
On Carvalho’s K-theoretic formulation of the

cobordism invariance of the index

Sergiu Moroianu

Abstract

We give a direct proof of the fact that the index of an elliptic operator on the boundary
of a compact manifold vanishes when the principal symbol comes from the restriction of
a K-theory class from the interior. The proof uses noncommutative residues inside the
calculus of cusp pseudodifferential operators of Melrose.

Introduction

A classical result of Thom states that the topological signature of the boundary of a compact
manifold with boundary vanishes. Viewing the signature as the index of an elliptic operator, Atiyah
and Singer [2] generalized this vanishing to the so-called twisted signatures. This property, called
the cobordism invariance of the index, was the essential step in their first proof of the index formula
on closed manifolds. Conversely, cobordism invariance follows from the index theorem of [2].

On open manifolds a satisfactory index formula is not available, and probably not reasonable
to expect in full generality. Such formulae in various particular cases are given e.g., in [1], [12]
for manifolds with boundary, in [19], [9] for manifolds with fibered boundary, and in [11], [8] for
manifolds with corners in the sense of Melrose. To advance in this direction, we believe it is important
to understand conditions which ensure the vanishing of the index, in particular cobordism invariance,
without using any index formula.

Direct proofs of the cobordism invariance of the index for first-order differential operators on
closed manifolds were given e.g., in [4], [7], [10], [18], and also [17, Theorem 1]. We have proposed
in [17] an extension of cobordism invariance to manifolds with corners. The result states that the
sum of the indices on the hyperfaces is null, under suitable hypothesis.

All these results are partial, in that they only apply to differential operators of a special type. A
well-known fact states that the index of “geometrically defined” operators is cobordism-invariant;
but besides being vague, this is also not true (look at the Gauß-Bonnet operator). Only very recently,
Carvalho [5, 6] found a remarkable K-theoretic statement of the cobordism invariance of the index
using the topological approach of [3]. Here is a reformulation of the main result of [5] specialized to
compact manifolds:

Theorem. Let M be the boundary of the compact manifold X and D an elliptic pseudodifferential
operator on M . The principal symbol of D defines a vector bundle over the sphere bundle inside
T ∗M ⊕R. If the class in K0(S(T ∗M ⊕R)) of this bundle is the restriction of a class from K0(S∗X)
modulo K0(M), then index(D) = 0.

The missing details appear in Theorem 3. The aim of this paper is to reprove Theorem 3 by
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analytical methods, via the cusp calculus of pseudodifferential operators of Melrose on the manifold
with boundary X.

In order to make the proof likely to generalize to open manifolds, we have made a point of
avoiding to use results from K-theory, e.g., Bott periodicity and the index theorem. The proof will
be based on Theorem 2, a statement about cusp pseudodifferential operators. One could try to
use only differential operators and [17, Theorem 1], by representing any rational K-theory class on
T ∗M as the class of a first-order elliptic differential operator. Unfortunately, this is not possible if
M is odd-dimensional since then the index of differential operators vanishes. Using a product with
S1 and arguing that the index is multiplicative leads to a vicious circle; indeed, this argument is
enough for the proof of the index theorem [3], which we want to avoid.

1. Review of Melrose’s cusp algebra

In this section we recall the facts about the cusp algebra needed in the sequel. For a full treatment
of the cusp algebra we refer to [15] and [8].

Let X be a compact manifold with boundary M , and x : X → R+ a boundary-defining function.
A vector field V on X is called cusp if dx(V ) ∈ x2C∞(X). The space of cusp vector fields forms
a Lie subalgebra cV(X) ↪→ V(X) which is a finitely generated projective C∞(X)-module; indeed,
in a product decomposition M × [0, ε) ↪→ X, a local basis of cV(X) is given by {x2∂x, ∂yj} where
yj are local coordinates on M . Thus there exists a vector bundle cTX → X such that cV(X) =
C∞(X, cTX).

The algebra Dc(X) of (scalar) cusp differential operators is defined as the universal enveloping
algebra of cV(X) over C∞(X). In a product decomposition as above, an operator in Dc(X) of order
m takes the form

P =
m∑
j=0

Pm−j(x)(x2∂x)j (1)

where x 7→ Pm−j(x) is a smooth family of differential operators of order m− j on M .

