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Abstract. We show that in the analytic category, given a Riemannian metric g on a
hypersurface M ⊂ Z and a symmetric tensor W on M , the metric g can be locally extended
to a Riemannian Einstein metric on Z with second fundamental form W , provided that
g and W satisfy the constraints on M imposed by the contracted Gauss and Codazzi-
Mainardi equations. We use this fact to study the Cauchy problem for metrics with
parallel spinors in the real analytic category and give an affirmative answer to a question
raised in [15]. We also answer negatively the corresponding questions in the smooth
category.

1. Introduction

This paper attempts to solve two problems: the question of existence of Riemannian
Einstein metrics prescribed on a hypersurface together with their second fundamental
form, and the extension problem for spinors from a hypersurface to parallel spinors on
the total space. These problems are related: parallel spinors can only exist over Ricci-flat
manifolds.

The Cauchy problem for Einstein metrics. In the Lorentzian setting, Ricci-flat or
more generally Einstein metrics form the central objects of general relativity. Given a
space-like hypersurface, a Riemannian metric, and a symmetric tensor which plays the role
of the second fundamental form, there always exists a local extension to a Lorentzian Ein-
stein metric [29], [25], provided that the local conditions given by the Gauss and Codazzi-
Mainardi equations are satisfied. One crucial step in the proof is the reduction to an
evolution equation which is hyperbolic due to the signature of the metric. The correspond-
ing equations in the Riemannian setting are elliptic and no general local existence results
are available.

In the Riemannian setting, DeTurck [26] analyzed the related problem of finding a metric
with prescribed nonsingular Ricci tensor. The Ricci-flat case is at the opposite spectrum
of degeneracy, while the general Einstein case is reminiscent of DeTurck’s setting. Despite
some formal similarities with [26], the Cauchy problem for Einstein metrics studied here
is in essence quite different.
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If (M, g) is any hypersurface of an Einstein manifold (Z, gZ), then the Weingarten tensor
W is a symmetric endomorphism field on M which satisfies certain constraints (see (2.11)–
(2.12) below) due to the contracted Gauss and Codazzi-Mainardi equations. Conversely,
we ask the following question:

(Q1): If W is a symmetric endomorphism field on M which satisfies the
system (2.11)–(2.12), does there exist a isometric embedding of M into an
Einstein manifold (Zn+1, gZ) with Weingarten tensor W?

This is the Cauchy problem for Einstein metrics. The uniqueness part is known to have
a positive answer due to recent work by Biquard [17, Thm. 4] and Anderson-Herzlich [9].
We will show in Section 2 that the answer to the existence part of the Cauchy problem
is positive in the analytic setting (Theorem 2.1) and negative, in general, in the smooth
setting (Proposition 2.6).

Extension of generalized Killing spinors to parallel spinors. In order to introduce
the second problem, we need to recall some basic facts about restrictions of spin bundles
to hypersurfaces. If Z is a spin manifold, any oriented hypersurface M ⊂ Z inherits a spin
structure and it is well-known that the restriction to M of the complex spin bundle ΣZ if
n is even (resp. Σ+Z if n is odd) is canonically isomorphic to the complex spin bundle ΣM
(cf. [15]). If W denotes the Weingarten tensor of M , the spin covariant derivatives ∇Z on
ΣZ and ∇g on ΣM are related by ([15, Eq. (8.1)])

(∇Z
XΨ)|M = ∇g

X(Ψ|M)− 1
2
W (X)·(Ψ|M), ∀ X ∈ TM,(1.1)

for all spinors (resp. half-spinors for n odd) Ψ on Z. We thus see that if Ψ is a parallel
spinor on Z, its restriction ψ to any hypersurface M is a generalized Killing spinor on M ,
i.e. it satisfies the equation

∇g
Xψ = 1

2
W (X)·ψ, ∀ X ∈ TM,(1.2)

and the symmetric tensor W , called the stress-energy tensor of ψ, is just the Weingarten
tensor of the hypersurface M . It is natural to ask whether the converse holds:

(Q2): If ψ is a generalized Killing spinor on Mn, does there exist an iso-
metric embedding of M into a spin manifold (Zn+1, gZ) carrying a parallel
spinor Ψ whose restriction to M is ψ?

