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Abstract

The cobordism invariance of the index on closed manifolds is reproved using the
calculus Ψc of cusp pseudodifferential operators on a manifold with boundary. More
generally, on a compact manifold with corners, the existence of a symmetric cusp
differential operator of order 1 and of Dirac type near the boundary implies that
the sum of the indices of the induced operators on the hyperfaces is null.
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1 Introduction

Thom’s discovery [21] of the cobordism invariance of the topological signature
led Hirzebruch [10] to identify the signature of the intersection form of a
closed oriented 4k-dimensional manifold with the L-number constructed from
the Pontryagin classes, in what was to become one of last century’s most
influential formulae:

sign(M) = L(M).

Inspired by this result, Atiyah and Singer proposed in [1] an extension of the
signature formula which gave the answer to the general index problem for
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elliptic operators on closed manifolds. Their program was carried out in [20].
The key ingredients of the proof were the use of pseudodifferential operators
and the cobordism invariance of the index of twisted signature operators.
Instead of explaining what this is, let us state a more general result, that we
will later extend to manifolds with corners.

Theorem 1 Let M be a closed manifold, E± vector bundles over M and D :
C∞(M, E+)→ C∞(M, E−) an elliptic differential operator of order 1. Assume
that

(1) M (not necessarily orientable) is the boundary of a compact manifold
X; fix a Riemannian metric on X which is of product type in a product
decomposition M × [0, ε) of X near M ;

(2) there exists a vector bundle E → X such that E|M = E+ ⊕ E−; identify E
over M × [0, ε) with the pull-back of E+ ⊕ E− from M , and fix a metric
on E which is constant in t ∈ [0, ε) such that E+ ⊥ E−;

(3) there exists a formally self-adjoint elliptic operator δ acting on C∞(X, E)
which near M has the form

δ =

−i ddt D∗
D i d

dt

 . (1)

Then index(D) = 0.

Since the topological significance of kerD, which played a key role for the
signature problem, is lost for arbitrary elliptic operators, the proof from [20,
Chapter XVII] of even a particular case of Theorem 1 had to rely on a fairly
complicated analysis of boundary value problems. Atiyah and Singer found
later [2] a purely K-theoretic proof of the index theorem, from which the
cobordism invariance of twisted signatures follows. From a modern perspec-
tive, Theorem 1 is also a consequence of the following commutative diagram
in analytic K-homology [9] (I am indebted to the referee for this remark):

K1(X,M)
∂−−−→ K0(M)y index

y
K1(pt, pt) −−−→ K0(pt)

(2)

An operator δ as in Theorem 1 defines an element in K1(X,M) with ∂(δ) =
D ∈ K0(M). On the other hand,K1(pt, pt) = 0 so index(D) = 0. Nevertheless,
there is a great deal of work in either proving the Atiyah-Singer formula or in
constructing analytic K-homology and proving the commutativity of (2). Thus
it is legitimate to ask how deep the cobordism invariance of the index really is.
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Our first result is a new proof of Theorem 1 by some clever manipulations with
noncommutative residues inside the calculus of cusp pseudodifferential opera-
tors on X (arguably the simplest example of a pseudodifferential calculus on
a manifold with boundary, constructed using the theory of boundary fibration
structures of Melrose [14]). Note that several proofs of Theorem 1 have been
obtained lately for Dirac operators (e.g., [3], [8], [12], [19]). A K-theoretic
statement of the cobordism invariance of the index was proved recently by
Carvalho [6,7] via the topological approach of [2].

