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Abstract. Let X be a non-compact geometrically finite hyperbolic 3-manifold without
cusps of rank 1. The deformation space H of X can be identified with the Teichmüller
space T of the conformal boundary of X as the graph of a section in T ∗T. We construct
a Hermitian holomorphic line bundle L on T, with curvature equal to a multiple of the
Weil-Petersson symplectic form. This bundle has a canonical holomorphic section defined

by e
1
π

VolR(X)+2πiCS(X) where VolR(X) is the renormalized volume of X and CS(X) is the
Chern-Simons invariant of X. This section is parallel on H for the Hermitian connection
modified by the (1, 0) component of the Liouville form on T ∗T. As applications, we deduce
that H is Lagrangian in T ∗T, and that VolR(X) is a Kähler potential for the Weil-Petersson
metric on T and on its quotient by a certain subgroup of the mapping class group. For the
Schottky uniformisation, we use a formula of Zograf to construct an explicit isomorphism of
holomorphic Hermitian line bundles between L−1 and the sixth power of the determinant
line bundle.

1. Introduction

In [5], S.S. Chern and J. Simons defined secondary characteristic classes of connections on
principal bundles, arising from Chern-Weil theory. Their work has been extensively developed
to what is now called Chern-Simons theory, with many applications in geometry and topology,
but also in theoretical physics. For a Riemannian oriented 3-manifold X, the Chern-Simons
invariant CS(ω, S) of the Levi-Civita connection form ω in an orthonormal frame S is given
by the integral of the 3-form on X

1
16π2 Tr(ω ∧ dω + 2

3ω ∧ ω ∧ ω).

On closed 3-manifolds, the invariant CS(ω) is independent of S up to integers. By the
Atiyah-Patodi-Singer theorem for the signature operator, the Chern-Simons invariant of the
Levi-Civita connection is related to the eta invariant by the identity 3η ≡ 2CS modulo Z
(see for instance [35]).
The theory has been extended to SU(2) flat connections on compact 3-manifolds with bound-
ary by Ramadas-Singer-Weitsman [28], in which case CS(ω) does depend on the boundary
value of the section S. The Chern-Simons invariant e2πiCS(·) can be viewed as a section
of a complex line bundle (with a Hermitian structure) over the moduli space of flat SU(2)
connections on the boundary surface. They proved that this bundle is isomorphic to the
determinant line bundle introduced by Quillen [27]. Some more systematic studies and ex-
tensions of the Chern-Simons bundle have been developed by Freed [7] and Kirk-Klassen
[15]. One contribution of our present work is to give an explicit isomorphism between these
Hermitian holomorphic line bundles in the Schottky setting.
An interesting field of applications of Chern-Simons theory is for hyperbolic 3-manifolds
X = Γ\H3, which possess a natural flat connection θ over a principal PSL2(C)-bundle. For
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closed manifolds, Yoshida [35] defined the PSL2(C)-Chern-Simons invariant as above by

CS(θ) = − 1
16π2

∫
X
S∗
(
Tr(θ ∧ dθ + 2

3θ ∧ θ ∧ θ)
)

where S : X → P are particular sections coming from the frame bundle over X. This is a
complex number with imaginary part − 1

2π2 Vol(X), and real part equal to the Chern-Simons
invariant of the Levi-Civita connection on the frame bundle. Up to the contribution of a link
in X, the function F := exp( 2

πVol(M) + 4πiCS(M)) extends to a holomorphic function on a
natural deformation space containing closed hyperbolic manifolds as a discrete set.
Our setting in this paper is that of 3-dimensional geometrically finite hyperbolic manifolds
X without rank-1 cusps, in particular convex co-compact hyperbolic manifolds, which are
conformally compactifiable to a smooth manifold with boundary. Typical examples are
quotients of H3 by quasi-Fuchsian or Schottky groups. The ends of X are either funnels or
rank-2 cusps. The funnels have a conformal boundary, which is a disjoint union of compact
Riemann surfaces forming the conformal boundary M of X. The deformation space of X is
essentially the deformation space of its conformal boundary, i.e. Teichmüller space. Before
defining a Chern-Simons invariant, it is natural to ask about a replacement of the volume in
this case. For Einstein conformally compact manifolds, the notion of renormalized volume
VolR(X) has been introduced by Henningson-Skenderis [13] in the physics literature and
by Graham [9] in the mathematical literature. In the particular setting of hyperbolic 3-
manifolds, this has been studied by Krasnov [16] and extended by Takhtajan-Teo [30], in
relation with earlier work of Takhtajan-Zograf [31], to show that VolR is a Kähler potential for
the Weil-Petersson metric in Schottky and quasi-Fuchsian settings. Krasnov and Schlenker
[18] gave a more geometric proof of this, using the Schläfli formula on convex co-compact
hyperbolic 3-manifolds to compute the variation of VolR in the deformation space
Before we introduce the Chern-Simons invariant in our setting, let us first recall the definition
of VolR used by Krasnov-Schlenker [18]. A hyperbolic funnel is some collar (0, ε)x × M
equipped with a metric

g =
dx2 + h(x)

x2
, h(x) ∈ C∞(M,S2

+T
∗M), h(x) = h0

(
(Id + x2

2 A)·, (Id + x2

2 A)·
)

(1)

where M is a Riemann surface of genus ≥ 2 with a hyperbolic metric h0, A is an endomor-
phism of TM satisfying divh0A = 0, and Tr(A) = −1

2scalh0 . The metric g on the funnel is of
constant sectional curvature −1, and every end of a convex co-compact hyperbolic manifold
X is isometric to such a hyperbolic funnel, see [6, 18]. A couple (h0, A0) can be considered
as an element of T ∗h0

T, if A0 = A − 1
2tr(A)Id is the trace-free part of the divergence-free

tensor A. We therefore identify the cotangent bundle T ∗T of T with the set of hyperbolic
funnels modulo the action of the group D0(M), acting trivially in the x variable. Let x be
any smooth positive function on X which extends the function x defined in each funnel by
(1), and is equal to 1 in each cusp end. The renormalized volume of (X, g) is defined by

VolR(X) := FPε→0

∫
x>ε

dvolg

where FP means finite-part (i.e. the coefficient of ε0 in the asymptotic expansion as ε→ 0).
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The tangent bundle to any 3-manifold is trivial. If ω is the so(3)-valued Levi-Civita connec-
tion 1-form on X in an oriented orthonormal frame S = (S1, S2, S3), we define

(2) CS(g, S) := − 1
16π2 FPε→0

∫
x>ε

Tr(ω ∧ dω + 2
3ω ∧ ω ∧ ω).

We ask that S be even to the first order at {x = 0} and also that, in each cusp end, S be
parallel in the direction of the vector field pointing towards to cusp point. Equipped with
the conformal metric ĝ := x2g, the manifold X extends to a smooth Riemannian manifold
X = X ∪ M with boundary M . The Chern-Simons invariant CS(ĝ, Ŝ) is therefore well
defined if Ŝ = x−1S is an orthonormal frame for ĝ. We define the PSL2(C) Chern-Simons
invariant CSPSL2(C)(g, S) on (X, g) by the renormalized integral (2) where we replace ω by
the complex-valued connection form θ := ω+iT ; here T is the so(3)-valued 1-form defined by
Tij(V ) := g(V ×Sj , Si) and × is the vector product with respect to the metric g. There exists
a natural flat connection on a PSL2(C) principal bundle FC(X) over X (which can be seen
as a complexified frame bundle), with sl2(C)-valued connection 1-form Θ, and we show that
CSPSL2(C)(g, S) also equals the renormalized integral of the pull-back of the Chern-Simons
form − 1

4π2 Tr(Θ ∧ dΘ + 2
3Θ3) of the flat connection Θ, see Section 3. We first show

Proposition 1. On a geometrically finite hyperbolic 3-manifold (X, g) without rank-1 cusps,
one has CS(g, S) = CS(ĝ, Ŝ), and

(3) CSPSL2(C)(g, S) = − i
2π2 VolR(X) + i

4πχ(M) + CS(g, S)

where χ(M) is the Euler characteristic of the conformal boundary M .

The relation between CS(g, S) and CS(ĝ, Ŝ) comes rather easily from the conformal change
formula in the Chern-Simons form (the boundary term turns out to not contribute), while
(3) is a generalization of a formula in Yoshida [35], but we give an independent easy proof.
Similar identities to (3) can be found in the physics literature (see for instance [17]).
Like the function F of Yoshida, it is natural to consider the variation of CSPSL2(C)(g, S) in the
set of convex co-compact hyperbolic 3-manifolds, especially since, in contrast with the finite
volume case, there is a finite dimensional deformation space of smooth hyperbolic 3-manifolds,
which essentially coincides with the Teichmüller space of their conformal boundaries. One of
the problems, related to the work of Ramadas-Singer-Weitsman [28] is that e2πiCSPSL2(C)(g,S)

depends on the choice of the frame S, since X is not closed. This leads us to define a
complex line bundle L over Teichmüller space T of Riemann surfaces of a fixed genus, in
which e2πiCSPSL2(C)

and e2πiCS are sections.
Let T be the Teichmüller space of a (not necessarily connected) oriented Riemann surface M
of genus g = (g1, . . . , gN ), gj ≥ 2, defined as the space of hyperbolic metrics on M modulo
the group D0(M) of diffeomorphisms isotopic to the identity. This is a complex simply
connected manifold of complex dimension 3|g| − 3, equipped with a natural Kähler metric
called the Weil-Petersson metric (see Subsection 7.1). The mapping class group Mod of
isotopy classes of orientation preserving diffeomorphisms of M acts properly discontinuously
on T. Let (X, g) be a geometrically finite hyperbolic 3-manifold without cusp of rank 1, with
conformal boundary M . By Theorem 3.1 of [20], there is a smooth map Φ from T to the set
of geometrically finite hyperbolic metrics on X (up to diffeomorphisms of X homotopic to
identity) such that the conformal boundary of Φ(h) is (M,h) for any h ∈ T. The subgroup
ModX of Mod consisting of elements which extend to diffeomorphisms on X homotopic to
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the identity acts freely, properly discontinuously on T and the quotient is a complex manifold
of dimension 3|g|−3. The map Φ is invariant under the action of ModX and the deformation
space TX of X is identified with a quotient of the Teichmüller space TX = T/ModX , see [20,
Th. 3.1] .

Theorem 2. Let (X, g) be a geometrically finite hyperbolic 3-manifold without rank-1 cusp,
and with conformal boundary M . There exists a holomorphic Hermitian line bundle L over
T equipped with a Hermitian connection ∇L, with curvature given by i

8π times the Weil-
Petersson symplectic form ωWP on T. The bundle L with its connection descend to TX and
if gh = Φ(h) is the geometrically finite hyperbolic metric with conformal boundary h ∈ T,
then h→ e2πiCS(gh,·) is a global section of L.

The line bundle is defined using the cocycle which appears in the Chern-Simons action under
gauge transformations, this is explained in Subsection 7.3. We remark that the computation
of the curvature of L reduces to the computation of the curvature of the vertical tangent
bundle in a fibration related to the universal Teichmüller curve over T, and we show that the
fiberwise integral of the first Pontrjagin form of this bundle is given by the Weil-Petersson
form, which is similar to a result of Wolpert [34]. An analogous line bundle, but in a more
general setting, has been recently studied by Bunke [4].
Since funnels can be identified to elements in T ∗T, the map Φ described above induces a
section σ of the bundle T ∗T (which descends to T ∗TX) by assigning to h ∈ T the funnels of
Φ(h). The image of σ

H := {σ(h) ∈ T ∗TX , h ∈ TX}
identifies the set of geometrically finite hyperbolic metrics on X as a graph in T ∗TX .
Let us still denote by L the Chern-Simons line bundle pulled-back to T ∗T by the projection
πT : T ∗T → T, and define a modified connection

(4) ∇µ := ∇L + 2
πµ

1,0

on L over T ∗T, where µ1,0 is the (1, 0) part of the Liouville 1-form µ on T ∗T. As before, the
connection descends to T ∗TX , and notice that it is not Hermitian (since µ1,0 is not purely
imaginary) but ∇µ and ∇L induce the same holomorphic structure on L.

By Theorem 2 and Proposition 1, e2πiCSPSL2(C)
is a section of L on TX , its pull-back by πT

also gives a section of L on H, which we still denote e2πiCSPSL2(C)
.

Theorem 3. Let V ∈ TH be a vector field tangent to H, then ∇µV e2πiCSPSL2(C)
= 0, i.e. ∇µ

is flat on H ⊂ T ∗TX .

The curvature of ∇µ vanishes on H by Theorem 3 while the curvature of ∇L is i
8πωWP (by

Theorem 2). By considering the real and imaginary parts of these curvature identities, we
obtain as a direct corollary :

Corollary 4. The manifold H is Lagrangian in T ∗TX for the Liouville symplectic form µ and
d(VolR ◦σ) = −1

4µ on H. The renormalized volume is a Kähler potential for Weil-Petersson
metric on TX :

∂̄∂(VolR ◦ σ) = i
16ωWP.

Our final result relates the Chern-Simons line bundle L to the Quillen determinant line bundle
det ∂ of ∂ on functions in the particular case of Schottky hyperbolic manifolds. If M is a
connected surface of genus g ≥ 2, one can realize any complex structure on M as a quotient
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of an open set ΩΓ ⊂ C by a Schottky group Γ ⊂ PSL2(C) and using a marking α1, . . . , αg of
π1(M) and a certain normalization, there is complex manifold S, called the Schottky space,
of such groups. This is isomorphic to TX , where X := Γ\H3 is the solid torus bounding M in
which the curves αj are contractible. The Chern-Simons line bundle L can then be defined on
S. The Quillen determinant bundle det ∂ is equipped with its Quillen metric and a natural
holomorphic structure induced by S (see Subsection (9.2)), therefore inducing a Hermitian
connection compatible with the holomorphic structure. Moreover, there is a canonical section
of det ∂ = Λg(coker ∂) given by ϕ := ϕ1 ∧ · · · ∧ ϕg where ϕj are holomorphic 1-forms on M
normalized by the marking through the requirement

∫
αj
ϕk = δjk. Using a formula of Zograf

[36, 37], we show

Theorem 5. There is an explicit isometric isomorphism of holomorphic Hermitian line
bundles between the inverse L−1 of the Chern-Simons line bundle and the 6-th power (det ∂)⊗6

of the determinant line bundle det ∂, given by

(Fϕ)⊗6 7→ e−2πiCSPSL2(C)

.