This question is the Cauchy problem for metrics with parallel spinors asked in [15].

The answer is known to be positive in several special cases: if the stress-energy tensor W
of ψ is the identity [12], if W is parallel [44] and if W is a Codazzi tensor [15]. Even earlier,
Friedrich [30] had worked out the 2-dimensional case n+ 1 = 2 + 1, which is also covered
by [15, Thm. 8.1] since on surfaces the stress-energy of a generalized Killing spinor is
automatically a Codazzi tensor. Some related embedding results were also obtained by
Kim [40], Lawn–Roth [41] and Morel [45]. The common feature of each of these cases is
that one can actually construct in an explicit way the ”ambient” metric gZ on the product
(−ε, ε)×M .
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Our aim is to show that the same is true more generally, under the sole additional
assumption that (M, g) and W are analytic.

Theorem 1.1. Let ψ be a spinor field on a analytic spin manifold (Mn, g), and W a
analytic field of endomorphisms of TM . Assume that ψ is a generalized Killing spinor
with respect to W , i.e. it satisfies (1.2). Then there exists a unique metric gZ of the form
gZ = dt2 + gt on a sufficiently small neighborhood Z of {0} ×M inside R ×M such that
(Z, gZ), endowed with the spin structure induced from M , carries a parallel spinor Ψ whose
restriction to M is ψ.

In particular, the solution gZ must be Ricci-flat. Einstein manifolds are analytic but
of course hypersurfaces can lose this structure so our hypothesis is restrictive. Note that
Einstein metrics with smooth initial data can be constructed for small time as constant
sectional curvature metrics when the second fundamental form is a Codazzi tensor, see [15,
Thm. 8.1]. In particular in dimensions 1 + 1 and 2 + 1 Theorem 1.1 remains valid in the
smooth category since the tensor W associated to a generalized Killing spinor is automat-
ically a Codazzi tensor in dimensions 1 and 2.

The situation changes drastically in higher dimensions for smooth (instead of analytic)
generalized Killing spinors. What we can still achieve then is to solve the Einstein equation
(and the parallel spinor equation) in Taylor series near the initial hypersurface. More
precisely, starting from a smooth hypersurface (M, g) with prescribed Weingarten tensorW
we prove that there exist formal Einstein metrics gZ such that W is the second fundamental
form at t = 0, i.e., we solve the Einstein equation modulo rapidly vanishing errors. Guided
by the analytic and the low dimensional (n = 1 or n = 2) cases, one could be tempted to
guess that actual germs of Einstein metrics do exist for any smooth initial data. However
this turns out to be false. Counterexamples were found very recently in some particular
cases in dimensions 3 and 7 by Bryant [20]. We give a general procedure to construct
counterexamples in all dimensions in Section 4.

Note that several particular instances of Theorem 1.1 have been proved in recent years,
based on the characterization of generalized Killing spinors in terms of exterior forms in low
dimensions. Indeed, in dimensions 5, 6 and 7, generalized Killing spinors are equivalent to
so-called hypo, half-flat and co-calibrated G2 structures respectively. In [39] Hitchin proved
that the cases 6 + 1 and 7 + 1 can be solved up to the local existence of a certain gradient
flow. Later on, Conti and Salamon [22], [23] treated the cases 5 + 1, 6 + 1 and 7 + 1 in the
analytical setting, cf. also [21] for further developments.