The main result of the paper concerns the cobordism invariance problem
on manifolds with corners. Let X be a compact manifold with corners and
F1, . . . ,Fk its boundary hyperfaces, possibly disconnected. We refer to [11] for
an overview of cusp pseudodifferential operators on manifolds with corners.
Let A be a symmetric cusp pseudodifferential operator on X. Under certain
algebraic conditions which we call ”being of Dirac type at the boundary”, A
induces cusp elliptic operators Dj on each hyperface Fj. We assume that these
operators are fully elliptic, which is equivalent to Dj being Fredholm on suit-
able cusp Sobolev spaces. Then, under the assumption that A is a first-order
differential operator, we prove in Theorem 4 that

∑k
j=1 index(D+

j ) = 0. The
proof is inspired from the closed case; we look at a certain meromorphic func-
tion of zeta-type in several complex variables. A special Laurent coefficient of
this function will give on one hand the sum of the indices of Dj, and on the
other hand it will vanish.

An index formula for fully elliptic cusp operators on manifolds with corners was
given in [11]. Inadvertently, we stated there the result only for scalar operators,
however the formula applies ad literam to operators acting on sections of
a vector bundle. The result from Section 4 is in a certain sense the odd-
dimensional version of that formula. Unlike in the closed case, it seems difficult
to obtain the cobordism invariance directly from the general index formula.
Note however that for admissible Dirac operators, Theorem 4 can be deduced
from results of Loya [13, Theorem 8.11], Bunke [5, Theorem 3.14], and also
from a particular case of [11, Theorem 5.2], since in that case the index density
is a characteristic form. We discuss this briefly at the end of Section 4.

From a different point of view, Melrose and Rochon [17] use a slightly modified
version of the cusp algebra to study the index of families of operators on
manifolds with boundary. It would be interesting to combine their approach
with ours, to treat for instance the cobordism invariance of the families index.

In Sections 2 and 3 we will use the notation and some simple results from
[11]; we refer the reader to [16] for a thorough treatment of the cusp algebra
on manifolds with boundary. In the second part of the paper dealing with
manifolds with corners we will rely heavily on [11]. Some familiarity with that
paper must therefore be assumed.
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2 Review of Melrose’s cusp algebra

Let X be a compact manifold with boundary M , not necessarily orientable,
and x : X → R+ a boundary-defining function (i.e., M = {x = 0} and
dx is never zero at x = 0). A cusp vector field on X is a smooth vector
field V such that dx(V ) ∈ x2C∞(X) (we remind the reader that C∞(X) is
defined as the space of restrictions to X of smooth functions on the double
of X, or equivalently as the space of those smooth functions in the interior
of X that admit Taylor series expansions at M). The space of cusp vector
fields forms a Lie subalgebra cV(X) ↪→ V(X), whose universal enveloping
algebra is by definition the algebra Dc(X) of scalar cusp differential operators.
Moreover cV(X) is a finitely generated projective C∞(X)-module (in a product
decomposition M × [0, ε) ↪→ X, a local basis is given by {x2 ∂

∂x
, ∂
∂yj
} where yj

are local coordinates on M). Thus by the Serre-Swan theorem there exists a
vector bundle cTX → X such that cV(X) = C∞(X, cTX).

A cusp differential operator of positive order can never be elliptic at x = 0.
Nevertheless, there exists a natural cusp principal symbol map surjecting onto
the smooth polynomial functions on cT ∗X of homogeneity k, σ : Dkc (X) →
C∞[k](

cT ∗X). A cusp operator will therefore be called elliptic if its principal
symbol is invertible on cT ∗X \ {0}.

For any vector bundles F ,G over X let

Dc(X,F ,G) := Dc(X)⊗C∞(X) Hom(F ,G).

It is straightforward to extend the definition of σ to the bundle case.

2.1 Example

Assume that the hypothesis of Theorem 1 is fulfilled. The metric on X is a
product metric near M ,

gX = dt2 + gM .
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Extend δ to the manifold X̃ = M × (−∞, 0) ∪ X, obtained by attaching an
infinite cylinder to X, by Eq. (1). Let ψ : X◦ → X̃ be any diffeomorphism
extending

M × (0, ε) 3 (y, x) 7→ (y,−1

x
) ∈ X̃.