Here ϕ is the canonical section of det ∂ defined above, cg is a constant, and F is a holomorphic
function on S which is given, on the open set where the product converges absolutely, by

F (Γ) = cg
∏
{γ}

∞∏
m=0

(1− q1+m
γ ),

where qγ is the multiplier of γ ∈ Γ, {γ} runs over all distinct primitive conjugacy classes in
Γ ∈ S except the identity.

Novelties and perspectives. Our main contribution in this work is to introduce the Chern-
Simons theory and its line bundle over Teichmüller space in relation with Kleinian groups.
The strength of this construction appears through a variety of applications to Teichmüller
theory in essentially the most general setting, all at once and self-contained. For example,
the property of the renormalized volume of being a Kähler potential for the Weil-Petersson
metric, previously known in the particular cases of Schottky and quasi-Fuchsian groups
[16, 30, 31, 18], follows directly from our Chern-Simons approach for all geometrically finite
Kleinian groups without cusps of rank 1 (for instance, the proof in [18] is based on an
explicit computation at the Fuchsian locus and does not seem to be extendable to general
groups). In fact, finding Kähler potentials for the Weil-Petersson metric starting from a
general Kleinian cobordism is not only a generalisation of the quasi-Fuchsian and Schottky
cases. Indeed, the Chern-Simons bundle L is a “prequantum bundle” and together with the
canonical holomorphic sections e2πiCSPSL2(C)

corresponding to each hyperbolic cobordism, it
could be used for a geometric definition of a Topological Quantum Field Theory through the
quantization of Teichmüller space. We shall pursue this question elsewhere.
The existence of a non-explicit isomorphism between the Chern-Simons bundle on the (com-
pact) moduli space of SU(2) flat connections and the determinant line bundle was discovered
in [28]. In contrast, in our non-compact PSL2(C) setting we find an explicit isomorphism,
involving a formula of Zograf on Schottky space, which as far as we know is the first of its
kind; we expect to generalize this to all convex co-compact groups.
More generally, we expect the results of this paper to extend to all geometrically finite
hyperbolic 3-manifolds. Several technical difficulties appear when we perform our analysis
to cusps of rank 1, this will be carried out elsewhere.
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Organization of the paper: In order to simplify as much as possible the presentation,
we discuss the case of convex co-compact manifolds in the main body of the paper, and
add an appendix including the case of rank 2 cusps. In several parts of the paper, we
also consider the more general setting of asymptotically hyperbolic manifolds, which only
have asymptotic constant curvature near ∞. The paper splits in two parts: in Section
2–6, we introduce Chern-Simons invariants associated to the Levi-Civita connection and
to a certain complexification thereof on asymptotically hyperbolic 3-manifolds with totally
geodesic boundary, and we study their relationship with the renormalized volume in the case
of convex co-compact hyperbolic metrics. In the second part, Section 7–9, we define the
Chern-Simons line bundle over T, its connections, we compute the variation of our Chern-
Simons invariants, and derive the implications on the Weil-Petersson metric and on the
determinant line bundle.

2. Asymptotically hyperbolic manifolds

Let (X, g) be an 3-dimensional asymptotically hyperbolic manifold, i.e., X is the interior of a
compact smooth 3-manifold with boundary X, and there exists a smooth boundary-defining
function x such that near the boundary {x = 0} the Riemannian metric g has the form

g =
dx2 + h(x)

x2

in a product decomposition [0, ε)x ×M ↪→ X near the boundary M = ∂X, for some smooth
one-parameter family h(x) of metrics on M . A boundary-defining function x inducing this
product decomposition satisfies |dx|x2g = 1 near ∂X, and is called a geodesic boundary
defining function. When ∂xh(x)|x=0 = 0, the boundary M is totally geodesic for the metric
ĝ := x2g and we shall say that g has totally geodesic boundary. This condition is shown in
[10] to be invariant with respect to the choice of x. Examples of asymptotically hyperbolic
manifold with totally geodesic boundary are the hyperbolic space H3, or more generally
convex co-compact hyperbolic manifolds (cf. Eq. (6)). The conformal boundary of (X, g)
is the compact manifold M = ∂X equipped with the conformal class {h0} of h0 := h(0) =
x2g|TM .

2.1. Convex co-compact hyperbolic quotients. Let X be an oriented complete hyper-
bolic 3-manifold, equipped with its constant curvature metric g. The universal cover X̃ is
isometric to the 3-dimensional hyperbolic space H3, and the deck transformation group is
conjugated via this isometry to a Kleinian group Γ ⊂ PSL2(C) (we recall below that PSL2(C)
can be viewed as the group of orientation-preserving isometries of H3). In this way we get a
representation of the fundamental group

(5) ρ : π1(X)→ PSL2(C)

with image Γ, well-defined up to conjugation.
We say that X is convex co-compact hyperbolic if it is isometric to Γ\H3 for some discrete
group Γ ⊂ PSL2(C) with no elliptic, nor parabolic transformations, such that Γ admits
a fundamental domain in H3 with a finite number of sides. Then the manifold X has a
smooth compactification into a manifold X, with boundary M which is a disjoint union of
compact Riemann surfaces. The boundary can be realized as the quotient Γ\Ω(Γ) where
Ω(Γ) ⊂ S2 is the domain of discontinuity of the convex co-compact subgroup Γ, acting
as conformal transformations on the sphere S2. Each connected component of M has a
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projective structure induced by the group Γ ⊂ PSL2(C). It is proved in [6, 18] that the
constant sectional curvature condition implies the following structure for the metric near
infinity: there exists a product decomposition [0, ε)x × M of X near M , induced by the
choice of a geodesic boundary-defining function x of M , a metric h0 on M and a symmetric
endomorphism A of TM such that the metric g is of the form

g =
dx2 + h(x)

x2
, h(x) = h0

(
(1 + x2

2 A)· , (1 + x2

2 A)·
)
,(6)

and moreover A satisfies

Tr(A) = −1
2scalh0 , d∇

∗
A = 0.(7)

2.2. Tangent, cotangent and frame bundles. There exists a smooth vector bundle over
X spanned over C∞(X) by smooth vector fields vanishing on the boundary ∂X (those are
locally spanned near ∂X by x∂x and x∂y if x is a boundary defining function and y are
coordinates on the boundary), we denote by 0TX this bundle. Its dual is denoted 0T

∗
X and

is locally spanned over C∞(X) by the forms dx/x and dy/x. An asymptotically hyperbolic
metric can be also defined to be a smooth section of the bundle of positive definite symmetric
tensors S2

+(0T
∗
X) such that |dx/x|g = 1 at ∂X. The (orthonormal) frame bundle F0(X) for

an asymptotically hyperbolic metric g is a SO(3)-principal bundle and its sections are triples
of smooth g-orthonormal vector fields in 0TX. It is clearly canonically isomorphic to the
(orthonormal) frame bundle F (X) of the compactified metric ĝ := x2g if x is a boundary
defining function. A smooth frame S ∈ F0(X) is said to be even to first order if, in local
coordinates (y1, y2, x) near ∂X induced by any geodesic defining function x, the vector fields
forming S are of the form x(u1∂y1 + u2∂y2 + u3∂x) where uj are such that ∂xuj |M = 0, or
equivalently [∂x, Ŝ]|M = 0 if Ŝ := x−1S is the related frame for ĝ := x2g. In general, we refer
the reader to [22, 21] for more details about the 0-structures and bundles.

2.3. Orientation convention. For an oriented asymptotically hyperbolic manifold the ori-
entation of the boundary at infinity M is defined by the requirement that (∂x, Y1, Y2) is a
positive frame on X if and only if (Y1, Y2) is a positive frame on M . With this convention,
Stokes’s formula gives ∫

X
dα = −

∫
M
α

for every α ∈ C∞(X,Λ2X).

2.4. Renormalized integrals. Let ω ∈ x−NC∞(X,Λ3X)+C∞(X,Λ3X) for some N ∈ R+.
The 0-integral (or renormalized integral) of ω on X is defined by∫ 0

X
w := FPε→0

∫
x>ε

ω

where FP denotes the finite part, i.e., the coefficient of ε0 in the expansion of the integral at
ε = 0. This is independent of the choice of function x when N is not integer or N > −1 but
it depends a priori on the choice of x when N is a negative integer. In the present paper,
we shall always fix the geodesic boundary defining function x so that the induced metric
h0 = x2g|TM is the unique hyperbolic metric in its conformal class. More generally, one
can define renormalized integrals of polyhomogeneous forms but this will not be used here.
We refer the reader [1, 11] for detailed discussions on this topic. An example which has
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been introduced by Henningson-Skenderis [13] and Graham [9] for asymptotically hyperbolic
Einstein manifolds is the renormalized volume defined by

VolR(X) :=
∫ 0

X
dvolg

where dvolg is the volume form on (X, g).

3. The bundle of infinitesimal Killing vector fields for hyperbolic manifolds

The hyperbolic 3-space H3 can be viewed as a subset of quaternions

H3 ' {y1 + iy2 + y3j; y3 > 0, y1, y2 ∈ R}, gH3 =
dy2

y2
3

.

The action of γ =
[
a b
c d

]
∈ PSL2(C) on ζ = y1 + iy2 + y3j ∈ H3 is given by

γ.ζ = (aζ + b)(cζ + d)−1.

This action identifies PSL2(C) with the group of oriented isometries of H3, which is diffeo-
morphic to the frame bundle F (H3) = H3 × SO(3) of H3 via the map

Φ : PSL2(C)→ F (H3), γ 7→ (γ.j, γ∗(∂y1 , ∂y2 , ∂y3)).

There exists a natural embedding

q̃ : F (H3)→ H3 × PSL2(C), (m,Vm) 7→ (m,Φ−1(m,Vm)).(8)

which is equivariant with respect to the right action of SO(3). If X = Γ\H3 is an oriented
hyperbolic quotient, q̃ descends to a bundle map

(9) q : F (X)→ H3 ×Γ PSL2(C) =: FC(X).

where FC(X) is a principal bundle over X with fiber PSL2(C). The trivial flat connection
on the product H3 × PSL2(C) also descends to a flat connection on FC(X), denoted θ (i.e.,
a sl2(C)-valued 1-form on FC(X)), with holonomy representation conjugated to ρ, where ρ
is defined in (5).
Let ∇ be the Levi-Civita connection on TX with respect to the hyperbolic metric g, and let

T ∈ Λ1(X,End(TX)), TVW := −V ×W,(10)

where × is the vector product with respect to the metric g.

Proposition 6. The vector bundle E(X) associated to the principal bundle FC(X) with
respect to the adjoint representation is isomorphic, as a complex bundle, to the complexified
tangent bundle TCX. The connection induced by θ is D := ∇+ iT .

Proof. The associated bundle with respect to the adjoint representation is given by

E(X) = H3 ×Γ PSL2(C)×PSL2(C) sl(2,C) = H3 ×Γ sl(2,C) = (H3 × sl2(C))/ ∼

where the equivalence relation is [m,h] ∼ [γm, γhγ−1] for all γ ∈ Γ. We also have TX =
Γ\TH3 where the action of PSL2(C) on TH3 is given by γ.(m, vm) := (γm, γ∗(vm)). For
every vector field u on X define its canonical lift su to TCX by

su := u+ i
2curl(u)
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where we recall that the curl operator corresponds to ∗d when identitifying vector fields and
1-forms through the metric. The map u 7→ su is thus a first-order differential operator. Note
that the sign in front of curl is different from the one used in [14]. For every h ∈ sl2(C) let
κh be the Killing field on H3 corresponding to the infinitesimal isometry h.

Lemma 7. We have κih = −1
2curl(κh), thus

sκh = κh − iκih, sκih = isκh .

Proof. Direct verification on a basis of sl2(C), using the explicit formula for κh at q ∈ H3:

κh = b+ aq + qa− qcq

where h =
[
a b
c d

]
∈ sl2(C) and TqH3 was identified with C⊕ jR. �

Define a vector bundle morphism

Ψ : C∞(H3, E(H3))→ C∞(H3, TCH3), (m,h) 7→ sκh(m) = κh(m) + i
2curl(κh)(m).

This map is injective, for a Killing field which vanishes at a point together with its curl must
vanish identically. By dimensional reasons, Ψ must be a bundle isomorphism. Moreover, Ψ is
PSL2(C)-equivariant in the sense that for all γ ∈ PSL2(C) we have Ψ(γm, adγh) = γ∗Ψ(m,h)
(this is clear for the real part by definition, while for the imaginary part we use the fact that
γ is an isometry to commute it across curl), hence Ψ descends to the Γ-quotient as an
isomorphism C∞(X,E(X)) → C∞(X,TCX). By Lemma 7, this isomorphism is compatible
with the complex structures. It remains to identify the push-forward D of the flat connection
from E(X) to TCX under this map. It is enough to prove that on H3 we have D = ∇+ iT ,
since both terms are PSL2(C) invariant.

Lemma 8. Let κ be a Killing vector field on an oriented 3-manifold of constant sectional
curvature ε. Then the field v := −1

2curl(κ) is also Killing, and satisfies for every vector U

∇Uκ = U × v, ∇Uv = εU × κ.

Proof. Directly from the Koszul formula, the Levi-Civita covariant derivative of a Killing vec-
tor field κ satisfies 〈∇Uκ, V 〉 = 1

2dκ(U, V ) (identifying κ with a 1-form), which in dimension
3 implies

∇Uκ = −1
2U × curl(κ) = U × v.

Let now (U1, U2, U3) be a radially parallel orthonormal frame near a point p, so that ∇UiUj =
0 at p. On one hand, by assumption on the sectional curvatures, one has 〈RU1U2κ, U3〉 = 0
where R is the curvature tensor of the metric. On the other hand, at the point p we have

〈RU1U2κ, U3〉 =U1〈∇U2κ, U3〉 − U2〈∇U1κ, U3〉
=U1〈v × U2, U3〉 − U2〈v × U1, U3〉
=〈∇U1v, U1〉+ 〈∇U2v, U2〉.

Similarly, 〈∇U2v, U2〉 + 〈∇U3v, U3〉 = 0 and 〈∇U3v, U3〉 + 〈∇U1v, U1〉 = 0 so we deduce that
〈∇Ujv, Uj〉 = 0 at p. So ∇v is skew-symmetric at the (arbitrary) point p, or equivalently v
is Killing.
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Since ∇Uiκ = Ui × v we see that

v =
∑
〈v, Ui〉Ui = 〈v, U2 × U3〉U1 + 〈v, U3 × U1〉U2 + 〈v, U1 × U2〉U3

=〈U3 × v, U2〉U1 + 〈U1 × v, U3〉U2 + 〈U2 × v, U1〉U3

=〈∇U3κ, U2〉U1 + 〈∇U1κ, U3〉U2 + 〈∇U2κ, U1〉U3

hence at the point p where Uj are parallel and commute, using 〈∇U2κ, U2〉 = 0,

〈∇U2v, U1〉 =〈∇U2∇U3κ, U2〉 = 〈RU2U3κ, U2〉 = ε〈κ, U3〉 = ε〈U2 × κ, U1〉.