1.1 Cusp pseudodifferential operators

The operators in Dc(X) can be described alternately (see [15]) in terms of their Schwartz kernels.
Namely, there exists a manifold with corners X2

c obtained by blow-up from X×X, and a submanifold
∆c, such that Dc(X) corresponds to the space of distributions on X2

c which are classical conormal
to ∆c, supported on ∆c and smooth at the boundary face of X2

c intersected by ∆c. It is then a
straightforward application of Melrose’s program [13] to construct a calculus of pseudodifferential
operators Ψλ

c (X), λ ∈ C, in which Dc(X) sits as the subalgebra of differential operators (the symbols
used in the definition are classical of order λ). No difficulty appears in defining cups operators acting
between sections of vector bundles over X. By composing with the multiplication operators by xz,
z ∈ C, we get a pseudodifferential calculus with two complex indices

Ψλ,z
c (X,F ,G) := x−zΨλ

c (X,F ,G)

such that Ψλ,z
c (X, E ,F) ⊂ Ψλ′,z′

c (X, E ,F) if and only if λ′ − λ ∈ N and z′ − z ∈ N (since we work
with classical symbols). Also,

Ψλ,z
c (X,G,H) ◦Ψλ′,z′

c (X,F ,G) ⊂ Ψλ+λ′,z+z′
c (X,F ,H).

By closure, cusp operators act on a scale of weighted Sobolev spaces xαHβ
c :

Ψλ,z
c (X,F ,G)× xαHβ

c (X,F)→ xα−<(z)Hβ−<(λ)
c (X,G).
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1.2 Symbol maps

A cusp differential operator of positive order cannot be elliptic at x = 0 since its principal symbol will
vanish on the normal covector to the boundary. Nevertheless, there exists a natural cusp principal
symbol map surjecting onto the space of homogeneous functions on cT ∗X \ {0} of homogeneity k:

σ : Ψk
c (X, E ,F)→ C∞[k](

cT ∗X, E ,F).

In the sequel we refer to σ as the principal symbol map. A cusp operator is called elliptic if its
principal symbol is invertible on cT ∗X \ {0}.

The second symbol map, the so-called indicial family, associates to any cusp operator P ∈
Ψc(X, E ,F) a family of pseudodifferential operators on M with one real parameter ξ. If P is given
by (1) near x = 0, then

IM (P )(ξ) =
m∑
j=0

Pm−j(x)(iξ)j .

Elliptic cusp operators whose indicial family is invertible for each ξ ∈ R are called fully elliptic.
By a general principle [12], for cusp operators being fully elliptic is equivalent to being Fredholm.

The principal symbol map and the indicial family are star-morphisms, i.e., they are multiplica-
tive and commute with taking adjoints. The indicial family surjects onto the space Ψsus(M) of
1-suspended pseudodifferential operators defined in [14], that is, of families of operators on M with
one real parameter ξ, with joint symbolic behavior in ξ and in the cotangent variables of T ∗M .

Lemma 1. Let P ∈ Ψ−∞(M), and let φ ∈ S(R) be a smooth compactly supported function. Then
ξ 7→ φ(ξ)P belongs to Ψ−∞sus (M).

Proof. The Schwartz kernel κ(t, t′, y, y′) := φ̂(t− t′)κP (y, y′) is smooth and rapidly vanishing away
from t = t′, so it defines a suspended operator of order −∞ (see [14, Definition 1]).

1.3 Analytic families of cusp operators

Let Q ∈ Ψ1,0
c (X, E) be a positive fully elliptic cusp operator of order 1. Then the complex powers

Qλ form an analytic family of cusp operators of order λ.

Let C2 3 (λ, z) 7→ P (λ, z) ∈ Ψλ,z
c (X, E) be an analytic family in two complex variables. Then

P (λ, z) is of trace class (on L2
c(M, E)) for <(λ) < −dim(X),<(z) < −1. Moreover, (λ, z) 7→

Tr(P (λ, z)) is analytic, extends to C2 meromorphically with at most simple poles in each variable
at λ ∈ N− dim(X), z ∈ N− 1, and

Resz=−1Tr(P (λ, z)) =
1

2π

∫
R

Tr(IM (x−1P (λ,−1)))dξ. (2)

Indeed, this is the content of [17, Prop. 3].