Then the pull-back of δ through ψ takes the form

A := ψ∗δ =

−ix2 d
dx

D∗

D ix2 d
dx



since t = − 1
x

near x = 0. Thus, A is a cusp differential operator. Moreover, A
is symmetric with respect to the cusp metric ψ∗gX , which near M takes the
form

gXc =
dx2

x4
+ gM .

The metric gXc is degenerate at x = 0, however it is non-degenerate as a
cusp metric in the sense that it induces a Riemannian metric on the bundle
cTX → X. The operator A is elliptic (in the cusp sense) and acts as an
unbounded operator in L2

c(X, E), the space of square-integrable sections in
E → X with respect to the metric gXc .

2.2 The indicial family

This is a ”boundary symbol” map, associating to any cusp operator P ∈
Dc(X, E ,F) a family of differential operators on M with one real polynomial
parameter ξ as follows:

IM(P )(ξ) =
(
e
iξ
x Pe−

iξ
x

)
|M

where restriction to M is justified by the mapping properties

P : C∞(X, E)→C∞(X,F)

P : xC∞(X, E)→xC∞(X,F)

and by the isomorphism C∞(M) = C∞(X)/xC∞(X).
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From the definition we see directly for the cusp operator A constructed in
Example 2.1 that

IM(A) =

 ξ D∗

D −ξ

 . (3)

Ellipticity does not make A Fredholm on L2
c(X, E), essentially because the

Rellich lemma does not hold on non-compact domains. To apply a weighted
form of the Rellich lemma we need an extra property, the invertibility of the
indicial family IM(A) for all values of the parameter ξ; thus A is Fredholm
precisely when D is invertible, see [11, Theorem 3.3]. Elliptic cusp operators
with invertible indicial family are called fully elliptic.

2.3 Cusp pseudodifferential operators

By a micro-localization process one constructs [16] a calculus of pseudodif-
ferential operators Ψλ

c (X), λ ∈ C, in which Dc(X) sits as the subalgebra of
differential operators (the symbols used in the definition are classical of or-
der λ). By composing with the multiplication operators xz, z ∈ C, we get a
calculus with two indices

Ψλ,z
c (X,F ,G) := x−zΨλ

c (X,F ,G)

such that Ψλ,z
c (X, E ,F) ⊂ Ψλ′,z′

c (X, E ,F) if and only if λ′−λ ∈ N and z′−z ∈ N
(since we work with classical symbols). Also,

Ψλ,z
c (X,G,H) ◦Ψλ′,z′

c (X,F ,G) ⊂ Ψλ+λ′,z+z′

c (X,F ,H).

By closure, cusp operators act on a scale of weighted Sobolev spaces xαHβ
c :

Ψλ,z
c (X,F ,G)× xαHβ

c (X,F)→ xα−<(z)Hβ−<(λ)
c (X,G).

The principal symbol map and the indicial family extend to multiplicative
maps on Ψc(X). The indicial family takes values in the space Ψsus(M) of fami-
lies of operators on M with one real parameter ξ, with joint symbolic behavior
in ξ and in the cotangent variables of T ∗M (1-suspended pseudodifferential
operators in the terminology of [15]).

The following result gives a hint of what families of operators actually define
suspended operators.
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Lemma 2 Let z, w ∈ C ∪ {−∞}, P ∈ Ψz(M) and φ ∈ C∞(R). Then ξ 7→
φ(ξ)P belongs to Ψw

sus(M) if and only if one of the following two conditions is
fulfilled:

(1) z = −∞ and φ is a rapidly decreasing (i.e., Schwartz) function.
(2) P is a differential operator and φ is a polynomial.

In the first case w = −∞, while in the second case w = z + deg(φ).

2.4 Analytic families of cusp operators

Let Q ∈ Ψ1,0
c (X, E) be a positive fully elliptic cusp operator of order 1. Then

the complex powers Qλ form an analytic family of cusp operators of order λ
(this is proved using Bucicovschi’s method [4]).