Related problems have been studied starting with the work of Fefferman-Graham [28]
concerning asymptotically hyperbolic Poincaré-Einstein metrics. The initial hypersurface
(M, g) is then at infinite distance from the manifold, the metric being conformal to a
smooth metric ḡ on a manifold with boundary

Z = (0, ε)×M, gZ = x−2ḡ

such that the conformal factor x is precisely the distance function to the boundary x = 0
with respect to ḡ. The metric is required to be Einstein of negative curvature up to an
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error term which vanishes with all derivatives at infinity. Such a metric exists when n
is odd, and its Taylor series at infinity is determined by the initial metric g and the
symmetric transverse traceless tensor appearing on position 2n, while in even dimensions
some logarithmic terms must be allowed.

Let us stress that existence results of Einstein metrics with prescribed first fundamental
form and Weingarten tensor clearly cannot hold globally in general (Example 2.8).

Counterexamples in the smooth setting. In a second part of the paper (Section 4)
we apply the above existence results from the analytic setting to prove nonexistence of
solutions for certain smooth initial data in any dimension at least 3.

The argument goes along the lines of works of the first author and his collaborators on
the Yamabe problem and the mass endomorphism. We consider the functional

F(φ) :=
〈D0φ, φ〉L2

‖D0φ‖2
L2n/(n+1)

defined on the C1 spinor fields φ on a compact connected Riemannian spin manifold (M, g0)
which are not in the kernel of the Dirac operator D0. If the infimum of the lowest positive
eigenvalue of the Dirac operator in the volume-normalized conformal class of g0 is strictly
lower than the corresponding eigenvalue for the standard sphere (Condition (4.5) below),
this functional attains its supremum in a spinor ψ0 of regularity C2,α. Moreover, ψ0 is
smooth outside its zero set.

To construct g0 satisfying Condition (4.5) we fix p ∈ M and we look at metrics on
M which are flat near p. If the topological index of M vanishes in KO−n(pt), then for
generic such metrics the associated Dirac operator is invertible. The mass endomorphism
at p is defined as the constant term in the asymptotic expansion of the Green kernel of D
near p. Again for generic metrics, this mass endomorphism is non-zero, which by a result
of [7] ensures the technical Condition (4.5) for generic metrics which are flat near p. By
construction this class of metrics contains metrics which are not conformally flat on some
open subset of M , i.e., whose Schouten tensor (in dimension 3), resp. Weyl curvature (in
higher dimensions) is nonzero on some open set. We assume g0 was chosen with these
properties.

We return now to the spinor ψ0 maximizing the functional F. The Euler-Lagrange
equation of F at ψ0 can be reinterpreted as follows: the Dirac operator with respect to the
conformal metric g := |ψ0|4/(n−1)g0 admits an eigenspinor of constant length 1, ψ := ψ0

|ψ0| .

If the dimension n equals 3, by algebraic reasons this spinor field must be a generalized
Killing spinor with stress-energy tensor W of constant trace.

The metric g is defined on the complement M∗ of the zero set of ψ0. This set is open,
connected and dense in M (Lemmata 4.6 and 4.9). Recall that g0 was chosen such that
its Schouten tensor vanishes identically on an open set of M and is nonzero on another
open set. Then the same remains true on M∗, and therefore on M∗ there exists no analytic
metric in the conformal class of g0. In particular, the metric g = |ψ0|4/(n−1)g0 cannot be
analytic.
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Assuming now that Theorem 2.1 continues to hold for smooth initial data, we could
apply it to (M∗, g,W ) to get an embedding in a Ricci-flat (hence analytic) Riemannian
manifold (Z, gZ), with second fundamental form W . Since the trace of W is constant by
construction, M would have constant mean curvature, which would imply that it were
analytic (Lemma. 4.16), contradicting the non-analyticity proved above.

