z. O
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Proof of theorem 3. The index formula from lemma 11 applies since we assume the Weyl
tensor of ¢ to vanish at M. In Appendix A we recall the definition of the Fredholm
index of D with the non-local spectral boundary condition defined by A, and prove by
deformation that index(Dg) = index(D™), thereby ending the proof. O

6. CONSEQUENCES

The eta invariant of the odd signature operator is known for various classes of 3-
manifolds, including lens spaces [2], [15] and hyperbolic manifolds [7]. These manifolds
are quotients of the standard 3-sphere, respectively of the hyperbolic 3-space, by some
discrete group of isometries, so they can be locally embedded isometrically in R*. By
a result of Hirsch [13], every oriented compact 3-manifold can be C*° immersed in R*,
and is moreover the boundary of some oriented compact X from Thom [18]. Theorem
1 implies that a closed oriented 3-manifold cannot be isometric to the boundary of a
locally conformally flat manifold, unless the sum of the eta invariants of its connected
components is an even integer.

For instance, the lens space L(3,1) is not the boundary of a locally conformally flat 4-
manifold since its eta invariant is —%. Eleven out of the 12 closed hyperbolic 3-manifolds
from [7, Table 2] have non-integral eta invariant, so they do not bound locally conformally
flat 4-manifolds.

The eta invariant of the Dirac operator on Bieberbach (i.e., flat and closed) oriented
3-manifolds was computed by Pféffle [17]. It is a topological invariant of the fundamental
group and the spin structure. He found that for the manifolds G;, j € {2,3,4,5} from
the Hantsche-Wendt classification of Bieberbach groups in dimension 3, there exist spin
structures o; for which the eta invariant modulo 2 equals —%, where k£ > 2 is the order
of the holonomy group of G, [17, Theorem 5.6]. The spin cobordism group is trivial in
dimension 3, so for each j there exists a spin manifold (X, 7;) with spin boundary (G}, o;).
Theorem 1 asserts that X; cannot carry a locally conformally flat metric extending any
of the flat metrics on Gj.

APPENDIX A. THE INDEX PROBLEM FOR NON-PRODUCT METRICS

Let g denote an arbitrary smooth metric on X restricting to h on M. The geodesic flow
with respect to g in the direction of the inner unit vector field normal to the boundary M
gives, by the Gauss Lemma, a generalized cylinder decomposition (see [4]) of X near M:

g= dt2+ht7

where {h:}o<i<e is a smooth family of metrics on M with hg = h. Assume that either
dim(X) is a multiple of 4, or that X is even-dimensional and spin, and let D be the
signature, respectively the spin Dirac operator. To unify notation, we denote in both
cases by S the exterior bundle, respectively the spinor bundle on X. The operator D is
symmetric, and odd with respect to the splitting S = S™ & S~ induced by the Hodge
star, respectively by Clifford multiplication with the volume form:

D= [£+ %_] L O®(X, St @ S7) — C®(X, ST @ 57).
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The operator D' : C*(X,S*) — C>(X,S7) is called the chiral component of D. Parallel
transport in the bundle S yields a decomposition of DT for small ¢:

(16) Dt =0 [0+ A+tBi(t) + By(t)]

where ¢ is an invertible bundle morphism, and the correction term B;(t), j € {0,1}, is
a family of differential operators on M of order j depending smoothly on ¢ > 0. The
self-adjoint operator A is the odd signature operator, respectively the spin Dirac operator
on M with respect to the induced metric h, exactly like in the case where g is of product
type near {t = 0}. The correction terms By, B; vanish identically when the metric is of
product type.

Let Il ) denote the spectral projector onto the non-negative eigenmodes of A:

M) = 5 (14 A47(4%)3)

(by definition, Il is the identity on the null-space of A). This is a pseudodifferential
operator of order 0. Consider the Atiyah-Patodi-Singer restriction of the operator D
with respect to the spectral boundary condition defined by A:

DT {¢p € C(X,S5%); Up,o0)(On) = 0} — C®(X,S7)
and its closure in the Sobolev spaces H'(X, S), respectively L?(X,S):
Dt :{¢p e H' (X, 5); g 00)(par) =0} — L*(X,S7).

Elliptic operators of this type have been studied beginning with [1] in the product case,
where they are shown in particular to be Fredholm. In the general case, the Fredholm
property is due to Grubb [12]. We also refer the reader to [3] for a self-contained analysis
of Fredholm extensions of operators of the type (16).

As in section 3, let gy be a metric on X of product type near M, gy = dt* + h near
{t = 0}, where h is the restriction of g to M. Implicitly we assume that g and gy have
the same geodesics orthogonal to the boundary for small time ¢, thus the germ of gy near
the boundary is uniquely determined by g. We can consider the index problem for Dy,
the signature, respectively the Dirac operator associated to go. The boundary condition
for D is defined by same operator A as for D', namely the odd signature operator,
respectively the Dirac operator on (M, h).

Lemma 12. The indices of DV and D coincide.

Proof. Let {gs}o<s<1 be the segment of metrics linking go to g =: ¢1, gs = (1 — $)go + Sg1.
Endow the cylinder [0,1] x X with the metric ds? + g, When X is spin, this cylinder
is also spin, moreover when dim(X) is even, the spinor bundle on [0, 1] x X restricts
naturally over every slice {s} x X to the spinor bundle for (X, g). In the case of the
signature bundle, we can patch together the exterior bundles from the slices {s} x X to
the sub-bundle of the exterior bundle on [0,1] x X consisting of forms annihilated by
contraction with the vector field d,. Thus in both cases, we get a global vector bundle
with connection over [0,1] x X extending the family of bundles S over X constructed
with respect to the metrics g;.
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Parallel transport on [0, 1] x X in this bundle in the direction of 0s identifies the bundle
S over (X, gs) with the spinor bundle, respectively the exterior bundle on (X, g¢). Since 0
is a geodesic vector field, this parallel transport preserves the horizontal volume form dgs,,
thus it preserves the splitting S = ST & S~ induced by Clifford product with dg,. Under
these identifications, D} becomes a first-order elliptic operator of the form (16) near the
boundary, smoothly varying in s. Moreover, we claim that the tangential component at
the boundary, A, is constant in s, being precisely the Dirac operator, respectively the
odd signature operator on (M, h):

DY = o(s) - [0, + A+ tBy(t, s) + Bo(t, s)] .

Indeed, the principal symbol of Ag over {s} x M is Clifford multiplication in the spinor
bundle, respectively in the exterior bundle over M. But the metrics on {s} x M are all
equal to h for every s, hence the family of principal symbols of Ay is constant. Up to
absorbing the zero'™ order part in By(0, s), we see that A can be assumed to be constant
in s.

We now have a smooth family of Fredholm operators {D }scp0.11,

DY :{¢ € H'(X,5%;90); Hpp,00)(Pyas) = 0} — L*(X,5 5 90)

acting between the same two Hilbert spaces. The main point here is that the spectral
projector Iljg o), defined by A, is independent of s. From the homotopy invariance of the
Fredholm index we get the equality index(Dy ) = index(D™). O
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