Similarly, 〈∇U2v, U3〉 = ε〈U2×κ, U3〉. Together with 〈∇U2v, U2〉 = 0 proved above, we deduce
∇U2v = U2 × κ. This identity clearly holds for any U in place of U2. �

For every h ∈ sl2(C), the section Sh : m 7→ (m,h) is by definition a flat section in E(H3),
so (again by definition) DUΨ(Sh) = 0 for every vector U . Using the above lemma, we also
have (∇U + iT (U))(κh + i

2curl(κh)) = 0. Thus the connections ∇+ iT and D have the same
parallel (generating) sections, hence they coincide. �

4. Chern-Simons forms and invariants

Let Z be a manifold, n ∈ N∗ and θ ∈ Λ1(Z,Mn(C)) a matrix-valued 1-form, and set Ω :=
dθ + θ ∧ θ. Define

cs(θ) := Tr(θ ∧ dθ + 2
3θ

3) = Tr(θ ∧ Ω− 1
3θ

3).

(Notation: if αj are Mn(C)-valued forms of degree dj on Z, j = 1, . . . , k, their exterior
product is defined by its action on vectors V1, . . . , VN , N :=

∑k
j=1 dj as follows

(α1 ∧ . . . ∧ αk)(V1, . . . , VN )

:=
1

d1! . . . dk!

∑
σ∈Σ(N)

ε(σ)α1(Vσ(1), . . . , Vσ(d1)) . . . αk(Vσ(N−dk+1), . . . , Vσ(N))

where ε(σ) is the sign of the permutation σ.

4.1. Properties of Chern-Simons forms.

Relation to Chern-Weil forms. An easy computation shows that d(cs(θ)) = Tr(Ω ∧ Ω).

Variation. If θt is a 1-parameter family of 1-forms and θ̇ = ∂tθ
t|t=0, the variation of cs is

computed using the trace identity:

∂tcs(θt)|t=0 = Tr(θ̇ ∧ dθ + θ ∧ dθ̇ + 2θ̇ ∧ θ2) = dTr(θ̇ ∧ θ) + 2Tr(θ̇ ∧ Ω).(11)

Pull-back. If Φ : Z ′ → Z is a smooth map, we have cs(Φ∗θ) = Φ∗cs(θ).

Action of representations. If θ takes values in a linear Lie algebra g ⊂ Mn(C) and ρ is a
representation of g in Mm(C) such that there exists some µρ ∈ C with Tr(ρ(a)ρ(b)) = µTr(ab)
for every a, b ∈ g, then

(12) cs(ρ(θ)) = µρcs(θ).
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Gauge transformation. If a : Z →Mn(C) is a smooth map and γ := a−1θa+ a−1da, then

(13) cs(γ) = cs(θ) + dTr(θ ∧ daa−1)− 1
3Tr((a−1da)3).

The particular cases of θ considered below are connection 1-forms either in a principal bundle
or in a trivialization of a vector bundle.

4.2. The PSL2(C) invariant. Let θ be the flat connection in the PSL2(C) bundle FC(X)
of an oriented hyperbolic 3-manifold X, as defined in the previous section. Let S : X →
F (X) be a section in the orthonormal frame bundle (recall that oriented 3-manifolds are
parallelizable), so q ◦ S is a section in FC(X) where q is the natural map from F (X) to
FC(X) defined in (9). The PSL2(C) Chern-Simons form cs(θ, S) is by definition the complex
valued 3-form (q ◦ S)∗cs(θ) on X.
For X compact, the PSL2(C) Chern-Simons invariant of θ with respect to S is defined by

CSPSL2(C)(θ, S) := − 1
4π2

∫
X

cs(θ, S).

The normalization coefficient in front of CSPSL2(C) is so chosen because

− 1
4π2

∫
K

Tr(−1
3(ωMC)3) = 1,

where ωMC is the sl2(C)-valued Maurer-Cartan 1-form on PSL2(C), and K is the (compact)
stabilizer of j ∈ H3. Because PSL2(C) = K ×H3 is homotopy equivalent to K, this identity
implies that Tr(ωMC)/12π2 is an integer cohomology class on PSL2(C). Thus for X closed,
(13) implies that CSPSL2(C)(θ, S) is independent of S modulo Z.

Definition 9. Let (X, g) be a convex co-compact hyperbolic 3-manifold and S be a section
in the orthonormal frame bundle which is even to first order. The PSL2(C) Chern-Simons
invariant of g with respect to S is defined by

CSPSL2(C)(g, S) := − 1
4π2

∫ 0

X
cs(θ, S) = − 1

4π2 FPε→0

∫
x>ε

(q ◦ S)∗cs(θ)

where θ is the flat connection in the PSL2(C) bundle FC(X) induced by g.

This invariant is our main object of study in the present paper.
We can express cs((q ◦ S)∗θ) in terms of the Riemannian connection of g as follows: let

h1 :=
[
0 1
1 0

]
, h2 :=

[
0 i
−i 0

]
, h3 :=

[
1 0
0 −1

]
be a complex basis in sl2(C). The corresponding Killing vector fields on H3 evaluated at j
take the values

κhk = 2∂yk , κihk = 0

for k = 1, 2, 3. If Uk is the section over X in the bundle FC(X)×ad sl2(C) corresponding to
the vector hk in the trivialization q ◦ S, the above relations show that the complex vector
field corresponding to Uk by the isomorphism from Proposition 6 is just 2Sk. Thus

ad((q ◦ S)∗θ) = ω + iT
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where ω is the so(3)-valued connection 1-form of the Levi-Civita covariant derivative ∇ in
the frame S, and T denotes the so(3) valued 1-form T from Equation (10) in the basis S.

ωij(Y ) := g(∇Y Sj , Si), Tij(Y ) := g(Y × Sj , Si)(14)

Lemma 10. The PSL2(C) Chern-Simons form of a hyperbolic metric on a 3-manifold sat-
isfies

cs((q ◦ S)∗θ) = 1
4cs(ω + iT ).

Proof. We use the following identity, valid for every u, v ∈ sl2(C):

TrM2(C)(uv) = 1
4TrM3(C)(aduadv).

The lemma follows from the above discussion and Equation (12). �

By this Lemma, the PSL2(C) Chern-Simons form of g in the trivialization S is given by
cs(ω + iT ) thus the PSL2(C) Chern-Simons invariant is also given by

CSPSL2(C)(g, S) = − 1
16π2

∫ 0

X
cs(ω + iT ).

Proposition 11. The PSL2(C) Chern-Simons form on a hyperbolic 3-manifold, pulled back
by a section S ∈ F0(X), has the following real and imaginary parts:

cs(θ, S) = 2idvolg + i
4d(Tr(T ∧ ω)) + 1

4Tr(ω ∧ dω + 2
3ω

3).

Proof. Since the connection D is flat, it follows that cs(ω + iT ) = −1
3Tr((ω + iT )3). By the

above lemma we can write (using the cyclicity of the trace)

−12cs(θ, S) =TrM3(C)(ω + iT )3)

=
(

TrM3(C)(ω3 − 3T 2 ∧ ω) + iTr(3ω2 ∧ T − T 3)
)
.

(15)

The vanishing of the D-curvature implies dω + ω2 − T 2 = 0 and dT + T ∧ ω + ω ∧ T = 0.
Taking the exterior product of the first identity with ω and taking the trace we deduce that

(16) Tr(ω3 − 3T 2 ∧ ω) = −3Tr(ω ∧ dω + 2
3ω

3)

Similarly, since both T ∧ (dω + ω2 − T 2) and ω ∧ (dT + T ∧ ω + ω ∧ T ) are 0, one can take
their trace and make the difference to deduce

0 = Tr(T ∧ dω − dT ∧ ω − T 3 − ω2 ∧ T ) = −d(Tr(T ∧ ω))− Tr(T 3)− Tr(ω2 ∧ T )

and then

(17) Tr(3ω2 ∧ T − T 3) = −4Tr(T 3)− 3d(Tr(T ∧ ω)).

We also easily see that Tr(T 3) = 6dvolg and therefore combining (17), (16) and (15), we have
proved the Proposition. �
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4.3. The SO(3) Chern-Simons invariant. Let (X, g) be an oriented Riemannian manifold
of dimension 3. Denote by cs(g) the Chern-Simons form of the Levi-Civita connection 1-
form of g on the orthonormal frame bundle F (X). Note that S∗cs(g) = cs(ω) where ω is
the connection 1-form in the trivialization S. Again, recall that oriented 3-manifolds are
parallelizable, thus orthonormal frames S do exist.
If X is compact, for every section S : X → F (X) in the orthonormal frame bundle we define
the Chern-Simons invariant

CS(g, S) := − 1
16π2

∫
X
S∗cs(g).

When a : X → SO(3) is a compactly supported map (i.e., a ∼= 1 outside a compact), we have

(18) 1
16π2

∫
X

Tr(−1
3(a−1da)3) = −deg(a) ∈ Z,

so for X is closed, using (13) we see that the Chern-Simons invariant is independent of S
modulo Z.
We aim to define a SO(3) Chern-Simons invariant associated to the Levi-Civita connection
∇g on an asymptotically hyperbolic 3-manifold (X, g) with totally geodesic boundary. First,
we fix a geodesic boundary defining function x and we set

ĝ := x2g.

Let Ŝ : X → F (X, ĝ) be a smooth section of the orthonormal frame bundle associated to
the metric ĝ. We say that Ŝ is even to first order if L∂xŜ|M = 0 where L denotes the Lie
derivative; note that this coincides with the local definition from Section 2.2. We define,
starting from Ŝ, a section S := xŜ in the frame bundle F0(X) associated to g.

Definition 12. The SO(3) Chern-Simons invariant of an asymptotically hyperbolic metric
g with totally geodesic boundary, with respect to an even to first order trivialization S of
F0(X), is

CS(g, S) := − 1
16π2

∫ 0

X
S∗cs(g).

5. Comparison of the asymptotically hyperbolic and compact Chern-Simons
SO(3) invariants

For any pair of conformal metrics ĝ = x2g we can relate cs(g, S) to cs(ĝ, Ŝ) as follows. We
denote by ω, ω̂ the connection 1-forms of g, ĝ in the trivialization S, respectively Ŝ = x−1S.
For every Y ∈ TX that means

ω̂ij(Y ) = ĝ(∇ĝY Ŝj , Ŝi), ωij(Y ) = g(∇gY Sj , Si).

Lemma 13. The connection forms of the conformal metrics g and ĝ = x2g satisfy ω̂ = ω+α,
where

αij(Y ) := ĝ(Y, Ŝi)Ŝj(a)− ĝ(Y, Ŝj)Ŝi(a) = g(Y, Si)Sj(a)− g(Y, Sj)Si(a)(19)

with a := log(x).

Proof. An easy computation using Koszul’s formula for the Riemannian connection in a
frame. �



14 COLIN GUILLARMOU AND SERGIU MOROIANU

Let gt = x2tg where t ∈ [0, 1], then St := x−tS defines a section of the frame bundle F t(X)
of gt. Consider ωt the connection form of gt in the basis St, and write αt = ωt − ω. Notice
from (19) that αt = tα is linear in t, so we compute the variation of cs(ωt) using (11):

∂tcs(ωt)|t=0 = dTr(α ∧ ω) + 2Tr(α ∧ Ω)

where Ω = dω + ω ∧ ω is the curvature of ω, and ∂tω
t = ∂tα

t = α, valid for all t.

Lemma 14. We have Tr(α ∧ Ω) ≡ 0.

Proof. At points where ∇a = 0 this is clear. At other points, take an orthonormal basis
(X1, X2, X3) of TX for g such that X3 is proportional to grad(a). Since α ∧ Ω is a tensor,
we can compute its trace in the basis Xj instead of Sj :

Tr(α ∧ Ω)(X1, X2, X3) =
∑
i,j

αij(X1)Ωji(X2, X3)− αij(X2)Ωji(X1, X3)

=2(〈RX2X3X1, grad(a)〉 − 〈RX1X3X2, grad(a)〉)

and this vanishes using the symmetry of the Riemannian curvature together with the fact
that X3 and grad(a) are collinear. �

We deduce that ∂tcs(ωt)|t=0 = dTr(α ∧ ω). Similarly, one has Tr(α ∧ Ωt) = 0 if Ωt =
dωt + ωt ∧ ωt. Then, using (11) and ∂s(αt+s)s=0 = α, we get

∂tcs(ωt) = ∂scs(ωt+s)|s=0 = dTr(α ∧ ωt) + 2Tr(α ∧ Ωt) = dTr(α ∧ (ω + tα)).

Since Tr(α ∧ α) = 0 by cyclicity of the trace, we find

cs(ĝ, Ŝ) = cs(g, S) + dTr(α ∧ ω).(20)

Proposition 15. Let g be an asymptotically hyperbolic metric on X with totally geodesic
boundary, let x be a smooth geodesic boundary defining function and set ĝ := x2g. Let Ŝ be
an even to first order section in F (X) with respect to ĝ, and let S = xŜ be the corresponding
section in F0(X). Then the SO(3) Chern-Simons invariants of g and ĝ with respect to S, Ŝ
coincide:

CS(g, S) = CS(ĝ, Ŝ).

Proof. By integration on X and using Stokes, we get

(21) 16π2CS(ĝ, Ŝ) = 16π2CS(g, S)− FPε→0

∫
x=ε

Tr(α ∧ ω).

The proof is finished by showing that the trace Tr(α ∧ ω) is odd in x to order O(x4), so

FPε→0

∫
x=ε

Tr(α ∧ ω) = 0.

For this, note that xα is smooth in x and has an even expansion at x = 0 in powers of x up to
O(x3) by assumption on the section S, while xω is smooth in x but a priori not even. Setting



CHERN-SIMONS LINE BUNDLE ON TEICHMÜLLER SPACE 15

a := log x we write for Y1, Y2 vector fields on ∂X (thus orthogonal to ∇a) and 〈·, ·〉 := g(·, ·):

Tr(α ∧ ω)(Y1, Y2)

=
∑

1≤i,j≤3

αij(Y1)ωji(Y2)− αij(Y2)ωji(Y1)

=
∑

1≤j≤3

Sj(a)〈∇Y2Sj , Y1〉 − Sj(a)〈∇Y1Sj , Y2〉 − 〈Sj , Y1〉〈∇Y2Sj ,∇a〉+ 〈Sj , Y2〉〈∇Y1Sj ,∇a〉

= 2〈∇Y2∇a, Y1〉 − 2〈∇Y1∇a, Y2〉 − 2
∑

1≤j≤3

Y2(Sj(a))〈Sj , Y1〉 − Y1(Sj(a))〈Sj , Y2〉

=
∑

1≤j≤3

−2Y2(Sj(a))〈Sj , Y1〉+ 2Y1(Sj(a))〈Sj , Y2〉

and this is odd in x to order O(x2) since da = −dx
x , Ŝj = x−1Sj is even to first order, and

the metric has totally geodesic boundary (i.e. x2g is even to order O(x3)). �

6. Comparison of the PSL2(C) and SO(3) invariants in the hyperbolic setting

In this section we establish the relation between the PSL2(C) and the SO(3) Chern-Simons
invariants. This was known in the compact case and in the finite volume case since the work
of Yoshida [35].