The above construction actually yields counterexamples to the Cauchy problem for Ricci-
flat metrics in the smooth setting in any dimension n ≥ 3, by taking products with flat
spaces, see Lemma 4.28.
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2. The Cauchy problem for Einstein metrics

Let (Z, gZ) be an oriented Riemannian manifold of dimension n + 1 and let M be an
oriented hypersurface with induced Riemannian metric g := gZ|M . We start by fixing
some notations. Denote by ∇Z and ∇g the Levi-Civita covariant derivatives on (Z, gZ) and
(M, g), by ν the unit normal vector field along M compatible with the orientations, and
by W ∈ End(TM) the Weingarten tensor defined by

∇Z
Xν = −W (X), ∀ X ∈ TM.(2.1)

Using the normal geodesics issued from M , the metric on Z can be expressed in a neigh-
borhood Z0 of M as gZ = dt2 + gt, where t is the distance function to M and gt is a family
of Riemannian metrics on M with g0 = g (cf. [15]). The vector field ν extends to Z0 as
ν = ∂/∂t and (2.1) defines a symmetric endomorphism on Z0 which can be viewed as a
family Wt of endomorphisms of M , symmetric with respect to gt, and satisfying (cf. [15,
Equation (4.1)]):

gt(Wt(X), Y ) = −1
2
ġt(X, Y ), ∀ X, Y ∈ TM.(2.2)

By [15, Equations (4.5)–(4.8)], the Ricci tensor and the scalar curvature of Z satisfy for
every vectors X, Y ∈ TM

RicZ(ν, ν) = tr(W 2
t )− 1

2
trgt(g̈t),(2.3)

RicZ(ν,X) = dtr(Wt)(X) + δgt(W )(X),(2.4)

RicZ(X, Y ) = Ricgt(X, Y ) + 2gt(WtX,WtY ) + 1
2
tr(Wt)ġt(X, Y )− 1

2
g̈t(X, Y ),(2.5)

ScalZ = Scalgt + 3tr(W 2
t )− tr2(Wt)− trgt(g̈t).(2.6)



6 BERND AMMANN, ANDREI MOROIANU, AND SERGIU MOROIANU

Using (2.3) and (2.6) we get

(2.7) −2RicZ(ν, ν) + ScalZ = Scalgt + tr(W 2
t )− tr2(Wt),

where δg : End(TM) → T ∗M is the divergence operator defined in a local g-orthonormal
basis {ei} of TM by

(2.8) δg(A)(X) = −
n∑
i=1

g((∇g
ei
A)(ei), X).

A straightforward calculation yields

(2.9) δg(fA) = fδg(A)− A(∇gf)

for all functions f .

For later use, let us recall that the second Bianchi identity implies the following rela-
tion between the divergence of the Ricci tensor and the exterior derivative of the scalar
curvature:

(2.10) δg(Ricg) = −1
2
dScalg

for every Riemannian metric g (cf. [16, Prop. 1.94]).

Assume now that the metric gZ is Einstein with scalar curvature (n+1)λ, i.e. RicZ = λgZ.
Evaluating (2.4) and (2.7) at t = 0 yields

dtr(W ) + δgW = 0,(2.11)

Scalg + tr(W 2)− tr2(W ) = (n− 1)λ.(2.12)

If gt : End(TM) → T ∗M⊗T ∗M is the isomorphism defined by gt(A)(X, Y ) := gt(A(X), Y )
and g−1

t : T ∗M ⊗ T ∗M → End(TM) denotes its inverse, then taking (2.3) into account,
(2.5) reads

(2.13) g̈t = 2Ricgt + ġt(g
−1
t (ġt)·, ·)− tr(g−1

t (ġt))ġt − 2λgt,

which can also be written

(2.14) Ẇt = −g−1
t Ricgt +Wttr(Wt)− 2λId.

2.1. Solution of the Cauchy problem for analytic initial data. In this subsection
we prove an existence and unique continuation result for Einstein metrics starting from an
analytic metric and an analytic stress-energy tensor.