2. Cobordism invariance for cusp operators

Theorem 2. Let M be a closed manifold and

D : C∞(M, E+)→ C∞(M, E−)

a classical pseudodifferential operator of order 1 on M . Assume that there exist hermitian vector
bundles V +, V − → M , E → X with E|M = E+ ⊕ E− ⊕ V + ⊕ V −, and an elliptic symmetric cusp
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pseudodifferential operator A ∈ Ψ1,0
c (X, E) such that

IM (A)(ξ) =

 ξ D̃∗(ξ)

D̃(ξ) −ξ
(1+ξ2+∆+)

1
2

−(1+ξ2+∆−)
1
2

 (3)

where ∆+,∆− are the Laplacians of some connections on V +, V −, D̃ ∈ Ψ1
sus(M, E+, E−) and D̃(0) =

D. Then index(D) = 0.

Proof. We first show that we can assume without loss of generality that D is either injective or
surjective. Assuming this, we construct from A a positive cusp operator Q of order 1. The complex
powers of Q are used in defining a complex number N as a non-commutative residue. The proof
will be finished by computing N in two ways; first we get N = 0, then N is shown to be essentially
index(D).

Reduction to the case where D is injective or surjective
Let T ∈ Ψ−∞(M, E+, E−) be such that D + T is either injective or surjective (or both). Choose
T̃ ∈ Ψ−∞sus (X, E+, E−) with T̃ (0) = T . Choose S ∈ Ψ−∞,0c (X, E) such that

IM (S)(ξ) =


T̃ ∗(ξ)

T̃ (ξ)
0

0

 .
We can assume that S is symmetric (if not, replace S by (S+S∗)/2). Replace now D by D+T and
A by A+S. Note that index(D) = index(D+T ), since T : H1

c → L2
c is compact. The hypothesis of

the theorem (in particular (3)) still hold for D + T instead of D and with A + S instead of A. So
we can additionally assume that D is surjective or injective.

Construction of a positive cusp operator Q
For each ξ ∈ R we have σ1(D̃(ξ)) = σ1(D), so D̃(ξ) is elliptic as an operator onM and index(D̃(ξ)) =
index(D). If D is surjective or injective, then 0 does not belong to the spectrum of DD∗ (respectively
D∗D) so by continuity D̃(ξ) will have the same property for small enough |ξ|. Thus there exists ε > 0
such that the kernel and the cokernel of D̃(ξ) have constant dimension (hence they vary smoothly)
for all |ξ| < ε. Choose a smooth real function φ supported in [−ε, ε] such that φ(0) = 1. By Lemma
1 and the choice of φ, the families φ(ξ)Pker D̃(ξ) and φ(ξ)Pker D̃(ξ) define suspended operators in

Ψ−∞sus (M). Let R ∈ Ψ−∞,0c (X, E) be such that

IM (R)(ξ) =


φ(ξ)Pker D̃(ξ)

φ(ξ)PcokerD̃(ξ)

0
0


∈ Ψ−∞sus (M, E+ ⊕ E− ⊕ V + ⊕ V −).

(4)

It follows that IM (A2 + R∗R)(ξ) is invertible for all ξ ∈ R, so the cusp operator A2 + R∗R is
fully elliptic; this implies that it is Fredholm, and moreover its kernel is made of smooth sec-
tions vanishing rapidly towards ∂X. Let Pker(A2+R∗R) be the orthogonal projection on the finite-
dimensional nullspace of A2 +R∗R. Since moreover A2 +R∗R is clearly non-negative, it follows that
A2 +R∗R+ Pker(A2+R∗R) is positive. Set

Q := (A2 +R∗R+ Pker(A2+R∗R))
1/2

4



On the K-theoretic formulation of cobordism invariance

and let Qλ be the complex powers of Q. Since Q2 − A2 ∈ Ψ−∞,0c (X, E) and A is self-adjoint, we
deduce

[A,Qλ] ∈ Ψ−∞,0c (X, E). (5)

A non-commutative residue

Let P (λ, z) ∈ Ψ−λ−1,−z−1
c (X, E) be the analytic family of cusp operators

P (λ, z) := [xz, A]Q−λ−1.