Let C2 3 (λ, z) 7→ P (λ, z) ∈ Ψλ,z
c (X, E) be an analytic family in two complex

variables. Then P (λ, z) is of trace class (on L2
c(M, E)) for

<(λ) < − dim(X), <(z) < −1,

and Tr(P ) is analytic there as a function of (λ, z). Moreover, Tr(P ) extends
to C2 meromorphically with at most simple poles in each variable at λ ∈
N − dim(X), z ∈ N − 1. By analogy with the Wodzicki residue, we can give
a formula for the residue at z = −1 as a meromorphic function of λ (this is
essentially [11, Proposition 4.5]).

Proposition 3 Let C2 3 (λ, z) 7→ P (λ, z) ∈ Ψλ,z
c (X, E) be an analytic family.

Then

Resz=−1 Tr(P (λ, z)) =
1

2π

∫
R

Tr(IM(x−1P (λ,−1)))dξ. (4)

PROOF. The trace on the right-hand side is the trace on L2(M, E|M). Both
terms are meromorphic functions in λ ∈ C. By unique continuation, it is thus
enough to prove the identity for <(λ) < − dim(X). We write both traces as
the integrals of the trace densities of the corresponding operators, i.e., the
restriction of their distributional kernel to the diagonal.

For any vector bundle V → X we denote by Ω(V )→ X the associated density
bundle. Let F : C → C∞(X,Ω(cTX)) be a holomorphic family of smooth
cusp-densities. Then x2F (z) ∈ C∞(X,Ω(TX)), and hence z 7→

∫
X x
−zF (z) is

holomorphic for <(z) < −1; moreover, its residue at z = −1 is easily seen to
equal

∫
M(x2∂xyF (−1))|M . We apply this fact to the trace density of P (λ, z)
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multiplied with xz. We view M as the intersection of the cusp diagonal with
the cusp front face inside the cusp double space X2

c (see [11]). Recall from [11]
or [16] that the cusp front face is the total space of a real line bundle, and M
lives inside the zero section. The indicial family is obtained by restricting a
Schwartz kernel to the front face, then Fourier transforming along the fibers.
The result follows from the Fourier inversion formula

f(0) =
1

2π

∫
R

f̂(ξ)dξ

applied in the fibers of the cusp front face over M .

3 Cobordism invariance on manifolds with boundary

The self-contained proof of the cobordism invariance of the index given below
serves as a model for the general statement on manifolds with corners.

Proof of Theorem 1. We have seen in Example 2.1 that the hypothesis of
Theorem 1 is equivalent to the existence of an elliptic symmetric cusp operator
A satisfying (3).

Let φ : R → R be a non-negative Schwartz function with φ(0) = 1. Let
PkerD ∈ Ψ−∞(M, E+), PcokerD ∈ Ψ−∞(M, E−) be the (finite-rank) orthogo-
nal projections on the kernel and cokernel of D. These projections belong to
Ψ−∞(M) by elliptic regularity. By Lemma 2,

r(ξ) :=

φ(ξ)PkerD 0

0 φ(ξ)PcokerD



belongs to Ψ−∞sus (M, E+ ⊕ E−) and is non-negative, so it is the indicial family
of a non-negative cusp operator R ∈ Ψ−∞,0c (X, E). By (3),

IM(A2 +R) =

 ξ2 +D∗D + φ(ξ)PkerD 0

0 ξ2 +DD∗ + φ(ξ)PcokerD

 (5)

so A2+R is fully elliptic. It follows that Pker(A2+R) ∈ Ψ−∞,−∞c (X, E) (by elliptic
regularity with respect to the two symbol structures) so A2 + R + Pker(A2+R)

is a positive cusp operator. Finally set

Q := (A2 +R + Pker(A2+R))
1/2
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and let Qλ be its complex powers. Note that Q2 − A2 ∈ Ψ−∞,0c (X, E) so

[A,Qλ] ∈ Ψ−∞,0c (X, E). (6)

Let P (λ, z) ∈ Ψ−λ−1,−z−1
c (X, E) be the analytic family of cusp operators

P (λ, z) := [xz, A]Q−λ−1.