Theorem 2.1. Let (Mn, g) be an analytic Riemannian manifold and let W be an analytic
symmetric endomorphism field on M satisfying (2.11) and (2.12). Then for ε > 0, there
exists a unique germ near {0}×M of an Einstein metric gZ with scalar curvature (n+1)λ
of the form gZ = dt2 + gt on Z := R×M whose Weingarten tensor at t = 0 is W .
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Proof. In equation (2.13) the only term involving partial derivatives of the metric gt along
M is Ricgt , which is an analytic expression in gt and its first and second order deriva-
tives along M which does not involve any derivative with respect to t. Indeed, in local
coordinates xi on M , with the usual summation convention one has

Ricg(∂i, ∂j) = ∂kΓ
i
jk − ∂jΓ

k
ik + ΓkijΓ

l
kl − ΓkilΓ

l
kj, Γijk = 1

2
gil(∂kgjl + ∂jglk − ∂lgjk).

The second order Cauchy-Kowalewskaya theorem (see e.g. [24]) shows that for every
x ∈M there exists a neighborhood Vx 3 x and some εx > 0 such that the Cauchy problem
(2.13) with initial data {

g0 = g

ġ0 = −2W

has a unique analytic solution on (−εx, εx)×Vx. Let gZ = dt2 +gt be the metric defined on
(−εx, εx)×Vx by this solution. We claim that gZ is Einstein with scalar curvature (n+1)λ.

Consider the 1-parameter family of functions and 1-forms on M :

ft := 1
2
((n− 1)λ− Scalgt − tr(W 2

t ) + tr2(Wt)), ωt := dtr(Wt) + δgtWt,(2.15)

where Wt is defined as before by (2.2). Using (2.14) and the formula for the first variation
of the scalar curvature ([16, Thm. 1.174 (e)]) we get

dft
dt

=∆gt(tr(Wt)) + δgt(δgtWt)− gt(Ricgt , gt(Wt))− tr(Wt ◦ Ẇt) + tr(Wt)tr(Ẇt)

=δgtωt − gt(Ricgt , gt(Wt))− tr(Wt ◦ (−g−1
t Ricgt +Wttr(Wt)− λId)

+ tr(Wt)(−Scalgt + tr2(Wt)− nλ)

=δgtωt + tr(Wt)(−Scalgt + tr2(Wt)− tr(W 2
t ) + (n− 1)λ),

whence

(2.16)
dft
dt

= δgtωt + 2tr(Wt)ft.

(note that the symmetric tensor h in [16] is h = ġt = −2gt(Wt) in our notations).

In order to compute the time derivative of ωt we need to compute the variation of δgt . The
computation being rather lengthy, we postpone it to Lemma 2.4 below. Taking At = Wt

in that lemma yields

d(δgtWt)

dt
= −1

2
dtr(W 2

t ) +Wt(∇gt(tr(Wt)) + δgt(Ẇt).

Using (2.9), (2.10) and (2.14) we get

dωt
dt

= dtr(Ẇt) +
d(δgtWt)

dt

= d(−Scalgt + tr2(Wt))− 1
2
dtr(W 2

t ) +Wt(∇gt(tr(Wt)) + δgt(Ẇt)

= −dScalgt + dtr2(Wt)− 1
2
dtr(W 2

t ) +Wt(∇gt(tr(Wt)) + δgt(−g−1
t Ricgt +Wttr(Wt))

= −1
2
dScalgt − 1

2
dtr(W 2

t ) + dtr2(Wt) + tr(Wt)δ
gt(Wt),
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which implies

(2.17)
dωt
dt

= dft + tr(Wt)ωt.

Denoting by H the analytic function tr(Wt), Equations (2.16) and (2.17) show that the
pair (ft, ωt) satisfies the first order linear system{

∂tft = δgtωt + 2Hft
∂tωt = dft +Hωt.

(2.18)

Moreover, the constraints (2.11) and (2.12) show that (ft, ωt) vanishes at t = 0. By the
Cauchy-Kowalewskaya theorem, (ft, ωt) vanishes for all t.

Using (2.4), (2.5), (2.7) and (2.13), we see that the metric gZ := dt2 + gt constructed in
this way satisfies 

RicZ(ν,X) = 0 ∀X ⊥ ν

RicZ(X, Y ) = λgZ(X, Y ) ∀X, Y ⊥ ν

ScalZ − 2RicZ(ν, ν) = (n− 1)λ.