Proposition 16. Let (X, g) = Γ\H3 be a convex co-compact hyperbolic 3-manifold with Γ ⊂
PSL2(C) and let θ be the associated flat connection on the bundle FC(X) = H3×Γ PSL2(C).
Let S : X → F0(X) be an even section of F0(X). Then

CSPSL2(C)(θ, S) = − i
2π2 VolR(X) + i

2πχ(M) + CS(g, S).

Proof. Using Proposition 11 and Stokes’s formula, we have

CSPSL2(C)(θ, S) =FPε→0

∫
{x>ε}

− i
2π2 dvolH3 + i

16π2d(Tr(ω ∧ T ))− 1
16π2 cs(ω)

=− i
2π2 VolR(X)− FPε→0

i
16π2

∫
x=ε

Tr(ω ∧ T ) + CS(g, S).

The conclusion follows from Lemma 17. �

Lemma 17. We have

(22) FPε→0

∫
x=ε

Tr(T ∧ ω) = 2
∫
M

scalh0dvolh0 = 8πχ(M).

Proof. Let Uj := x−1Sj denote the orthonormal frame for the compact metric ĝ = x2g,
(S1, S2, S3) the dual basis to S, ω̂ij(Y ) := ĝ(∇ĝY Ui, Uj) the Levi-Civita connection 1-form of
ĝ in the frame U , and U j = xSj the dual co-frame. Let Y1, Y2 be a local orthonormal frame
on M for h0 of eigenvectors for the map A defined on TM by (6), extended on X constantly
in x near M .
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We split ω = ω̂ − α and we first compute

Tr(T ∧ α)(Y1, Y2) =
∑
i,j

〈Y1 × Si, Sj〉(〈Y2, Sj〉Si(a)− 〈Y2, Si〉Sj(a))

− 〈Y2 × Si, Sj〉(〈Y1, Sj〉Si(a)− 〈Y1, Si〉Sj(a))

=− 4〈Y1 × Y2,∇a〉.

Define Ỹj := (1 + 1
2x

2A)−1Yj . Then xỸ1, xỸ2,∇a form an orthonormal frame near x = 0 and
xỸ1 × xỸ2 = ∇a. Thus, x2(1 + x2λ1

2 )−1(1 + x2λ2
2 )−1〈Y1 × Y2,∇a〉 = 1 which shows that

FPε→0Tr(T ∧ α) = 2tr(A)dvolh0 .

Let us now compute the form Tr(ω̂ ∧ T ) on the hypersurface x = ε. Notice that

T12 = S3, T23 = S1, T31 = S2

so xT is smooth in x, and we easily see that
1
2Tr(ω̂ ∧ T ) = S1 ∧ ω̂23 + S2 ∧ ω̂31 + S3 ∧ ω̂12.

Using Koszul formula and the evenness of g and S, for a vector Y ∈ TM independent of x
the term ω̂ji can be decomposed under the form

2ω̂ji(Y ) =Ui(ĝ(Y,Uj))− Uj(ĝ(Y,Ui))− ĝ([Ui, Uj ], Y ) + even function of x

=dY #(Ui, Uj) + even function of x

so the odd component is tensorial in Uj . Therefore we can compute FPε→0Tr(ω̂ ∧ T ) using
the orthonormal frame Ỹ1, Ỹ2, Ỹ3 := ∂x:

Tr(T ∧ ω̂)(Y1, Y2) =x−1
∑
i,j

〈Y1 × Ỹi, Ỹj〉〈∇Y2 Ỹi, Ỹj〉 − 〈Y2 × Ỹi, Ỹj〉〈∇Y1 Ỹi, Ỹj〉

=x−1
∑
i

〈∇Y2 Ỹi, Y1 × Ỹi〉 − 〈∇Y1 Ỹi, Y2 × Ỹi〉.

(here the vector product is with respect to ĝ). Since Ỹj − Yj is of order x2, the finite part is
unchanged if we replace Y1, Y2 by Ỹ1, Ỹ2 in the above, thus getting

x−1
∑
i

〈∇Ỹ2
Ỹi, Ỹ1 × Ỹi〉 − 〈∇Ỹ1

Ỹi, Ỹ2 × Ỹi〉.

For k = 1, 2 the coefficient of x in 〈∇Ỹk Ỹk, ∂x〉 = −〈∇Ỹk∂x, Ỹk〉 is −λk. We therefore get

FPε→0Tr(T ∧ ω̂) = −2tr(A)dvolh0 .

Together with the identity 2tr(A) = −scalh0 and Gauss-Bonnet this ends the proof. �

7. The Chern-Simons line bundle and its connection

7.1. The tangent space of Teichmüller space as the set of hyperbolic funnels. In
this subsection, we shall see that the tangent space TT of Teichmüller space of Riemann
surfaces of genus g can be identified with ends of hyperbolic 3-manifolds of funnel type. For
Teichmüller space definition and conventions, we follow the book of Tromba [32].
The Teichmüller space T is defined here as the quotient M−1(Σ)/D0(Σ) where M−1(Σ) is
the set of smooth metrics with Gaussian curvature −1 on a fixed smooth surface Σ of genus
g, and D0(Σ) is the group of orientation-preserving smooth diffeomorphisms of Σ which are
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isotopic to the identity. Here M is not necessarily connected and g ∈ (N \ {0, 1})N where
N = π0(M).
First, we shall identify each point of TT with an isometry class of 3-dimensional hyperbolic
ends, with conformal infinity given by the base point.

Definition 18. A hyperbolic funnel is a couple (M, g) where M is a Riemann surface (not
necessarily connected) equipped with a metric h0 of Gaussian curvature −1 and g is a metric
on the product M × (0, ε)x for some small ε > 0, which is of the form

g =
dx2 + h(x)

x2
, h(x) := h0 + x2h2 + 1

4x
4h2 ◦ h2(23)

where h2 is a symmetric tensor satisfying

Trh0(h2) = κ, divh0(h2) = 0.

It is shown in Fefferman-Graham [6] that M × (0, ε) equipped with such a metric g is a (non-
complete) hyperbolic manifold if ε > 0 is chosen small enough, and conversely every end of a
convex co-compact hyperbolic manifold with conformal infinity (M, {h0}) and genus(M) > 1
is isometric to a unique funnel (23) with h0 the hyperbolic metric representing the conformal
class {h0}. There is an action of the group D(M) of diffeomorphisms of M on the space of
funnels, simply given by

ψ∗(M, g) :=
(
M,

dx2 + ψ∗h(x)
x2

)
for all ψ ∈ D(M), where ψ∗h(x) is the pull-back of the metric h(x) on M . Notice also that
a funnel induces a representation of π1(M) into PSL2(C) up to conjugation.
The tangent space TM−1(M) has a natural inner product, the L2-metric, defined as fol-
lows (see [32, Sec. 2.6]): let h0 ∈ M−1(M), and h, k ∈ Th0M−1(M). Since M−1(M) is a
Fréchet submanifold in the space of symmetric tensors on M , it follows that TM−1(M) ⊂
C∞(M,S2T ∗M); define

(24) 〈h, k〉 :=
∫
M
〈h, k〉h0dvolh0 .

This scalar product is D(M)-invariant.
For any h0 ∈M−1(M) consider the vector space

Vh0 := {h ∈ C∞(M,S2T ∗M); Trh0(h) = 0; divh0(h) = 0},

i.e., the set of transverse traceless symmetric tensors with respect to h0. This is a real vector
space of finite dimension which is precisely the orthogonal complement in Th0M−1(M) of
the orbit of D0(M) with respect to the L2(M,h0) inner product. When h0 varies, these
spaces form a locally trivial vector bundle V over M−1(M) of rank 6g − 6 (assuming that
the genera of the connected components Mj are strictly larger than 1), which we think of
as the horizontal tangent bundle in the principal Riemannian fibration M−1(M) → T. The
group D(M) acts isometrically on this bundle by pull-back of tensors, and the restriction of
this action to the subgroup D0(M) is free. The quotient of V by D0(M) is identified [32, Sec
2.4] with the tangent bundle TTg of the Teichmüller space of genus g. Thus, Teichmüller
space inherits a Riemannian metric called the Weil-Petersson metric. Explicitly, on vectors
in T[h0]T described by trace-free, divergence free symmetric tensors h, k with respect to a
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representative h0 ∈ [h0], the Weil-Petersson metric is defined by

(25) 〈h, k〉WP :=
∫
M
〈h, k〉h0dvolh0 .

The following is a direct consequence of the discussion above:

Lemma 19. There is a canonical bijection Ψ from the total space of the horizontal tangent
bundle V →M−1(M) to the set Fg of hyperbolic funnels of genus g, defined explicitly by

Ψ : (h0, h
0
2) 7→

(
M, dx

2+h(x)
x2

)
, h(x) = h0 + x2h2 + x4

4 h2 ◦ h2, h2 = h0
2 + h0

2 .(26)

This bijection commutes with the action of D0(M) on both sides and hence descends to a
bijection from TT to the space of D0(M)-equivalence classes of hyperbolic funnels.

Any divergence free traceless tensor k = udx2 − udy2 − 2vdxdy with respect to a metric h0

is the real part of a quadratic holomorphic differential (QHD in short)
1
2k = Re(k0,1) with k0,1 := 1

2(u+ iv)dz2 in local complex coordinates z = x+ iy.

The complex structure J on Teichmüller space is then given by multiplication by −i on QHD,
which on the level of transverse traceless tensors means

(27) Jk := vdx2 − vdy2 + 2udxdy

or setting K to be the symmetric endomorphism of TM defined by k(·, ·) = h0(K·, ·),

JK =
(

0 −1
1 0

)(
u −v
−v −u

)
=
(
v u
u −v

)
.

The space T 0,1T is then defined to be the subspace of complexified tangent space TCT spanned
by the elements k+ iJk with k ∈ TT, and T 1,0T is spanned by the k− iJk. Notice also that,
with the notations used just above, one has

(28) k0,1 = 1
2(k + iJk) ∈ T 0,1T, k1,0 = k0,1 = 1

2(k − iJk) ∈ T 1,0T.

The Weil-Petersson metric on TT induces an isomorphism Φ between TT and T ∗T. It is also a
Hermitian metric for the complex structure J , in the sense that 〈Jh, Jk〉WP = 〈h, k〉WP for all
h, k ∈ TT, the associated symplectic form is ωWP(·, ·) := 〈J ·, ·〉WP. By convention, the metric
〈·, ·〉WP on TT is extended to be bilinear on TCT, so that 〈k0,1, h0,1〉WP = 〈k1,0, h1,0〉WP = 0
for all h, k ∈ TT and 〈k0,1, k1,0〉WP ≥ 0 for all k ∈ TT.
On T ∗T, there is a natural symplectic form, obtained by taking the exterior derivative dµ of
the Liouville 1-form µ defined for h0 ∈ T, k∗ ∈ T ∗h0

T by

µ(h0,k∗) := k∗.dπ

if π : T ∗T → T is the natural projection. Since T ∗T has a complex structure induced
naturally by that of T we can also define the (0, 1) component µ1,0 of the Liouville measure.
The Liouville form µ and µ1,0 pull-back to natural form on TT through Φ, satisfying

Φ∗µ(h0,k)(ḣ0, k̇) = 〈k, ḣ0〉WP, Φ∗µ1,0
(h0,k)(ḣ0, k̇) = 〈k0,1, ḣ1,0

0 〉WP

for (h0, k) ∈ TT, and (ḣ0, k̇) ∈ TTh0T = Th0T ⊕ Th0T. Notice that dµ1,0 is a (1, 1) type form
on T ∗Tg.
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7.2. The cocycle. In order to define the Chern-Simons line bundle L over Tg in a way
similar to Freed [7] and Ramadas-Singer-Weitsman [28], we need to define a certain cocycle.
The natural bundle turns out to be the SO(3) Chern-Simons line bundle associated to a
3-manifold bounding a given surface.
We fix M a compact Riemann surface (possibly with several connected components) ad-
mitting hyperbolic metrics. We will consider Riemannian compact 3-manifolds with totally
geodesic boundary (M,h0) and will denote them (X, ĝ). For any such X, the restriction of
TX to M is isometric to the orthogonal direct sum TM ⊕R. The orthonormal frame bundle
F (X) associated to ĝ on X is trivial since the tangent bundle to any 3-manifold is trivial.
We can identify the restriction of F (X) to M with the restriction to M of the orthonormal
frame bundle F (TM ⊕ R) of TM ⊕ R for the product metric dx2 + h0. For a fixed metric
(X, ĝ) consider the map cX : C∞(M,F (X))× C∞(X, SO(3))→ C defined by

(29) cX(Ŝ, ã) = exp
(

2πi
∫
M

1
16π2 Tr(ω̂ ∧ da a−1) + 2πi

∫
X

1
48π2 Tr((ã−1dã)3)

)
where ω̂ is the connection form of the Levi-Civita connection of ĝ along M in the frame Ŝ,
and a = ã|M .

Lemma 20. Let (M,h0) be a closed oriented surface, Ŝ an orthonormal frame on M in the
bundle TM ⊕R, and a ∈ C∞(M, SO(3)). Then there exists a compact manifold X bounding
M such that a extends to an ã ∈ C∞(X, SO(3)) on X. Moreover, cX(Ŝ, ã) defined in (29)
depends only on h0, Ŝ, and a.