From the discussion in Subsection 2.4, Tr(P (λ, z)) is holomorphic in {(λ, z) ∈
C

2;<(λ > dim(X)−1,<(z) > 0} and extends meromorphically to C2. We keep
the notation Tr(P (λ, z)) for this extension. Note that although P (λ, 0) = 0,
there is no reason to expect the meromorphic extension Tr(P (λ, z)) to vanish
at z = 0; rather, Tr(P (λ, z)) will be regular in z near z = 0. Our proof
of Theorem 1 will consist of computing in two different ways the complex
number

N := Resλ=0 (Tr(P (λ, z))|z=0)

where (·)|z=0 denotes the regularized value in z at z = 0, which is a meromor-
phic function of λ. In other words, N is the coefficient of λ−1z0 in the Laurent
expansion of Tr(P (λ, z)) around (0, 0). Evidently, we can also take the residue
in λ before evaluating at z = 0; in that case, the output of the residue is a
meromorphic function in z.

On one hand, we claim that

Tr(P (λ, z)) = Tr(xz[A,Q−λ−1])

for all λ, z ∈ C. Since [xz, A]Q−λ−1 = xz[A,Q−λ−1] + [xzQ−λ−1, A], the claim
is equivalent to showing that the meromorphic function

(z, λ) 7→ Tr([xzQ−λ−1, A])

vanishes identically. Indeed, for <(λ) > dim(X),<(z) > 1 this vanishing holds
by the trace property, and unique continuation proves the claim in general.
Furthermore, xz[A,Q−λ−1] ∈ Ψ−∞,−zc (X, E) by (6) so in fact

(λ, z) 7→ Tr(xz[A,Q−λ−1]) = Tr(P (λ, z))

is analytic in λ ∈ C. In conclusion Tr(P (λ, z)) is regular in λ at λ = 0, so

N = 0. (7)
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On the other hand, P (λ, 0) = 0 so

U(λ, z) := z−1P (λ, z) ∈ Ψ−λ−1,−z−1
c (X, E)

is an analytic family. Set [log x,A] := (z−1[xz, A])|z=0 ∈ Ψ0,1
c (X, E). Then

U(λ, 0) = [log x,A]Q−λ−1 and

IM(x−1U(λ, 0)) = IM(x−1[log x,A])IM(Q−λ−1)

=

 i 0

0 −i

 IM(A2 +R + Pker(A2+R))
−λ+1

2

where IM(A2 + R + Pker(A2+R)) is given by (5) because IM(Pker(A2+R)) = 0.
Using (4) we get

Tr(P (λ, z))|z=0 = Resz=0 Tr(z−1P (λ, z))

=
1

2π

∫
R

Tr(IM(x−1(U(λ, 0)))dξ

=
i

2π

∫
R

(
Tr(ξ2 +D∗D + φ(ξ)PkerD)−

λ+1
2

−Tr(ξ2 +DD∗ + φ(ξ)PcokerD)−
λ+1

2

)
dξ (8)

For each fixed ξ we compute the trace using an orthonormal basis of L2(X, E±)
given by eigensections of D∗D, respectively DD∗. Clearly the contributions of
nonzero eigenvalues cancel in (8) so we are left with

Tr(P (λ, z))|z=0 = index(D)
∫
R

(ξ2 + φ(ξ))−
λ+1

2 dξ.

The reader will easily convince herself that the residue

Resλ=0

∫
R

(ξ2 + φ(ξ))−
λ+1

2 dξ

is independent of the Schwartz function φ and equals 2. Thus

N = Resλ=0 Tr(P (λ, z))|z=0

=
i

π
index(D).