On the other hand we clearly have ScalZ = RicZ(ν, ν)+nλ and therefore RicZ = λgZ, thus
proving our claim.

To end the proof of the theorem, we note that the local metric gZ
x constructed above on

(−εx, εx)×Vx is unique, thus gZ
x and gZ

y coincide on the intersection (−ε, ε)× (Vx ∩Vy) for

ε := min{εx, εy}. Hence gZ is well-defined on a neighborhood of {0} ×M in R×M . �

As direct consequences of Theorem 2.1, we obtain the following embedding results for
analytic metrics and conformal structures:

Corollary 2.2. Let (Mn, g) be an analytic Riemannian manifold of constant scalar cur-
vature. Then for every λ ≤ Scalg

n−1
, M can be isometrically embedded as a totally umbilical

hypersurface in an Einstein manifold (Zn+1, gZ) with Ricci constant λ, i.e., RicZ = λgZ.

Proof. The tensor W := αid satisfies Equations (2.11), (2.12) for α =
√

Scalg

n(n−1)
− λ

n
�

A conformal structure c on a manifold M is called analytic if there exists an analytic
atlas on M and an analytic metric g in c (see Definition 4.12 below).

Corollary 2.3. Let (Mn, c) be a compact analytic conformal manifold of Yamabe invariant
Y (M, c). Then M can be conformally embedded as a totally umbilical hypersurface in an
Einstein manifold (Zn+1, gZ) with RicZ = λgZ for every λ with sign(λ) ≤ sign(Y (M, c)).

Proof. Let g0 be some analytic metric in c. Using the solution to the Yamabe problem for
compact manifolds we get a unit volume metric g = u4/(n−2)g0 ∈ c with constant scalar
curvature Scalg = Y (M, c). The function u satisfies a linear elliptic second order differential
equation (the conformal Laplacian) with analytic coefficients, so g is analytic. The result
now follows from the previous corollary, after a suitable constant rescaling of g. �
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We finally prove the variational formula for the co-differential needed in the proof of
Theorem 2.1.

Lemma 2.4. If gt is a family of Riemannian metrics on a manifold M and At is a family
of endomorphism fields of TM symmetric with respect to gt, then

(2.19)
d(δgtAt)

dt
(X) = gt(At(∇gttr(Wt)), X)− gt(∇gt

XWt, At) + (δgtȦt)(X),

where Wt is defined by (2.2).

Proof. Let volt denote the volume form of the metric gt. A straightforward computation
yields

(2.20)
d(volt)

dt
= −tr(Wt)volt.

In the computations below we will drop the subscripts t for an easier reading and use the
dot sign for differentiation with respect to t. From [16, Thm. 1.174 (a)] we get

(2.21) g(∇̇XY, Z) = g((∇ZW )X, Y )− g((∇XW )Y, Z)− g((∇YW )X,Z).

Differentiating with respect to t the formula valid for every compactly supported vector
field X on M

(2.22)

∫
M

(δgtAt)(X)volt =

∫
M

tr(At ◦ ∇gtX)volt

and using (2.20) yields∫
M

(δ̇A+ δȦ− (δA)tr(W ))(X)vol =

∫
M

tr(Ȧ ◦ ∇X + A ◦ ∇̇X − tr(W )A ◦ ∇X)vol.

Subtracting (2.22) applied to Ȧ from this last equation gives

(2.23)

∫
M

(δ̇A− (δA)tr(W ))(X)vol =

∫
M

tr(A ◦ ∇̇X − tr(W )A ◦ ∇X)vol.

From (2.21) and the fact that A and W are symmetric with respect to g we obtain

(2.24) tr(A ◦ ∇̇X) = −g(∇XW,A),

Using (2.24) and (2.22) again, but this time applied to −tr(W )A, (2.23) becomes∫
M

(δ̇A− (δA)tr(W ))(X)vol =

∫
M

−g(∇XW,A)− δ(tr(W )A)(X)vol,

so from (2.9) we get∫
M

(δ̇A)(X)vol =

∫
M

−g(∇XW,A) + g(A(∇tr(W )), X)vol,

Since this holds for every compactly supported vector field X, the integrand must vanish
identically, i.e.