Proof. Assume for the moment that there exists some X bounding M such that a extends
to X (we prove this below). We must prove that cX(Ŝ, a) does not depend on the choice of
X bounding M , of the metric ĝ, and on the extension of a from M to X. The independence
of ω̂|TM with respect to ĝ is a consequence of Koszul’s formula and of the evenness to
first order of ĝ near M , which is another way of saying that M is totally geodesic. If now
ãj ∈ C∞(Xj , SO(3)), j = 1, 2 are two extensions of a, then one can glue them to a continuous,
piecewise smooth ã defined on the closed 3-manifold Z := X1 t −X2 glued along M = ∂X,
and we know by (18) that

exp
(
−2πi

∫
Z

1
48π2 Tr((ã−1dã)3)

)
= 1,

which implies the independence of cX with respect to the choice of ã.
To show that X exists, we will construct it by induction on the genus. If M is a sphere,
then a extends to a 3-disk because π2(SO(3)) = 0 (π2 of any Lie group is trivial). Let
a : M → SO(3), and denote by a∗ the induced map from π1(M) to Z/2Z. Since the target
is abelian, this map factors throught the abelianization H1(M,Z). Assume the genus is at
least 1 and cut M along some simple closed curve γ to decompose it into a surface of genus
1 and one of genus g − 1, both with boundary γ. Since γ is null in homology (because it
bounds), a|γ is contractible, hence it extends to a disk D with boundary γ. Thus a is now
defined on two closed surfaces: a torus T and a surface M ′ of genus g − 1 which meet along
D. By the induction hypothesis, a extends on a handlebody whose boundary is M ′. If we
can extend it also to a solid torus of boundary T , then by gluing along D we have defined a
on a handlebody bounded by M .
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Thus the proof will be ended by proving the case of genus 1, i.e., when M is a torus. View M
as the quotient C/Γ where Γ is the lattice generated by 1 and τ with =(τ) > 0. For z ∈ Γ∗ let
cz denote the closed curve in M obtained by projecting the segment joining 0 to z. We claim
that a is contractible along at least one of the curves c1, cτ or c1+τ . Indeed, in homology
we have [c1] + [cτ ] = [c1+τ ], hence the values of a∗ on the corresponding homology classes
cannot be all 1; if a∗[cz] = 0 it means that a is contractible along cz. Consider a solid torus
of boundary M in which cz bounds a disk on which a extends. Again since π2(SO(3)) = 0
we can extend a to the whole solid torus. �

Denote by C∞X (M,F (X)) and C∞X (M,SO(3)) the subsets of C∞(M,F (X)) and C∞(M, SO(3))
made of sections on M which extend smoothly to X. Since F (X) is trivial, C∞(X,F (X)) is
non-empty and C∞X (M,F (X)) consists of restrictions to M of elements in C∞(X,F (X)). Al-
though C∞(X,F (X)) depends on the choice of metric ĝ, it is clear that the space C∞X (M,F (X))
does not depend on ĝ as long as ĝ = dx2 + h0 + O(x2), but it depends on X. The space
C∞(X, SO(3)) is also clearly non-empty and C∞X (M,SO(3)) consists of restrictions to M of
elements in C∞(X, SO(3)).
Let ã be any smooth extension of a on some filling X. Such a filling exists by the above
lemma, and the value of the cocycle cX(Ŝ, ã) is independent of the filling X and of the
extension ã. It follows that cX descends to a map

c : C∞(M,F (TM ⊕ R))× C∞(M,SO(3))→ C.

For a fixed X we get a map cX : C∞(M,F (X))×C∞X (M, SO(3))→ C. As we shall see below,
when Ŝ, a, b all extend to the same X, this map satisfies the cocycle relation

(30) cX(Ŝ, ab) = cX(Ŝ, a)cX(Ŝa, b)

(we keep the notation c = cX when we work with a fixed X).

7.3. The Chern-Simons line bundle L. We follow the presentation given in the lecture
notes of Baseilhac [3], but adapted to our setting. We take a smooth map Φ : M−1(M) →
C∞(X,S2

+T
∗X) such that ĝ = Φ(h0) satisfies ĝ = dx2 +h0 +O(x2) in a collar neighbourhood

[0, ε)x ×M near M = ∂X (this is equivalent to M being totally geodesic in X).

Definition 21. The complex line LXh0
over h0 ∈M−1(M) is defined for a choice of extension

X by

LXh0
:= {f : C∞X (M,F (X))→ C; ∀a ∈ C∞X (M,SO(3)), f(Ŝa) = c(Ŝ, a)f(Ŝ)}.

We define the Chern-Simons line bundle (as a set) over M−1(M) by

LX :=
⊔

h0∈M−1(M)

LXh0
.

Here F (X) is the orthonormal frame bundle with respect to the metric ĝ = Φ(h0) on X.
Using the gauge transformation law (13), we deduce

Lemma 22. For any metric ĝ on X with ĝ|TM = h0 and M totally geodesic for ĝ, the map
Ŝ 7→ e2πiCS(ĝ,Ŝ) is an element of the fiber LXh0

over h0.
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This fact directly implies the cocycle condition (30).
Since two frames in C∞(X,F (X)) are related by a gauge transformation ã ∈ C∞(X, SO(3)),
an element in LXh0

is determined by its value on any frame extendible to X by the condition
f(Ŝa) = c(Ŝ, a)f(Ŝ), therefore the dimension of the C-vector space LXh0

is 1. We define the
smooth structure on L through global trivializations as follows: let Ŝ be a smooth positively
oriented frame (not a priori orthonormal) onX and let Ŝh0 be the orthonormal frame obtained
from Ŝ by Gram-Schmidt process with respect to the metric dx2 +h0 near the boundary ∂X
and define a global trivialization by

LX →M−1(M)× C (h0, f) 7→ (h0, f(Ŝh0)).

Changes of trivializations corresponding to different choices of Ŝ are smooth on M−1(M),
thus we get a structure of smooth line bundle on LX over M−1(M).
If X1 and X2 are two fillings of M , let Z = X1 ∪ (−X2) be the oriented closed manifold
obtained by gluing X1 and X2 (the latter with its reverse orientation) along M , then any
frame on Z restricted to M is extendible both to X1 and X2 (recall that the frame bundle
on Z is trivialisable since Z is of dimension 3). Let Ŝ0 be such a frame on Z, orthonormal
along M with respect to dx2 +h0. We denote also by Ŝ0 its restriction to X1 and to X2. We
define an isomorphism

Ψ : LX1
h0
→ LX2

h0
, (h0, f

X1) 7→ (h0, f
X2)

where fX2 is uniquely detemined by the requirement

fX2(Ŝ0) := fX1(Ŝ0).

More precisely, this amounts to set fX2(Ŝ0a) := c(Ŝ0, a)fX1(Ŝ0) for all a ∈ C∞X2
(M,SO(3)).

Since every Ŝ ∈ C∞X2
(M,F (X2)) can be written as Ŝ0a for some a ∈ C∞X2

(M, SO(3)), fX2 does
define an element in LX2

h0
. We claim that this isomorphism is independent of the choice of Ŝ0

extendible to X1 and X2. Indeed, for any other frame Ŝ′0 ∈ C∞(Z,F (Z)) on Z = X1∪(−X2),
there exists a0 ∈ C∞(Z, SO(3)) with Ŝ′0a0 = Ŝ0. If Ψ′ : LX1

h0
→ LX2

h0
is the associated map

defined as above by using Ŝ′0 instead of Ŝ0, for all a ∈ C∞X2
(M, SO(3)) we have

Ψ′(fX1)(Ŝ0a) =Ψ′(Ŝ′0a0a) = c(Ŝ′0, a0a)fX1(Ŝ′0) = c(S0, a)c(Ŝ′0, a0)fX1(Ŝ′0)

=c(Ŝ0, a)fX1(Ŝ0) = Ψ(fX1)(Ŝ0a),

where we used Lemma 20 and the cocycle formula (30). This shows that Ψ′ = Ψ and hence
the line bundle LX is well defined (up to canonical isomorphisms) independently from the
choice of filling X.

7.4. Action by diffeomorphisms. The mapping class group Mod is the set of isotopy
classes of orientation preserving diffeomorphisms of M = ∂X, it acts on T properly discon-
tinuously. By Marden [20, Theorem 3.1], the subgroup ModX of Mod arising from elements
which extend to diffeomorphisms of X homotopic to the identity on X acts freely on T and
the quotient TX := T/ModX is a complex manifold of dimension 3|g| − 3. Moreover the
Weil-Petersson metric descends to TX .
Every diffeomorphism ψ : X → X induces an isomorphism LXh0

→ LXψ∗h0
defined by f 7→

fψ := (Ŝ 7→ f(ψ∗Ŝ)). In particular since any ψ ∈ D0(M) can be extended on X as a
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diffeomorphism homotopic to the identity in X and the map LXh0
→ LXψ∗h0

does not depend
on the extension, the bundle LX descends to Teichmüller space T as a complex line bundle.
We shall work mainly with Teichmüller space but all constructions are ModX invariants and
descend to TX .
We define the pull-back bundle π∗L on TT if π : TT → T is the projection on the base and
we shall use the notation L instead of π∗L.

7.5. Hermitian metric on L. Since the cocycle is of absolute value 1, there exists on L a
canonical Hermitian metric, denoted 〈·, ·〉CS, given simply by

(31) 〈f1, f2〉CS := f1(Ŝ)f2(Ŝ)

if f1, f2 are two sections of L and Ŝ ∈ C∞(M,F (X)).

7.6. The connections on L. We define 2 different connections on L. We start with a
Hermitian connection coming from the base T. For any ĝ-orthonormal frame Ŝ on X we
define Ŝt to be the parallel transport of Ŝ in the t direction with respect to the metric
Ĝ := dt2 + ĝt (Ŝt is a ĝt-orthonormal frame because ∂t is a geodesic vector field for Ĝ).

Definition 23. Let ht0 ∈M−1(M) for t ∈ R be a curve of hyperbolic metrics on M extended
evenly to first order to a metric ĝt on X, with h0

0 =: h0. For any section f of L, we define
for ḣ0 = ∂th

t
0|t=0 ∈ Th0M−1(M)

(∇L
ḣ0
f)(Ŝ) := ∂tf(ht0, Ŝ

t)|t=0 − 2πif(Ŝ)
∫
M

1
16π2 Tr( ˙̂ω ∧ ω̂)

where ˙̂ω = ∂tω̂
t|t=0 and ω̂t is the Levi-Civita connection 1-form (so(3)-valued) of the metric

ĝt in the frame Ŝt.

One can check that the frame Ŝt constructed above is even to first order. We leave this
verification to the reader; it follows from the Koszul formula by writing the parallel transport
equation ∇∂tŜt = 0 as a system of ODEs and using the evenness of ĝt and Ŝ0.

Lemma 24. The differential operation ∇L in Definition 23 is a connection on L.

Proof. One needs to check that ∇L
ḣ0
f belongs to L if f is a section of L, i.e., it changes by

the cocyle under gauge transformations. For this, let a : M → SO(3) and consider the ĝt-
orthonormal frame Ŝta with components Vi =

∑3
j=1 Ŝ

t
jaji. Since a is independent of t, from

the Leibniz rule we compute ∇∂tVi = 0. Thus the parallel transport of Ŝa in the direction
of ∂t is given by (Ŝa)t = Ŝta. Moreover, directly from the Definition 29 of the cocycle,

∂tc(Ŝt, a)|t=0 = 2πi
16π2 c(Ŝ, a)

∫
M

Tr( ˙̂ω ∧ daa−1).(32)

Furthermore, the connection form in the frame Ŝta is just ω̂t
Ŝa

= a−1ω̂ta + a−1da, thus

∂tω̂
t
Ŝa
|t=0 = a−1 ˙̂ωa. Using f(Ŝta) = c(Ŝt, a)f(Ŝt) for sections of L, then Definition 23 gives

(∇L
ḣ0
f)(Ŝa) = c(Ŝ, a)

(
∂tf(ht0, Ŝ

t)|t=0 − 2πif(Ŝ)
∫
M

1
16π2 Tr(a−1 ˙̂ωa ∧ (a−1ω̂a+ a−1da))

)
+ f(Ŝ)∂tc(Ŝt, a)||t=0,
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which by (32) implies (∇L
ḣ0
f)(Ŝa) = c(Ŝ, a)(∇L

ḣ0
f)(Ŝ). This shows that the connection maps

indeed into sections of L. �

This connection is D(X) invariant (recall that D(X) acts on L over M−1(M)), thus we get a
connection in the Chern-Simons bundle over T and any of its quotients by a subgroup of the
mapping class group acting freely on T whose elements can be realized as diffeomorphism of
X for some given X bounding M .
A straightforward application of Koszul formula shows the

Lemma 25. Let S ∈ C∞(X,F0(X)) be an even to first order orthonormal frame on X with
respect to an even to first order AH metric g, and let gt be a curve of even to first order AH
metrics with g0 = g. Write the metric gt near the boundary under the funnel form (23)

gt =
dx2 + ht(x)

x2
.

Then the parallel transported frame St of S in the t direction with respect to the metric
G = dt2 + gt is equal to xŜt where x is a geodesic boundary defining function for g and Ŝt is
the parallel transported frame of Ŝ := x−1S for Ĝt = dt2 + x2gt in the t-direction.

7.7. The curvature of ∇L. Consider the trivial fibration M−1(M)×M →M−1(M) with
fiber type M , with metric h along the fiber above h ∈ M−1(M). The action of the group
D(M) on M−1(M) extends isometrically to the fibers, thus by quotienting through the free
action of D0(M) we obtain the so-called universal curve F → T with fiber type M , which is
a Riemannian submersion over T. In the proof below we shall consider the restriction of the
fibration M−1(M)×M →M−1(M) above the image of a local section in M−1(M)→ T. The
resulting trivial fibration is canonically diffeomorphic to an open set in F but not isometric,
although the identification is an isometry along the fibers.

Proposition 26. The curvature of ∇L equals i
8πωWP, where ωWP denotes the Weil-Petersson

symplectic form on T, ωWP(U, V ) = 〈JU, V 〉WP.

Proof. Let f be a local section in L → U ⊂ T constructed as follows: first, choose a local
section s : U ⊂ T → M−1(M) in the principal fibration M−1(M)→ T, i.e., a smooth family
of hyperbolic metrics U 3 [h] 7→ h which by projection give a local parametrization of T.
By restricting the metric of M−1(M) ×M to s(U) ×M =: MU, we obtain a metric on MU

with respect to which s(U) and M are orthogonal, the projection on U is a Riemannian
submersion on the Weil-Petersson metric (24) on s(U), and the metric on the fiber {h} ×M
is h = s([h]). Next, extend each metric h ∈ s(U) to a metric g[h] on a fixed compact manifold
X with boundary M , so that for each [h] ∈ U, g[h] restricts to h on M , has totally geodesic
boundary, and depends smoothly on [h]. We get in this way a metric G on XU := s(U)×X
with respect to which s(U) and X are orthogonal, the projection on U is a Riemannian
submersion, and the metric on the fiber {h} ×X is g[h]. Define

f : U→ L, f([h]) := e2πiCS(g[h],·).