Together with (7) this finishes the proof of Theorem 1.
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4 Cobordism invariance on manifolds with corners

Let X be a manifold with corners in the sense of Melrose [14]. LetM1(X) be
the set of boundary hyperfaces, possibly disconnected, and for H ∈ M1(X)
fix xH a defining function for H. We fix a product cusp metric gX on the
interior of X, which means iteratively that near each hyperface H, gX takes
the form

gX =
dx2

H

x4
H

+ gH

for a product cusp metric on H. The algebra of cusp differential operators
on X is simply the universal enveloping algebra of the Lie algebra of smooth
vector fields on X of finite length with respect to gX . The algebra Ψc(X) of
cusp pseudodifferential operators was described in [11] (see for instance [14]
for the general ideas behind such constructions). In this section the reader is
assumed to be familiar with [11]. Our main result is inspired from Theorem 1.

Theorem 4 Let X be a compact manifold with corners and

DH : H1
c (H, E+

H)→ L2
c(H, E−H)

a fully elliptic cusp differential operator of order 1 for each hyperface H of X.
Assume that there exists a hermitian vector bundle E → X with product metric
near the corners and A ∈ Ψ1

c (X, E) a (cusp) elliptic symmetric differential
operator, such that for each H ∈M1(X), E|H ∼= E+

H ⊕ E−H and

IH(A)(ξH) =

 ξH D∗H

DH −ξH

 . (9)

Then ∑
H∈M1(X)

index(DH) = 0.

Remark 5 The existence of A requires the following compatibility condition
for DH , DG near H ∩G:

IG(DH) = iξG +DHG

IH(DG) = iξH −DHG

where DHG is a symmetric invertible differential operator on E+
H over the cor-

ner H∩G, and E+
H , E−H , E+

G , E−G are identified over G∩H by elementary linear
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algebra. We say that A satisfying (9) is of Dirac type near the boundary, since
the spin Dirac operator on a manifold with corners satisfies this condition.

Proof of Theorem 4 For each H ∈ M1(X), the operator IH(A) is fully
elliptic (as a suspended cusp operator), however it is invertible if and only
if DH is invertible (this is seen easily by looking at the diagonal operator
IH(A)2). We are interested exactly in the case when DH has non-zero index,
thus typically A is not fully elliptic. Nevertheless, DH is Fredholm and its
kernel is made of smooth sections vanishing rapidly to the boundary faces of
H. Equivalently, the orthogonal projection PkerDH belongs to Ψ−∞,−∞c (H, E+

H⊕
E−H).

Let φ a cut-off function with support in [−ε, ε], φ ≥ 0, φ(0) = 1. Then (see
Lemma 2)

rH(ξH) =

φ(ξH)PkerDH

φ(ξH)PcokerDH



belongs to Ψ−∞,−∞c,sus (H, E+ ⊕ E−) and is non-negative. Clearly IH(A)2 + rH is
invertible; let RH ∈ Ψ−∞,0c (X) with IH(RH) = rH , IG(RH) = 0 for G 6= H
(possible since IG(rH) = 0) and R∗H = RH ≥ 0. Let R :=

∑
H∈M1(X) RH .

Then A2 + R ≥ 0 is fully elliptic; by elliptic regularity, Pker(A2+R) belongs to
Ψ−∞,−∞c (X). Finally, we set

Q := (A2 +R + Pker(A2+R))
1/2.

The crucial property of the invertible operator Q is that its complex powers,
like Q itself, commute with A modulo Ψ−∞,0c (X, E).

Look at the function

C
M1(X) × C 3 (z, λ) 7→ N(z, λ) := Tr(xz[A,Q−λ−1]),

where xz := x
zH1
H1
· . . . · xzHkHk

. Here we have fixed an order on the setM1(X) =
{H1, . . . , Hk}. By a general argument [11, Proposition 4.3], such a function can
have at most simple poles in each of the complex variables, occurring at certain
integers. But the family of operators involved is of order −∞ with respect to
the operator order (because of the commutativity modulo Ψ−∞,0c (X, E)). Thus
in fact there is no pole in λ at λ = 0, in particular

Resλ=0 N(z, λ)z=0 = 0.
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For <(zH) > −1,<(λ) > dim(X) the trace property allows us to write

N(z, λ) =
k∑
j=1

Tr(x
zH1
H1
· . . . [A, x

zHj
Hj

] . . . · xzHkHk
Q−λ−1)

=:
∑

H∈M1(X)

NH(z, λ).