(δ̇A)(X) = −g(∇XW,A) + g(A(∇tr(W )), X),

which is equivalent to (2.19). �
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2.2. The Cauchy problem for smooth initial data. It was proven recently by Biquard
[17, Thm. 4] and Anderson-Herzlich [9] that even in the C∞ setting, given a hypersurface
M ⊂ Z, a Riemannian metric on M and a field of symmetric endomorphisms W , there
exists (up to diffeomorphisms preserving the hypersurface) at most one Einstein metric
on Z with Weingarten tensor W along M .

The small-time existence however is known to fail in general for elliptic (even linear)
Cauchy problems with C∞ initial data. In the particular case of the Cauchy problem
for Einstein metrics, we first remark that in small dimensions the short-time existence is
always guaranteed by the construction of an explicit solution in the smooth (and actually
even C3) setting.

Indeed, in dimension 1 we can embed any curve (M, g) in a constant curvature surface
with prescribed extrinsic curvature function (identified with the scalar Weigarten tensor)
W . In this case, the constraint equations are empty, and the metric is explicitly given by
[15, Theorem 7.2].

Similarly, in dimension n = 2, the C3 initial value problem can always be solved for
small time:

Proposition 2.5. Let M be a surface with C3 Riemannian metric g, and let W be a C3

symmetric field of endomorphisms on M satisfying (2.11) and (2.12) for some λ ∈ R.
Then there exists a metric gZ of constant sectional curvature κ = λ/2 on a neighborhood
of {0} ×M inside Z := R ×M of the form gZ = dt2 + gt, whose Weingarten tensor at
t = 0 is W .

Proof. Direct application of [15, Theorem 7.2]. Namely, in dimension 2 the hypotheses
(2.11), (2.12) are equivalent to [15, Eq. (7.3)] resp. [15, Eq. (7.4)] with κ = λ/2. It follows,
at least in the smooth case, that gt can be constructed explicitly in terms of g and W
such that gZ has constant sectional curvature κ. It remains to note that the proof of [15,
Theorem 7.2] remains valid when g and W are of class C3. �

In higher dimensions n ≥ 3 the situation changes dramatically. In some particular cases
one can show that the analiticity of the initial data is not only sufficient but also necessary:

Proposition 2.6. A Riemannian manifold (Mn, g) of constant scalar curvature can be
isometrically embedded in an Einstein manifold (Zn+1, gZ) with Weingarten tensor W =
αid along M if and only if g is analytic.

Proof. The tensor W satisfies Equations (2.11), (2.12) for Scalg = (n − 1)(λ + nα). The
”if” part thus follows from Theorem 2.1. Conversely, if such an embedding exists, then
(M, g) is a constant mean curvature hypersurface in (Z, gZ), so g has to be analytic by
Lemma 4.16 below. �

Note that a metric with constant scalar curvature is automatically analytic in dimen-
sions 1 and 2. Examples of non-analytic constant scalar curvature metrics in dimensions
at least 3 can be easily constructed: perturb the round metric on Sn to a metric g which
is non-conformally flat on some open set and conformally flat on some other open set and
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choose a constant scalar curvature metric in the conformal class of g using the solution of
the Yamabe problem.

2.3. Formal solution in the smooth case. The previous arguments show that without
the hypothesis that g and W are analytic, the nonlinear PDE system (2.13) has no solution
in general. However, it is rather evident from (2.13) that the full Taylor series of gZ is
recursively determined by its first two coefficients, which are g and W . Let Ċ∞(Z) denote
the space of tensors vanishing at M together with all their derivatives. By the Borel
lemma (see e.g. [31]), there exists a metric gZ such that its Ricci tensor satisfies the
Einstein equation in the tangential directions modulo Ċ∞(Z). Then the system (2.18)
remains valid modulo Ċ∞(Z) and we can easily show recursively that the right-hand sides
of Equations (2.4) and (2.7) vanish modulo Ċ∞(Z). Thus gZ is Einstein modulo Ċ∞(Z).