Let R 3 t 7→ ht be a smooth curve in s(U) parametrized by arc-length and ḣ its tangent
vector at t = 0. By the variation formula (11), the covariant derivative of the section f in
the direction [ḣ] is

(∇L
[ḣ]
f)(S) = − 2πi

16π2 f(S)
∫
X

2Tr(ω̇ ∧ Ω),
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where Ω is the curvature tensor of g[h] on X, and ω is the connection 1-form, in any or-
thonormal frame S for h0, parallel transported in the direction of ∂t with respect to the
metric G = dt2 + gt, where gt := g([ht]). Therefore the connection 1-form α ∈ Λ1(U) of ∇L

in the trivialization f is given by

α([ḣ]) = 1
4πi

∫
X

3∑
i,j=1

ω̇ij ∧ Ωji

(we note that this does not depend on S anymore). Let RG be the curvature tensor of G, and
RV the curvature of the vertical connection ∇V := ΠTX ◦∇G. As a side note, we remark that
this vertical connection is independent on the choice of metric on the horizontal distribution,
so we could have chosen in the definition of G any other metric, for instance the one induced
from T via the projection. We compute

∂tωij(Y ) = 〈RG∂t,Y Sj , Si〉 = 〈RV∂t,Y Sj , Si〉, Ωji(Y2, Y3) = 〈RGY2,Y3
Si, Sj〉 = 〈RVY2,Y3

Si, Sj〉

where the scalar products are with respect to G. This implies

α([ḣ]) = 1
8πi

∫
X
∂tyTr((RV )2).

The Chern-Simons form of the connection 1-form ωV of ∇V in a vertical frame S is a trans-
gression for the Chern-Weil form Tr((RV )2):

dcs(ωV ) = Tr((RV )2).

Writing d = dX + dR and using Stokes, we get

α([ḣ]) = 1
8πi

(∫
M
∂tycs(ωV )

)
+ 1

8πi∂t

(∫
X

cs(ωV )
)
|t=0.

Thus the connection 1-form of ∇L over s(U) satisfies

α = 1
8πi

∫
MU/s(U)

cs(ωV ) + 1
8πid

∫
XU/s(U)

cs(ωV ).

The second contribution is an exact form, the curvature of ∇L is therefore the horizontal
exterior differential

RSO(3) = dα = 1
8πi

∫
MU/s(U)

dHcs(ωV ).

By Stokes, we can add inside the integral the vertical exterior differential, thus

(33) RSO(3) = 1
8πi

∫
MU/s(U)

dcs(ωV ) = 1
8πi

∫
MU/s(U)

Tr((RV )2) = 1
8πi

∫
MU/s(U)

Tr(R2).

Here R is the curvature of the vertical tangent bundle of MU → s(U) with respect to the
natural connection induced by the vertical metric and the horizontal distribution. Notice that
the vertical tangent bundle of the fibration XU → s(U) splits orthogonally along MU → s(U)
into a flat real line bundle corresponding to the normal bundle to M ⊂ X, and the tangent
bundle to the fibers of MU. Thus in the above Chern-Weil integral we can eliminate the
normal bundle to M in X, which justifies the last equality in (33).
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Next, we compute explicitly this integral along the fibers of the universal curve in terms of
the Weil-Petersson form on T. Take a 2-parameters family ht,s in M−1(M) and let Ḣt, Ḣs ∈
End(TM) be defined by

∂th
t,s|t=s=0 = h(Ḣt·, ·), ∂sh

t,s|t=s=0 = h(Ḣs·, ·).

where h := ht,s|t=s=0.
Let X1, X2 be a local frame on M , orthogonal at some point p ∈ M with respect to the
metric h, and R the curvature of the connection on TM over R2 ×M .

Lemma 27. At the point p ∈M where the frame Xj is orthonormal we have

R∂s∂tXj =− 1
4 [Ḣs, Ḣt]Xj , 〈RX1,X2X2, X1〉 = −1

and if we choose the family h such that Ḣt ∈ Vh, the space of transverse traceless symmetric
2-tensors, then

R∂tXj =0.

Proof. We first compute from Koszul’s formula

〈∇∂tXi, Xj〉 = 1
2∂t〈Xi, Xj〉 = 1

2〈Ḣ
t(Xi), Xj〉,

so ∇∂tXi = 1
2Ḣ

t(Xi) and similarly ∇∂sXi = 1
2Ḣ

s(Xi). Next we compute

〈R∂s∂tXi, Xj〉 =〈∇∂s∇∂tXi, Xj〉 − 〈∇∂t∇∂sXi, Xj〉
=∂s〈∇∂tXi, Xj〉 − 〈∇∂tXi,∇∂sXj〉 − ∂t〈∇∂sXi, Xj〉+ 〈∇∂sXi,∇∂tXj〉

=1
2∂s∂t〈Xi, Xj〉 − 1

4〈Ḣ
t(Xi), Ḣs(Xj)〉 − 1

2∂t∂s〈Xi, Xj〉+ 1
4〈Ḣ

s(Xi), Ḣt(Xj)〉

which proves the first identity of the lemma. The second identity is simply the fact that metric
along the fibers has curvature −1. For the third, assume that Ḣt is transverse traceless.
At a fixed point p ∈ M choose a holomorphic coordinate z = x1 + ix2 for h such that
h = |dz2|+O(|z|2), and choose X1 = ∂x1 , X2 = ∂x2 . Using that ∇XiXj = 0 at p, we compute
at that point

〈∇∂t∇X1X1, X2〉 =∂t〈∇X1X1, X2〉 = ∂t(X1〈X1, X2〉 − 1
2X2〈X1, X1〉)

=∂x1Ḣ
t
12 − 1

2∂x2Ḣ
t
11,

〈∇X1∇∂tX1, X2〉 =X1〈∇∂tX1, X2〉 = 1
2∂x1Ḣ

t
12

which implies at p

〈R∂t,X1X1, X2〉 =1
2(∂x1Ḣ

t
12 − ∂x2Ḣ

t
11).

This last quantity vanishes by the Cauchy-Riemann equations when we expand Ḣt
ij using

Ḣt = <(f(z)dz2) for some holomorphic function f . �

Lemma (27) implies for the trace of the curvature at p ∈M

Tr(R2)(∂s, ∂t, X1, X2) =2Tr(R∂s,∂tRX1,X2) = 4〈R∂s,∂tX1, X2〉〈RX1,X2X2, X1〉

=〈[Ḣs, Ḣt]X1, X2〉 = −〈ḢsḢtJX2, X2〉 − 〈ḢtḢsX1, JX1〉

=− Tr(JḢsḢt).
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Since Ḣt is transverse traceless, the Weil-Petersson inner product of the vectors ∂t, J∂s ∈ ThT
is just the L2 product

∫
M Tr(ḢtJḢs)dvolh. The proof is finished by applying (33). �

The identity (33) expressing the curvature of the Chern-Simons bundle as the fiberwise
integral of the Pontrjagin form Tr(R2) was proved for arbitrary surface fibrations by U. Bunke
[4] in the context of smooth cohomology.
Since the curvature of the connection ∇L is a (1, 1) form, we get the

Corollary 28. The complex line bundle L on T has a holomorphic structure induced by the
connection ∇L, such that the ∂̄ operator is the (0, 1) component of ∇L.

8. Variation of the Chern-Simons invariant and curvature of L

In this section we study the covariant derivative of the Chern-Simons CS(θ) invariant viewed
as a section in the pull-back of Chern-Simons bundle to TT.
By Proposition 16, Proposition 15 and Lemma 22, if gt is a curve of convex co-compact
hyperbolic 3-manifolds, then the invariant e2πiCSPSL2(C)(gt,·) can be seen as a section of the
line bundle L over a curve ht0 ∈M−1(M) induced by the conformal infinities of gt.

Theorem 29. Let (X, gt), t ∈ (−ε, ε), be a smooth curve of convex co-compact hyperbolic
3-manifolds with conformal infinity a Riemann surface M , and such that g is isometric near
M to the funnel (0, ε)x ×M

gt =
dx2 + ht(x)

x2
, h(x) = ht0 + x2ht2 + 1

4x
4ht2 ◦ ht2,(34)

with (ht0, h
t
2 − 1

2h
t
0) ∈ TT. Let S ∈ C∞(X,F0(X)) be an orthonormal frame for g0 and let

St be the parallel transport of S in the t direction with respect to the metric G = dt2 + gt on
X× (−ε, ε). Then, setting ḣ0 := ∂th

t
0|t=0 and h2 := (ht2− 1

2h
t
0)|t=0 so that ḣ0, h2 ∈ Th0T, one

has

∂tCSPSL2(C)(gt, St)|t=0 = 1
16π2

∫
M

Tr( ˙̂ω ∧ ω̂) + i
8π2 〈(Id− iJ)ḣ0, h2〉WP.

Notice, by Lemma 25, that Ŝt := x−1St is parallel for Ĝt = dt2 + x2gt and thus Theorem
29 is sufficient to compute the covariant derivative of e2πiCSPSL2(C)

with respect to ∇L in the
direction of conformal infinities of hyperbolic metrics on X.
Before giving the proof, let us give as an application the variation formula for the renormalized
volume.

Corollary 30. Let Xt := (X, gt) be a smooth curve of convex co-compact hyperbolic 3-
manifolds like in Theorem 29. Then

∂t(VolR(Xt))|t=0 = −1
4〈ḣ0, h2〉WP.

Proof. It suffices to combine Theorem 29 with Proposition 16 and consider the imaginary
part in the variation formula of CSPSL2(C). �

This formula was proved by Krasnov and Schlenker [18], using the Schläfli formula, in order
to show that the renormalized volume is a Kähler potential for the Weil-Petersson metric on
Teichmüller space. The Chern-Simons approach thus provides another proof.
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Proof of Theorem 29. Let T ∈ Λ1(X,End(TX)) be defined by TU (V ) := −U × V , where
× denotes the vector product with respect to the Riemannian metric. Clearly T is anti-
symmetric. We consider a 1-parameter family of metrics on X hyperbolic outside a compact
set, gt = dx2+ht(x)

x2 , and we define a Riemannian metric on R×X by

G = dt2 + gt.

Recall that for every fixed t, the metrics ht(x) and ht0 := ht(0) on M are related by (6).
For a given section S in the orthonormal frame bundle for g0, we define St as the parallel
transport in the t direction of S, more precisely ∇∂tStj = 0 for j = 1, 2, 3. Here and in what
follows, ∇ denotes the Riemannian connection for G. Since the integral curves of ∂t are
geodesics, it follows that St is an orthonormal frame for gt.
Consider the connections Dt = ∇gt + iT t on TCX corresponding to the metric gt. In the
trivialization given by the section St, the connection form is θt = ωt + iT t. It is a so(3)⊗C-
valued 1-form with real and imaginary parts

ωtij(Y ) = 〈∇g
t

Y S
t
j , S

t
i 〉gt , T tij(Y ) = 〈Y ×t Sti , Stj〉gt .

We first compute the variation with respect to t of the Chern-Simons form of θt on X. In
what follows, we will drop the upperscript t when we evaluate at t = 0 and we shall use a
dot to denote the t-derivative at t = 0. Substituting in (11) for θ = ω + iT = ω̂ − α + iT
like in (19), with ω̂ the connection form of the Levi-Civita connection of the conformally
compactified metric ĝ = x2g, we get

∂tcs(θt)|t=0 =d(Tr(ω̇ ∧ ω)− Tr(Ṫ ∧ T ) + i(Tr(ω̇ ∧ T ) + Tr(Ṫ ∧ ω))) + 2Tr(θ̇ ∧ Ωθ)

=dTr( ˙̂ω ∧ ω̂) + d[Tr(α̇ ∧ ω̂) + Tr( ˙̂ω ∧ α)] + id[Tr(ω̇ ∧ T ) + Tr(Ṫ ∧ ω)]

+ d[Tr(α̇ ∧ α)− Tr(Ṫ ∧ T )] + 2Tr(θ̇ ∧ Ωθ).

(35)

Observe that if gt is a variation through hyperbolic metrics on X then Ωθ vanishes. We
claim that in the variation formula for the Chern-Simons invariant of θt, the finite parts
corresponding to the terms Tr(α̇∧α) and Tr(Ṫ ∧T ) vanish. We start with the term Tr(T ∧Ṫ ):

Lemma 31. We have FPε=0

∫
x=ε Tr(T ∧ Ṫ ) = 0.

Proof. Let Y1, Y2 be vector fields on M , independent of t, then using that ∇G∂tSj = 0, we
have Ṫij(Yk) = 〈∇G∂tYk × Si, Sj〉 so

Tr(T ∧ Ṫ )(Y1, Y2) =
∑
i,j

〈Y1 × Si, Sj〉〈∇G∂tY2 × Si, Sj〉 − 〈Y2 × Si, Sj〉〈∇G∂tY1 × Si, Sj〉

=〈Y1,∇∂tY2〉 − 〈Y2,∇∂tY1〉

which is zero because by Koszul, 〈Y1,∇∂tY2〉 = 1
2(L∂tG)(Y1, Y2) is symmetric in Y1, Y2. �

Lemma 32. For ε > 0 sufficiently small we have

Tr(α̇ ∧ α)|x=ε = 0

Proof. Let Y1, Y2 be tangent vector fields to M , independent of t. Notice that for Si parallel
with respect to ∇G∂t then Ŝi = x−1Si is parallel with respect to ∇Ĝ∂t where Ĝ = dt2 + ĝt. Then
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since ∂x is also killed by ∇Ĝ∂t
xTr(α̇ ∧ α)(Y1, Y2) =∂t[ĝt(Y1, Ŝ

t
i )Ŝ

t
j(x)− ĝt(Y1, Ŝ

t
j)Ŝ

t
i (x)]|t=0

(
ĝ(Y2, Ŝj)Ŝi(x)− ĝ(Y2, Ŝi)Ŝj(x)

)
− Sym(Y1 → Y2)

=− 2Ĝ(∇Ĝ∂tY1, Y2) + 2Ĝ(∇Ĝ∂tY2, Y1) = −2Ĝ(∇ĜY1
∂t, Y2) + 2Ĝ(∇ĜY2

∂t, Y1)

xTr(α̇ ∧ α)(Y1, Y2) =2Ĝ(∇ĜY1
Y2, ∂t)− 2Ĝ(∇ĜY2

Y1, ∂t) = 2Ĝ([Y1, Y2], ∂t) = 0

and this finishes the proof. �

We now consider the term Tr( ˙̂ω ∧ α) + Tr(α̇ ∧ ω̂).