By unique continuation this identity holds for all z, λ. Each term NH(z, λ) of
the right-hand side is a meromorphic function with at most simple poles in each
variable. In fact, NH(z, λ) is regular in zH at zH = 0, since [A, xzHH ] vanishes
when zH = 0. By [11, Proposition 4.5] (see also Proposition 3), NH(z, λ)|zH=0

is given by

1

2π

∫
R

Tr(x
zH1
H1
· . . . IH(x−1

H [log xH1 , A]) . . . · xzHkHk
IH(Q)−λ−1)dξH . (10)

By [11, Lemma 3.4],

IH(x−1
H [log xH , A]) =

1

i

∂IH(A)(ξH)

∂ξH
.

Now IH(Q) is a diagonal matrix, so the trace from formula (10) can be decom-
posed using the splitting of E|H . For the terms coming from E±, notice that

the corresponding coefficient in ∂IH(A)(ξH)
∂ξH

has the pleasant property of being
central, since it equals ±i. Let

x̂H
z :=xz/xzHH ,

T+
H (ξH) := (D∗HDH + ξ2

H + φ(ξ)PkerDH )−
1
2 ,

T−H (ξH) := (DHD
∗
H + ξ2

H + φ(ξ)PkerD∗H
)−

1
2 .

With this notation we get

NH(z, λ)|zH=0 =
i

2π

∫
R

Tr(x̂H
z(T+

H (ξH)−λ−1 − T−H (ξH)−λ−1))dξH . (11)

The trace functional and x̂H
z are independent of ξH , so we commute them out

of the integral. We use now the identity

DHT
+
H (ξH)w = T−H (ξH)wDH
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valid for every w ∈ C, to decompose

T−H (ξH)−λ−1 = DHT
+
H (ξH)−λ−1T+

H (0)−2D∗H + T+
H (ξH)−λ−1PkerD∗H

in its components acting on (kerD∗H)⊥, kerD∗H . Thus

∫
R

T−H (ξH)−λ−1dξH =DHTH(0)−λ−2D∗H

∫
R

(1 + ξ2)−λ−1dξ

+PkerD∗H

∫
R

(1 + φ(ξH))−
λ+1

2 dξH . (12)

Similarly

T+
H (ξH)−λ−1 = T+

H (ξH)−λ−1T+
H (0)−2D∗HDH + T+

H (ξH)−λ−1PkerD∗H

so

∫
R

T+
H (ξH)−λ−1dξH =TH(0)−λ−2D∗HDH

∫
R

(1 + ξ2)−λ−1dξ

+PkerDH

∫
R

(1 + φ(ξH))−
λ+1

2 dξH . (13)

We are interested in the residue Resλ=0 NH(z, λ)|z=0. Using (12), (13) we iso-
late in (11) the contribution of the projectors on the kernel and cokernel of
DH , and then evaluate at ẑH = 0. Note that these projectors belong to the
ideal Ψ−∞,−∞c (H) so their contribution is regular in ẑH . Now the trace of a
projector equals the dimension of its image, while the residue at λ = 0 of∫
R
(1 + φ(ξH))−

λ+1
2 dξH has been seen to be 2. Hence the contribution of the

projector terms equals i
π

index(DH).

The function λ 7→
∫
R
(1 + ξ2)−λ−1dξ is regular at λ = 0 with value π. We still

need to examine
∑
H∈M1(X) Resλ=0 LH(0, λ), where

LH(ẑH , λ) := Tr(x̂H
z[(D∗HDH + PkerDH )−

λ
2
−1D∗H , DH ]).