From (2), Tr(P (λ, z)) is holomorphic in {(λ, z) ∈ C2;<(λ) > dim(X) − 1,<(z) > 0} and extends
meromorphically to C2. Following the scheme of [17, Theorem 1], our proof of Theorem 3 will consist
of computing in two different ways the complex number

N := Resλ=0 (Tr(P (λ, z))|z=0) ,

i.e., N is the coefficient of λ−1z0 in the Laurent expansion of Tr(P (λ, z)) around (0, 0). The idea is
to evaluate at z = 0 before and then after taking the residue at λ = 0, noting that the final answer
is independent of this order.

Vanishing of N

On one hand,

P (λ, z) = xz[A,Q−λ−1] + [A,Q−λ−1xz].

The meromorphic function [A,Q−λ−1xz] is identically zero since it vanishes on the open set {(λ, z) ∈
C

2;<(λ) > dim(X) − 1,<(z) > 0} by the trace property. By (5), the function Tr(xz[A,Q−λ−1]) is
regular in λ ∈ C, so in particular the meromorphic function

z 7→ Resλ=0Tr(xz[A,Q−λ−1])

vanishes. We conclude that N = 0.

Second computation of N

On the other hand, P (λ, 0) = 0 so

U(λ, z) := z−1P (λ, z) ∈ Ψ−λ−1,−z−1
c (X, E)

is an analytic family. Set [log x,A] := (z−1[xz, A])|z=0 ∈ Ψ0,1
c (X, E). Then U(λ, 0) = [log x,A]Q−λ−1.

By multiplicativity of the indicial family,

IM (x−1U(λ, 0)) = IM (x−1[log x,A])IM (Q−λ−1).

By (3) and [8, Lemma 3.4], we see that IM (x−1[log x,A]) is the 4× 4 diagonal matrix
i
−i

iξ(1 + ξ2 + ∆+)−
1
2

−iξ(1 + ξ2 + ∆−)−
1
2
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and IM (Q−λ−1) = IM (A2 +R∗R)−
λ+1

2 . Also, using (4), we deduce that IM (A2 +R∗R) is the 4× 4
diagonal matrix with entries

a11 = ξ2 + D̃(ξ)∗D̃(ξ) + φ2(ξ)Pker D̃(ξ)

a22 = ξ2 + D̃(ξ)D̃(ξ)∗ + φ2(ξ)PcokerD̃(ξ)

a33 = 1 + ξ2 + ∆+

a44 = 1 + ξ2 + ∆−.

By (2),

Tr(P (λ, z))|z=0 =
1

2π

∫
R

Tr(IM (x−1(U(λ, 0)))dξ

=
i

2π

∫
R

(
Tr(ξ2 + D̃(ξ)∗D̃(ξ) + φ2(ξ)Pker D̃(ξ))

−λ+1
2

− Tr(ξ2 + D̃(ξ)D̃(ξ)∗ + φ2(ξ)PcokerD̃(ξ))
−λ+1

2

+ ξTr(1 + ξ2 + ∆+)−
λ
2
−1

−ξTr(1 + ξ2 + ∆−)−
λ
2
−1
)
dξ

The third and fourth terms in this sum are odd in ξ so their integral vanishes. For each fixed ξ
we compute the trace of the first two terms by using orthonormal basis of L2

c(M, E+), L2
c(M, E+)

given by eigensections of D̃(ξ)∗D̃(ξ), respectively D̃(ξ)D̃(ξ)∗. The non-zero parts of the spectrum
of D̃(ξ)∗D̃(ξ) and D̃(ξ)D̃(ξ)∗ coincide, so what is left is∫

R

index(D̃(ξ))(ξ2 + φ2(ξ))−
λ+1

2 dξ.

The subtle point here is that the kernel and cokernel of D̃(ξ) may have jumps when |ξ| > ε, but
our formula involves only the index, which is homotopy invariant and equals index(D) for all ξ ∈ R.
Thus the index comes out of the integral; the residue

Resλ=0

∫
R

(ξ2 + φ2(ξ))−
λ+1

2 dξ

is independent of the compactly supported function φ and equals 2, so

0 = N = Resλ=0Tr(P (λ, z))|z=0 =
i

π
index(D).

By taking D̃(ξ) := D with D differential, and V + = V − = 0 we get the familiar form of
cobordism invariance from e.g., [4], [7], [10], [18]. We gave a similar extension from the differential
to the pseudodifferential case in [16] when computing the K-theory of the algebra Ψ0

sus(M).