Lemma 33. Let Ḣ0 and A be the symmetric endomorphism on TM defined by ḣ0(·, ·) =
h0(Ḣ0·, ·) and h2(·, ·) = h0(A·, ·). We have the following identity

FPε→0

(
Tr( ˙̂ω ∧ α) + Tr(α̇ ∧ ω̂)

)
|x=ε = 2

∫
M

Tr(JḢ0A)dvolh0

where J is the complex structure on TM .

Proof. First, from the proof of Proposition 15, we know that FPε→0Tr(α ∧ ω̂)|x=ε = 0, and
therefore

FPε→0

(
Tr( ˙̂ω ∧ α) + Tr(α̇ ∧ ω̂)

)
|x=ε = 2 FPε→0Tr( ˙̂ω ∧ α).

Now, for Y1, Y2 tangent to M and independent of t, we can use that ∇Ĝ∂tŜi = 0 and ω̂ij(Y ) =

ĝ(∇ĝY Ŝj , Ŝi) = Ĝ(∇ĜY Ŝj , Ŝi) to deduce

˙̂ωij(Y ) = ∂t〈∇Y Ŝj , Ŝi〉 = 〈∇∂t∇Y Ŝj , Ŝi〉 = 〈R∂tY Ŝj , Ŝi〉

where R̂ is the curvature tensor of Ĝ, therefore

Tr( ˙̂ω ∧ α)(Y1, Y2) =
∑
i,j

〈R∂tY1Ŝj , Ŝi〉(〈Y2, Sj〉Si(a)− 〈Y2, Si〉Sj(a))

− 〈R̂∂tY2Ŝj , Ŝi〉(〈Y1, Sj〉Si(a)− 〈Y1, Si〉Sj(a))

=2(〈R̂∂tY2Y1, x
−1∂x〉 − 〈R̂∂tY1Y2, x

−1∂x〉

=2x−1〈R̂∂t,∂xY1, Y2〉

by Bianchi. Since we are interested in the finite part, we can modify Y1, Y2 by a term of order
x2 without changing the result, and we will take Ỹ t

i = (1− 1
2x

2At)Yi where the endomorphism
At of TM is defined by ht2(·, ·) = ht0(At·, ·). Then

Ĝ(R̂∂t,∂xY1, Y2) =− ∂x
(
ĝ(∇Ĝ∂t Ỹ

t
1 , Ỹ

t
2 )
)
|t=0 +O(x2)

=− 1
2∂x

(
∂t(ĝt(Ỹ t

1 , Ỹ
t

2 )) + ĝt([∂t, Ỹ t
1 ], Ỹ t

2 )|t=0 − ĝt([∂t, Ỹ t
2 ], Ỹ1)|t=0

)
+O(x2).

The term ∂t(ĝt(Ỹ t
1 , Ỹ

t
2 ))|t=0 is easily seen to be a ḣ0(Y1, Y2) + O(x3) by using that ĝt =

dx2 + ht0 + x2ht0(At·, ·) +O(x4), while the other two terms are

ĝt([∂t, Ỹ t
1 ], Ỹ t

2 )|t=0 − ĝt([∂t, Ỹ t
2 ], Ỹ t

1 )|t=0 =1
2x

2h0(ȦY1, Y2)− 1
2x

2h0(ȦY2, Y1) +O(x4)

=1
2x

2h0((Ȧ− ȦT )Y1, Y2) +O(x4).
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but since At is symmetric with respect to ht0, we deduce by differentiating at t = 0 that
Ȧ− ȦT = (Ḣ0A)T − Ḣ0A and therefore

ĝt([∂t, Ỹ t
1 ], Ỹ t

2 )|t=0 − ĝt([∂t, Ỹ t
2 ], Ỹ t

1 )|t=0 =1
2x

2h0(Ḣ0AY1, JY1) + 1
2x

2h0(Ḣ0AY2, JY2) +O(x4)

=− 1
2x

2Tr(JḢ0A) +O(x4).

We conclude that the limit of 2
xĜ(R̂∂t,∂xY1, Y2) as x→ 0 is given by Tr(JḢ0A). �

Next, we reduce the sum Tr(Ṫ ∧ ω) + Tr(ω̇ ∧ T ) as follows:

Lemma 34. We have the following identity

FPε=0

∫
x=ε

Tr(Ṫ ∧ ω) + Tr(ω̇ ∧ T ) = 2FPε=0

∫
x=ε

Tr(ω̇ ∧ T ).

Proof. It suffices use (22) to deduce that ∂tFPε=0

∫
x=ε Tr(ω ∧ T ) = 8π∂t(χ(M)) = 0. �

Proposition 35. Let Ḣ0 be the endomorphism on TM defined by ḣ0(·, ·) = h0(Ḣ0·, ·). Then
near x = 0 we have

Tr(ω̇ ∧ T ) = [−x−2Tr(Ḣ0) + Tr(Ȧ)− 1
2Tr(A)Tr(Ḣ0) + Tr(Ḣ0A)]dvolh0 +O(x2).

Proof. Notice that for every Y tangent to X we have ωtij(Y ) = ωij(Y ), as a simple conse-
quence of the Koszul formula. For a vector field Y on X extended on R×X to be constant
with respect to the flow of ∂t we compute

(∂tωij)(Y )|t=0 = ∂t〈∇Y Stj , Sti 〉|t=0 = 〈∇∂t∇Y Stj , Sti 〉|t=0 = 〈R∂t,Y Sj , Si〉

where 〈·, ·〉 denotes the metric G. In the last equality we have used the fact that Sti is
parallel in the direction of ∂t and the vanishing of the bracket [∂t, Y ]. By the symmetry of
the Riemannian curvature tensor, we rewrite the last term as −〈RSi,Sj∂t, Y 〉. It follows that

Tr(ω̇ ∧ T )(Y1, Y2) =
3∑

i,j=1

−〈RSiSj∂t, Y1〉〈Y2 × Sj , Si〉+ 〈RSiSj∂t, Y2〉〈Y1 × Sj , Si〉

=
3∑
j=1

−〈RY2×Sj ,Sj∂t, Y1〉+ 〈RY1×Sj ,Sj∂t, Y2〉

=E(Y1, Y2)− E(Y2, Y1)

(36)

where we have defined

E(Y,Z) :=
3∑
j=1

〈RGY×Sj ,Sj∂t, Z〉.

For every vector field Y on M , define a vector field Ỹ t on a neighborhood of M in X by

Ỹ t = (1 + x2

2 A
t)−1Y

where ht2 = ht0(At·, ·). ¿From (6) we see that for any orthonormal frame Y1, Y2 on M for h0,
the frame Ỹ t

1 , Ỹ
t

2 at t = 0 is also orthonormal on X. The complex structure J on {t}×{x}×M
satisfies JỸ t = x∂x ×t Ỹ t, so in particular JỸ = J̃Y at t = 0.

Lemma 36. Let Y,Z be vector fields on M . Then near x = 0 we have the expansion

E(JỸ , Z̃) =x−2ḣ0(Y, Z)− 1
2(h0(ȦY, Z) + h0(Y, ȦZ))− ḣ0(AY,Z) +O(x2).(37)
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Proof. The expression defining E is independent of the orthonormal frame Sj for g, thus we
can compute it using the frame xỸ , xJỸ , x∂x (all these are at t = 0):

E(JỸ , Z̃) =2〈RỸ ,x∂x∂t, Z̃〉.

Note the following identities:

Ỹ t = Y − x2

2 A
tY +O(x4), [x∂x, xỸ t] = xỸ t − x3AtY +O(x5), ∇Gx∂xxZ̃

t = O(x4).(38)

Also, note that ∇G∂x∂t = 0. Using these facts, we get

〈∇G
xỸ
∂t, xZ̃〉 =1

2(L∂tG)(xỸ t, xZ̃t)|t=0

=1
2((∂tht0((1 + x2

2 A
t)·, (1 + x2

2 A
t)·))(Ỹ , Z̃))|t=0 +O(x4)

=1
2 ḣ0(Y,Z) + x2

4 (h0(ȦY, Z) + h0(Y, ȦZ)) +O(x4),

(39)

therefore by using (38)

〈Rx∂x,xỸ ∂t, xZ̃〉 =x∂x〈∇GxỸ ∂t, xZ̃〉 − 〈∇
G
[x∂x,xỸ ]

∂t, xZ̃〉

=(x∂x − 1)〈∇G
xỸ
∂t, xZ̃〉+ x2〈∇G

xgAY ∂t, xZ̃〉
=− 1

2 ḣ0(Y, Z) + x2

4 (h0(ȦY, Z) + h0(Y, ȦZ)) + x2

2 ḣ0(AY,Z) +O(x4)

(in the last step we have used (39) for AY in the place of Y ). Using the tensoriality of the
curvature to get out the factors of x, we proved the lemma. �

Let us now write (all what follows is at t = 0)

Y = Ỹ +
x2

2
AY +O(x4) = Ỹ +

x2

2
ÃY +O(x4).

By linearity we get

E(Y,Z) =E(Ỹ , Z̃) +
x2

2
(E(ÃY , Z) + E(Y, ÃZ)) +O(x2).(40)

Assume now that Yj have been chosen at a given point on M as (orthonormal) eigenvectors
of A for h0 of eigenvalue λj , with JY1 = Y2. Then from (40) we get

E(Y2, Y1) =(1 + x2

2 (λ1 + λ2))E(Ỹ2, Ỹ1),

E(Y1, Y2) =(1 + x2

2 (λ1 + λ2))E(Ỹ1, Ỹ2),

therefore from (36) and Lemma 36

Tr(ω̇ ∧ T )(Y1, Y2) =E(Y1, Y2)− E(Y2, Y1)

=(1 + x2

2 Tr(A))(E(Ỹ1, Ỹ2)− E(Ỹ2, Ỹ1))

=− (1 + x2

2 Tr(A))(E(JỸ1, Ỹ1) + E(JỸ2, Ỹ2))

=(1 + x2

2 Tr(A))(−x−2Tr(Ḣ0) + Tr(Ȧ) + Tr(Ḣ0A) +O(x2)

Tr(ω̇ ∧ T )(Y1, Y2) =− x−2Tr(Ḣ0) + Tr(Ȧ)− 1
2Tr(A)Tr(Ḣ0) + Tr(Ḣ0A) +O(x2).

which is the claim of Proposition 35. �
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We are now in position to finish the proof of Theorem 29. Since we consider a family of
hyperbolic metrics gt, we have Tr(At) = −1

2scalht0 by (7) so by Gauss-Bonnet the following
integral is constant in t:

(41)
∫
M

Tr(At)dvolht0 = 2πχ(M).

Using ∂tdvolht0 |t=0 = 1
2Tr(ḣ0)dvolh0 we deduce by differentiating (41) that∫

M
(Tr(Ȧ) + 1

2Tr(A)Tr(Ḣ0))dvolh0 = 0

so ∫
x=ε

Tr(ω̇ ∧ T ) = −ε−2∂tVol(M,h0) +
∫
M

(2Tr(Ȧ) + Tr(Ḣ0A))dvolh0 +O(ε2).

This achieves the proof of Theorem 29. �

9. Chern-Simons line bundle and determinant line bundle

Ramadas-Singer-Weitsman [28] introduced the Chern-Simons line bundle on the moduli space
As
F /G of irreducible flat SU(2) connections up to gauge, they showed that it has a natural

connection whose curvature is (up to a factor of i) the standard symplectic form, and a
natural Hermitian structure. Quillen [27] defined the determinant line bundle over the space
{∂̄A;A ∈ As

F } of d-bar operators for a given complex structure on the surface M : he showed
that it descends to As

F /G as a Hermitian line bundle with a natural connection and with
curvature the standard symplectic form (up to a factor of i). Ramadas-Singer-Weitsman
proved that these bundles are isomorphic as Hermitian line bundle with connection over
As
F /G. Moreover their curvature form is of (1, 1) type with respect to the natural complex

structure on As
F /G and therefore the line bundle admits a holomorphic structure. In what

follows, we shall construct, in particular cases, a similar isomorphism using our Chern-Simons
invariant and the determinant of the Laplacian.

9.1. The submanifold H of hyperbolic 3-manifolds. Let us be more precise and first
make the following assumption: if T is Teichmüller space for a given oriented surface M of
genus g (possibly not connected) and h0 ∈ T, we assume that we fix a convex co-compact
3-manifold X with conformal boundary (M,h0).

Proposition 37. There exists a neighborhood U ⊂ T of h0 and a smooth map F : U →
C∞(X,S2

+(0T
∗
X))) such that F (h) is hyperbolic convex-cocompact with conformal boundary

(M,h) for all h ∈ U.

Proof. The proof is written for instance in [26]. A quasiconformal approach can be found for
instance in Marden [20]. �

This map induces by Lemma 19 a local section in the tangent bundle of T. By Mostow
rigidity [20, Theorem 2.12] and Marden [20, Theorem 3.1], this section is unique and extends
to a global smooth section σ : T → TT. The graph

(42) H := {(h, σ(h)) ∈ TT;h ∈ T}
is then a smooth submanifold of TT of dimension dim T. By uniqueness, the subgroup of
modular transformations of M consisting of classes of diffeomorphisms which extend to X
leaves this section invariant, therefore σ descends to any quotient of T by such a subgroup.
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For instance, this applies to the deformation space of a given convex co-compact hyperbolic
3 manifold X = Γ\H3, which is the quotient TX := T/ModX of T by the subgroup ModX
defined in §4.
Let us introduce a new connection on the pull-back of Lg to TT, for which the PSL2(C)
Chern-Simons section is flat along the deformation space of hyperbolic metrics on X.

Definition 38. We define the connection ∇µ on L by

∇µ = ∇L + 1
2πΦ∗µ1,0

where µ is the Liouville 1-form on T ∗T and Φ : TT → T ∗T is the isomorphism induced by
the Weil-Petersson metric. In what follows we will omit the identification Φ.

This connection is not Hermitian with respect to 〈·, ·〉CS since the form µ1,0 is not purely
imaginary. The Chern-Simons line bundle L equipped with the connection ∇µ has curvature

(43) Ω∇µ = i
8πΩWP + 1

2π ∂̄µ
1,0

with real part Re(Ω∇µ) = 1
4πdµ, where here and below, ωWP is understood as π∗ωWP if

π = TT → T is the projection on the basis.

Theorem 39. The Chern-Simons invariant e2πiCSPSL2(C)
restricted to the submanifold H in

(42) is a parallel section of L|H for the connection ∇µ. As a consequence, H is a Lagrangian
submanifold of TT for the standard symplectic Liouville form dµ on TT obtained from pull-
back by the duality isomorphism TT → T ∗T induced by 〈·, ·〉WP.