The residue in λ of LH at ẑH = 0 does not vanish directly, as one might hope
at this point. We write as before (using the trace property for large real parts
and then invoking unique continuation)

LH(ẑH , λ) =
k−1∑
l=1

Tr
(
x
zG1
G1

. . . [DH , x
zGl
Gl

] . . . x
zGk−1

Gk−1

14



·(D∗HDH + PkerDH )−
λ
2
−1D∗H

)
=:

∑
G∈M1(X)\{H}

LHG(ẑH , λ).

We see that LHG is regular in zG at zG = 0 since it is the trace of an analytic
family of operators which vanishes at zG = 0. Moreover, we can write down
the value LHG(ẑH , λ)|zG=0 using Proposition 3 (or rather [11, Proposition 4.5],
its analog for higher codimensions). By [11, Lemma 3.4] and from Remark 5,

IG(x−1
G [DH , log xG]) = i

∂IG(DH)(ξG)

∂ξG
= −1.

Now IG(PkerDH ) = 0 (by full ellipticity of DH) while IG(DH)(ξG) = iξG+DHG.
The term iξG contributes an odd integral in ξG to LHG|zG=0, so

LHG|zG=0 = − 1

2π

∫
R

Tr(x̂HG
zHG(D2

HG + ξ2
G)−

λ
2
−1DHG)dξG.

The argument is finished by Remark 5: indeed, modulo a conjugation, DHG =
−DGH so the above integrand appears again with opposite sign in LGH |zH=0,
once we replace the variables of integration ξG, ξH with a more neutral ξ.
In other words,

∑
H,G∈M1(X) LHG(ẑH , λ)|ẑH=0 = 0, which together with our

discussion on the projectors on the kernel of DH shows that∑
H∈M1(X)

Resλ=0 NH(z, λ)|z=0 =
∑

H∈M1(X)

index(DH).

The left-hand side is just Resλ=0 N(z, λ)|z=0, which was seen to vanish.

Recall from [11] that the index of DH can be written as the (regularized) inte-
gral on H of a density depending on the full symbol of DH , plus contributions
from each corner of H. In the case of differential operators of order 1 only the
hyperfaces of H have a non-zero contribution, which is to be thought of as
some sort of eta invariant. The eta invariant is sensitive to the orientation; in
our case this means that G ∩ H contributes to the index of DH and DG the
same quantity with opposite signs. Thus only the local index density detects
whether our family of operators {DH} is cobordant to 0 or not. If we work
with twisted Dirac operators, the local index density is given by a character-
istic form with compact support away from the boundary of H. The existence
of A as in Theorem 4 ensures that this characteristic form is the restriction of
a characteristic form from X to the hyperfaces. Thus we deduce Theorem 4
in this case by Stokes formula. An index formula on a manifold with corners
H was given in [5] for b-Dirac operators, in [13] for b-differential operators of
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order 1 and in [11] for cusp pseudodifferential operators. In this last paper the
formula as stated covers scalar operators, but in reality it applies to operators
acting on the sections of a vector bundle over H. This includes the case of
Dirac operators if, surprisingly, the boundary of H is not empty. Indeed, in
that case there exists a non-zero vector field on H which identifies, via the
principal symbol map, any two bundles (e.g., the positive and negative spinor
bundles) related by an elliptic operator.

5 A conjecture

We conjecture that Theorem 4 remains true for cusp pseudodifferential oper-
ators of order 1 of Dirac type near the boundary, in the sense of Remark 5.
In this generality, our proof breaks down for instance when integrating with
respect to ξH . For differential operators, we managed to show that the er-
rors are concentrated at codimension 2 corners, and cancel each other. This
seems not possible to do in the general case. One way to proceed would be
to consider cusp operators of order (1, 1), obtained by multiplying A with the
inverse of the boundary defining functions. Then a power of such an operator
of sufficiently small real part would be of trace class. Unfortunately, other
complications arise, for instance the meromorphic extension of such a trace
will have poles of higher order.
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