3. The K-theoretic characterization of cobordism invariance

We interpret now Theorem 2 in topological terms. Let S∗sus(M) → M be the sphere bundle inside
T ∗susM := T ∗M ⊕ R. The total space of S∗sus(M) is the oriented boundary of cS∗X. By fixing a
product decomposition of X near M , we get non-canonical vector bundle isomorphisms making the
diagram

cT ∗X

'
��

r // T ∗susM

'
��

T ∗X
r // T ∗X|M

6
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commutative, so we can replace cS∗X with the more familiar space S∗X in all the topological
considerations of this section.

The interior unit normal vector inclusion ı : M → S∗sus(M) and the bundle projection p :
S∗sus(M)→M induce a splitting

K0(S∗sus(M)) = ker(ı)⊕ p∗(K0(M)).

Let
r : K0(S∗X)→ K0(S∗sus(M))

be the map of restriction to the boundary, and

d : K0(T ∗M)→ K0(S∗sus(M))/p∗(K0(M))

the isomorphism defined as follows: if (E+, E−, σ) is a triple defining a class in K0(T ∗M) with
σ : E+ → E− an isomorphism outside the open unit ball, then

d(E+, E−, σ) =

{
E+ on S∗sus(M) ∩ {ξ > 0}
E− on S∗sus(M) ∩ {ξ 6 0}

with the two bundles identified via σ over S∗sus(M) ∩ {ξ = 0} = S∗M . We can now reformulate
Theorem 3 as follows:

Theorem 3. Let X be a compact manifold with closed boundary M . Let D ∈ Ψ(M, E+, E−) be an
elliptic pseudodifferential operator and [σ(D)] := (p∗E+, p∗E−, σ(D)) ∈ K0(T ∗M) its symbol class.
Assume that

d[σ(D)] ∈ p∗(K0(M)) + r(K0(S∗X)).
Then

index(D) = 0.

Proof. The idea is to construct an operator A as in Theorem 2. We must first construct the vector
bundles V ±, and then extend the principal symbol of (3) to an elliptic symbol in the interior of X.

We can assume that D is of order 1. Extend σ(D) to a homomorphism σ : p∗E+ → p∗E− over
S∗sus(M). Let F+ → S∗sus(M) be the vector bundle defined as the span of the eigenvectors of positive
eigenvalue of the symmetric automorphism of p∗(E+ ⊕ E−)

a :=
[
ξ σ∗

σ −ξ

]
: p∗(E+ ⊕ E−)→ p∗(E+ ⊕ E−).

Lemma. The K-theory class of the vector bundle F+ is d[σ(D)].

Proof. F+ is the image of the projector 1+a(a2)−
1
2

2 inside p∗(E+ ⊕E−), or equivalently the image of
the endomorphism (a2)

1
2 + a:

F+ = {((ξ + (ξ2 + σ∗σ)
1
2 )v, σv); v ∈ E+}

+ {(σ∗w, (−ξ + (ξ2 + σσ∗)
1
2 )w);w ∈ E−}.

Now ξ + (ξ2 + σ∗σ)
1
2 is invertible when ξ > 0, and −ξ + (ξ2 + σσ∗)

1
2 is invertible when ξ 6 0. Thus

the projection from F+ on p∗E+, respectively on p∗E−, are isomorphisms for ξ > 0, respectively for
ξ 6 0. Over ξ = 0 these isomorphisms differ by σ(σ∗σ)−

1
2 , which is homotopic to σ by varying the

exponent from −1
2 to 0.

The hypothesis says therefore that

[F+] ∈ p∗(K0(M)) + r(K0(S∗X)).

7
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This means that there exist vector bundles G+ → S∗X, V + →M such that

F+ ⊕ p∗V + = G+|S∗sus(M). (6)

Let F− ⊂ p∗(E+ ⊕ E−) be the negative eigenspace of a.

Lemma. There exist vector bundles G− → S∗X, V − →M such that

F− ⊕ p∗V − = G−|S∗sus(M)

and moreover E := G+ ⊕G− ' CN for some N ∈ N.

Proof. From (6) we get

[F−] = [p∗(E+ ⊕ E−)]− [F+]
= p∗[E+ ⊕ E− ⊕ V +]− r[G+].