Proof. This is a direct consequence of the variation formula in Theorem 29 and the definition
of the connection ∇µ. �

It is proved by Krasnov [16] for Schottky cases and more generally by Takhtajan-Teo [30] for
Kleinian groups of class A (see also Krasnov-Schlenker [18] for quasi-Fuchsian cases), that

∂∂(VolR) = i
16ωWP

using previous work of Takhtajan-Zograf [31] on Liouville functional. Here we use our con-
vention for Weil-Petersson metric. The Theorem above generalizes these results providing a
unified treatment:

Corollary 40. For h0 in an open set U ⊂ T, let Xh = (X, gh) be a smooth family of convex
co-compact hyperbolic 3-manifolds with conformal infinity parametrized smoothly by h ∈ U ,
then

∂∂VolR(Xh) = i
16ωWP.

Proof. Let σ : U ⊂ T → TT be the section h→ (h, σ(h)) parametrizing the submanifold H.
We consider VolR(Xh) as a function on U . By Corollary 30, we have for ḣ ∈ ThT

∂VolR(Xh).ḣ = −1
4σ
∗µ1,0(ḣ).

From the vanishing of the curvature ΩL on H and the formula (43), we obtain for any
ḣ, ˙̀ ∈ ThT

dµ1,0
σ(h)(dσ.ḣ, dσ.

˙̀) = − i
4ωWP(ḣ, ˙̀)

and since σ∗dµ1,0
h (ḣ, ˙̀) = d(σ∗µ1,0)(ḣ, ˙̀) = ∂̄∂VolR(Xh)(ḣ, ˙̀), the proof is finished. �



CHERN-SIMONS LINE BUNDLE ON TEICHMÜLLER SPACE 33

9.2. An isomorphism with the determinant line bundle. Finally, we construct an
explicit isomorphism of Hermitian line bundles between LH and the determinant line bundle
in the particular cases of quasi-Fuchsian and Schottky manifolds.
Let M be a marked Riemann surface of genus g, i.e., a surface with a distinguished set
of generators α1, . . . , αg, β1, . . . , βg of π1(M,x0) for some x0 ∈ M . With respect to this
marking, if a complex structure is given on M , there is a basis ϕ1, . . . , ϕg of holomorphic
1-forms such that

∫
αj
ϕi = δij and this defines the period matrix (τij) = (

∫
βj
ϕi) whose

imaginary part is positive definite since 2Im τij = 〈ϕi, ϕj〉. Schottky groups are free groups
generated by L1, . . . , Lg ∈ PSL2(C) which map circles C1 . . . , Cg ⊂ Ĉ = C ∪ {∞} to other
circles C−1, . . . , C−g ∈ Ĉ (with orientation reversed). Each element γ ∈ Γ is conjugated in
PSL2(C) to z → qγz for some qγ ∈ C with |qγ | < 1, called the multiplier of γ. The quotient
of the discontinuity set ΩΓ of Γ by Γ is a closed Riemann surface and every closed Riemann
surface of genus g can be represented in this manner by a result of Koebe, see [8]. The
Schottky group is marked if each Ck is homotopic to αk in the quotient Γ\ΩΓ. The marked
group is unique up to a global conjugation in PSL2(C) and a normalization condition (by
assigning the 2 fixed points of L1 and one of L2) can be set to fix it. One then obtains
the Schottky space S which covers the moduli space (i.e., the set of isomorphism classes of
compact Riemann surface of genus g) but is covered by Teichmüller space T whose points
are isomorphism classes of marked compact Riemann surfaces.
Since any Schottky group Γ ⊂ PSL2(C) acts as isometries on H3 as a convex co-compact
group, there is a canonical hyperbolic 3-manifold Γ\H3 with conformal infinity given by
Γ\ΩΓ. This manifold denoted X is a handlebody with conformal boundary M . Let DX(M)
the group of diffeomorphisms of M which extend to X factored by the group D0(M) of
diffeomorphisms of M homotopic to Id.
The Chern-Simons line bundle defined on T above is acted upon by DX(M), thus it descends
to the Schottky space S which is a quotient of T by a subgroup of DX(M), we denote it LS.
The connection on L over T defined in Subsection 7.6 is DX(M) invariant, hence it descends
to S. The Liouville form on TT is D(M) invariant and thus also descends to TS, then
the connection ∇L descends to TS, we denote it ∇S. Again, we can define the Lagrangian
submanifold H ⊂ TS consisting of those funnels which extend to Schottky 3-manifolds. The
operator ∂Γ : C∞(M)→ C∞(M,Λ1,0M) for a given complex structure induced by Γ on M is
Fredholm on Sobolev spaces and, considered as a family of operators parametrized by points
Γ ∈ Sg, one can define its determinant line bundle det(∂) of ∂, as in Quillen [27], to be at Γ
the line1

det(∂Γ) := Λg(coker ∂Γ)

when g ∈ N and coker ∂Γ = ker(∂Γ : C∞(M,Λ1,0) → C∞(M,Λ2(M))) =: H0,1(Γ\ΩΓ) is the
vector space of holomorphic 1-forms on M ' Γ\ΩΓ. The line bundle det(∂) over S is a
holomorphic line bundle with a holomorphic canonical section

(44) ϕ := ϕ1 ∧ · · · ∧ ϕg

and is equipped with a Hermitian norm, called Quillen metric, defined as follows: for each
Riemann surface Γ\ΩΓ with Γ ∈ Sg, let h0 be the associated hyperbolic metric obtained by
uniformisation and define det′∆h0 the determinant of its Laplacian, as defined in Ray-Singer

1We have ignored the kernel of ∂ since it is only made of constants with norm given essentially by the
Euler characteristic of M by Gauss-Bonnet, therefore not depending at all on the complex structure on M .
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[29], then the Hermitian metric on det(∂) is given at Γ ∈ S by

(45) ‖ϕ‖2Q :=
‖ϕ‖2h0

det′∆h0

=
det Im τ

det′∆h0

where ‖ · ‖h0 is the Hermitian product on Λg(coker ∂Γ) induced by the metric h0 on differ-
ential forms on M . We denote by ∇det the unique Hermitian connection associated to the
holomorphic structure on det ∂ and the Hermitian norm ‖ϕ‖Q.
To state the isomorphism between powers of Chern-Simons line bundle and a power of the
determinant line bundle, we will use a formula proved by Zograf [36, 37] and generalized by
McIntyre-Takhtajan [23]

Theorem 41. [Zograf] There exists a holomorphic function F (Γ) : Sg → C such that

(46)
det′∆h0

det Im τ
= cg exp

(
VolR(X)

3π

)
|F (Γ)|2

where cg is a constant depending only on g where X = Γ\H3 when we see Γ ⊂ PSL2(C) as
a group of isometries of H3, and h0 is the hyperbolic metric on Γ\ΩΓ ' ∂X. For points in
S corresponding to Schottky groups Γ with dimension of limit set δΓ < 1, the function F (Γ)
is given by the following absolutely convergent product:

(47) F (Γ) =
∏
{γ}

∞∏
m=0

(1− q1+m
γ )

where qγ is the multiplier of γ ∈ Γ, and {γ} runs over all distinct primitive conjugacy classes
in Γ excluding the identity.

Remark 42. The formula (46) was in fact given in terms of Liouville action S instead of
renormalized volume, but it has been shown that S = −4 VolR(X) + cg for some constant cg
depending only on g, by Krasnov [16] for Schottky manifolds and by Takhtajan-Teo [30] for
quasi-Fuchsian manifolds.

We therefore deduce from this last theorem and our construction the following

Theorem 43. On the Schottky space S, the bundle L−1
S is isomorphic to (det ∂)⊗6 when

equipped with their connections and Hermitian products induced by those of (LS,∇S, ‖ · ‖L)
and (det ∂,∇det, ‖·‖Q). There is an explicit isometric isomorphism of holomorphic Hermitian
line bundles given by

(
√
cgFϕ)⊗6 7→ e−2πiCSPSL2(C)

.

where F and cg are the holomorphic functions and constants of Theorem 41, ϕ is the canonical
section of det ∂ defined in (44).

Proof. By a result of Zograf [36, 37], the function F extends analytically to S. The section
e2πiCSPSL2(C) ⊗ (√cgFϕ)⊗6 is holomorphic and has non-zero constant norm in the Hermitian
line bundle LS ⊗ (det ∂)⊗6. But any holomorphic section of constant norm in a Hermitian
line bundle must be parallel with respect to the Chern connection (i.e., the unique connection
compatible with the Hermitian metric and whose (0, 1) component is ∂). Hence the bundle is
flat with respect to the Chern connection, and the parallel section provides an isomorphism
with the trivial line bundle in the category of holomorphic Hermitian bundles. �
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Remark 44. The Hermitian bundles L−1
S and (det ∂)⊗6 have been shown to have the same

curvature, thus they are locally isomorphic. This would not be enough to deduce anything
globally since the Schottky moduli space is not simply connected. Our proof rests on the
construction of the holomorphic Chern-Simons section in L−1

S , which happens to have the
same norm as the determinant section, corrected by the function F . Thus, the global exis-
tence of F is needed for our argument. In turn, our construction shows that the lift of F
from its domain of absolute convergence to T admits a global analytic extension, but this
extension might not be invariant under the Schottky modular group, so we cannot re-prove
by our methods Zograf’s result on the extension of F to S.

Remark 45. In our previous work [12], we proved that

F (Γ) = |F (Γ)| exp
(
−πi

2 η(A)
)

when δ(Γ) < 1, where η(A) is the eta invariant of the signature operator A = ∗d+d∗ on odd
dimensional forms on the Schottky 3-manifold Γ\H3.

Remark 46. Using the result of McIntyre-Takhajan and McIntyre-Teo [23, 24], a similar result
with different powers of the bundles is easily obtained in the Schottky and quasi-Fuchsian
cases if one replaces the bundle det ∂ by the determinant line bundle det Λn of the vector
space of holomorphic n-differentials on M .

Appendix A. Chern-Simons invariants of 3-manifolds with funnels and cusps
of rank 2

In this appendix we show how to extend the results of this paper to include 3-manifolds of
finite geometry with funnels as well as rank 2-cusps. We will concentrate on the cusps since
funnels have already been treated.
By definition, a cusp of maximal rank is a half-complete warped product (a,∞) ×M with
metric dt2 + e−2th, where h is a flat metric on M . Here M will be of dimension 2. After a
linear change of variables in t, we can thus assume that M is isometric to a flat torus with
a closed simple geodesic of length 1.
By changing variables x := e−t ∈ (0, e−a), the cusp metric becomes

dx2

x2
+ x2h = x2

(
dx2

x4
+ h

)
.

Thus a cusp is conformal to a half-infinite cylinder dy2 + h where y := x−1 = et ∈ [ea,∞),
the conformal factor being x = y−1. The function x can be used to glue to the cusps a copy
of M at x = 0, thus compactifying X. Thus if we choose ρ : X → (0,∞) to be a function
which agrees with x on funnels and with y on cusps, it follows that X is conformal to a
manifold with boundary (corresponding to the funnels) and flat half-infinite cylindrical ends
(corresponding to each cusp):

g = ρ−2ĝ, ĝ = dρ2 + h(ρ)

where on the cusps, h(ρ) = h is flat and independent of ρ.
Let Ŝ be a orthonormal frame for ĝ which is parallel in the y direction in the cusp. Then
both the connection 1-form ω̂ and the curvature form Ω̂ vanish when contracted with ∂y. It
follows that the Chern-Simons form cs(ĝ, Ŝ) vanishes identically on the cusp, thus the SO(3)
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Chern-Simons invariant for ĝ is well-defined and moreover it coincides with the invariant of
the compact manifold with boundary obtained by chopping off the cylindrical ends.
The line bundle L is constructed now over the set of constant-curvature metrics on M ,
namely hyperbolic on the funnel ends and flat on the cusp ends. In the definition of the
cocycle cX(Ŝ, a) notice that the second term vanishes identically on the cusp, since we work
with frames S parallel in the direction of y, which implies that ∂yã = 0, or in other words ã
is independent of y. The definition of the SO(3) connection is unchanged if we include now
in M the flat components corresponding to the cusps. Its curvature is computed in terms
of a fiberwise integral of the Pontrjagin form by following verbatim the proof of Proposition
26. However in Lemma 27 the curvature of the tori fibers vanishes, thus the cusps do
not contribute to the curvature and so the curvature of ∇L is i

8π times the Weil-Petersson
symplectic form of the Teichmüller space corresponding to the funnels, i.e., it does not “see”
the cusps.
We define now the SO(3) invariant of the hyperbolic metric g. Using (20) with the roles of
g, ĝ reversed and (19) we see that in the cusp, the Chern-Simons form cs(g, S) of g equals
dTr(α̂ ∧ ω̂), where

α̂ij(Y ) = y−1[ĝ(Y, Ŝj)Si(y)− ĝ(Y, Si)Sj(y)].
Now ω̂ij is constant in y in the sense that L∂y ω̂ij = 0, while α̂ is of homogeneity −1. It
follows that cs(g, S) decreases like y−2 as y →∞, thus it is integrable without regularization.
Moreover the form Tr(α̂∧ ω̂) from (20) is homogeneous in y of degree −1, hence Proposition
15 continues to hold in the setting of this appendix.
To define the PSL2(C) invariant we use Proposition 11. We note that the volume of the cusps
is finite, the SO(3) Chern-Simons form was proved above to be integrable in the cusp, and
we claim that the remaining term Tr(T ∧ ω) decreases in the cusp like y−1. Indeed, we have
seen above that ω = ω̂ + α̂ is of homogeneity 0 and −1, while T = y−1T̂ is of homogeneity
−1. Therefore CSPSL2(C) does not involve regularization in the cusps, while Proposition 16
continues to hold. Note that the Euler characteristic of a torus is 0, so it is irrelevant whether
the tori closing the cusps are included or not in the formula from Proposition 16 when we
allow cusps.
The variation formula for CSPSL2(C) (Theorem 29) continues to hold as in the case with-
out cusps. because in (35) the cusp terms involved (other than the first one which is the
connection 1-form) do not have contributions of degree 0 in y. This is obvious if one takes
into account that α and T are of homogeneity −1, while ω̂ is of homogeneity 0. Hence the
variation of the regularized volume of a hyperbolic manifold with funnels and cusps is given
by Corollary 30 (and only depends on local data on the funnels).
Finally, the correspondence between hyperbolic metrics on X and the conformal infinity in
the funnels continues to hold in the presence of cusps [20].
These hyperbolic metrics with cusps and funnels form therefore a Lagrangian submanifold
in TT, and their renormalized volume is a Kähler potential for the Teichmüller space corre-
sponding to the funnels (see Corollary 40).
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