Let G0 be a complement (inside CN0) of G+, and V 0 a complement of E+ ⊕ E− ⊕ V + inside CN1 .
Then

[F−] + p∗[V 0] + CN0 = C
N1 + r[G0]

which amounts to saying that there exists N2 ∈ N with

F− ⊕ p∗V 0 ⊕ CN0+N2 ' CN1+N2 ⊕G0|S∗sus(M).

We set V − := V 0 ⊕ CN0+N2 , G− := C
N1+N2 ⊕G0.

Define ã to be the automorphism of E over S∗X that equals 1 on G+ and −1 on G−. By
construction, ã|S∗sus(M) and the automorphism

[ a
1
−1

]
(written in the decomposition E|S∗sus(M) =

(E+ ⊕ E−) ⊕ V + ⊕ V −) have the same spaces of eigenvectors of positive, respectively negative
eigenvalue, so they are homotopic inside self-adjoint automorphisms. Glue this homotopy smoothly
to ã over X ∪ (M × [−1, 0]) ' X, and then pull back the result to a self-adjoint automorphism α of
E over X. Thus

α|S∗sus(M) =
[ a

1
−1

]
. (7)

We extend α to T ∗X \ 0 by homogeneity 1.
As noted at the beginning of this section, we replace S∗X by cS∗X. By (7) and the definition

of a, α|S∗sus(M) coincides with the principal symbol of the right-hand side of (3). Therefore there
exists an elliptic cusp operator A ∈ Ψ1

c (X, E) with σ1(A) = α and with indicial family given by
the symmetric suspended operator (3). By replacing A with (A + A∗)/2 we can assume A to be
symmetric. The hypothesis of Theorem 2 is fulfilled, so we conclude that index(D) = 0.

4. Variants of Theorem 3

4.1 Carvalho’s theorem
Carvalho [5] obtained a slightly different statement of cobordism invariance (her result holds for
non-compact manifolds as well). Namely, in the context of Theorem 3 she proved that index(D) = 0
provided that [σ(D)] lies in the image of the composite map

K1(T ∗X) r→ K1(T ∗M ⊕ R)
β−1

→ K0(T ∗M)

defined by restriction and by Bott periodicity. Let us show that this statement is equivalent to
Theorem 3. Consider the relative pairs S∗X ↪→ B∗X, S∗sus(M) ↪→ B∗susM , the inclusion map between
them and the induced boundary maps in the long exact sequences in K-theory. We claim that we
get a commutative diagram

8
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K0(S∗X)

r

��

// // K1(T ∗X)

r

��
K0(S∗sus(M))

q

��

// // K1(T ∗susM)

K0(S∗sus(M))/p∗K0(M) d−1
// K0(T ∗M)

β

OO

(8)

Indeed, the upper square commutes by naturality and the lower one by checking the definitions.
Moreover, the existence of nonzero sections in T ∗X → X and T ∗susM →M shows that the rows are
surjective. Also β, d are isomorphisms, so d[σ(D)] lies in the image of q ◦ r if and only if [σ(D)] lies
in the image of β−1 ◦ r. Thus Theorem 3 is equivalent to Carvalho’s statement applied to closed
manifolds. Our formulation is marginally simpler because it does not involve the Bott isomorphism.

4.2 An indirect proof of Theorem 3

We mentioned in the introduction that Theorem 3 follows from the Atiyah-Singer formula:

index(D) = 〈M,Td(TM) ∪ p∗ch([σ(D)])〉,

where p∗ denotes the Thom isomorphism induced by p : T ∗M →M . Indeed, the normal bundle to
M in X is trivial so Td(TM) = r(Td(TX)). We can view T ∗M as an open subset of S∗X|M via
the central projection from the interior pole of each sphere; the pull-back via this inclusion map of
d[σ(D)]) coincides modulo p∗K0(M) with [σ(D)], in particular the push forward onM of ch(d[σ(D)])
and of ch([σ(D)]) are equal. So the hypothesis that d[σ(D)] is the restriction of a class on S∗X
modulo p∗K0(M) implies, by the functoriality of the Chern character, that p∗ch([σ(D)]) ∈ H∗(M)
is the image of a cohomology class from X. Finally Stokes formula shows that index(D) = 0.
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Institutul de Matematică al Academiei Române, P.O. Box 1-764, RO-014700 Bucharest, Romania
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