Proposition 2.7. Let (Mn, g) be a smooth Riemannian manifold and let W be a smooth
symmetric field of endomorphisms of TM satisfying (2.11) and (2.12). Then there exists
on Z := (−ε, ε) ×M a metric gZ of the form gZ = dt2 + gt whose Weingarten tensor at
t = 0 is W , and such that

RicZ − λgZ ∈ Ċ∞(Z).

Moreover, gZ is unique up to Ċ∞(Z).

2.4. A counterexample to long-time existence. The preceding case of dimension 2+1
hints that in general the Einstein metric gZ cannot be extended on a complete manifold
containingM as a hypersurface. This sort of question is rather different from the arguments
of this paper so we will only give an counterexample in dimension 1 + 1 where global
existence for the solution to the Cauchy problem fails. We restrict ourselves to the case of
Ricci-flat metrics, which means vanishing Gaussian curvature in this dimension.

Example 2.8. Let Z be the incomplete flat surface obtained from C∗ (or from the comple-
ment of a small disk in C) by the following cut-and-paste procedure: cut along the positive
real axis, then glue again after a translation of length l > 0. More precisely, x+ is identified
with (x + l)− for all x > ε. The resulting surface Z is clearly smooth and has a smooth
flat metric including along the gluing locus. The unit circle in R2 gives rise to a curve
in Z of curvature 1 and length 2π with different endpoints 1− and (1 + l)−. In a complete
flat surface, a curve of curvature 1 and length 2π must be closed (in fact smooth, since its
lift to the universal cover must be a circle). Therefore, the surface Z cannot be embedded
in any complete flat surface. In particular, for any closed curve in Z circling around the
singular locus, the interior cannot be continued to a compact flat surface with boundary.

3. Spinors on Ricci-flat manifolds

We keep the notations from the previous section. Our starting point is the following
corollary of Theorem 2.1:

Corollary 3.1. Assume that (Mn, g) is an analytic spin manifold carrying a non-trivial
generalized Killing spinor ψ with analytic stress-energy tensor W . Then in a neighborhood
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of {0}×M in Z := R×M there exists a unique Ricci-flat metric gZ of the form gZ = dt2+gt
whose Weingarten tensor at t = 0 is W .

Proof. We just need to check that the constraints (2.11), (2.12) are a consequence of (1.2).
In order to simplify the computations, we will drop the reference to the metric g and
denote respectively by ∇, R, Ric and Scal the Levi-Civita covariant derivative, curvature
tensor, Ricci tensor and scalar curvature of (M, g). As usual, {ei} will denote a local
g-orthonormal basis of TM .

We will use the following two classical formulas in Clifford calculus. The first one is the
fact that the Clifford contraction of a symmetric tensor A only depends on its trace:

(3.1)
n∑
i=1

ei·A(ei) = −tr(A).

The second formula expresses the Clifford contraction of the spin curvature in terms of the
Ricci tensor ([11], p. 16):

n∑
i=1

ei·RX,ei
ψ = −1

2
Ric(X)·ψ, ∀X ∈ TM, ∀ψ ∈ ΣM.(3.2)

Let now ψ be a non-trivial generalized Killing spinor satisfying (1.2). Being parallel with
respect to a modified connection on ΣM , ψ is nowhere vanishing (and actually of constant
norm).

Taking a further covariant derivative in (1.2) and skew-symmetrizing yields

RX,Y ψ = 1
4
(W (Y )·W (X)−W (X)·W (Y )) ·ψ + 1

2
((∇XW )(Y )− (∇YW )(X)) ·ψ

for all X, Y ∈ TM . In this formula we set Y = ei, take the Clifford product with ei and
sum over i. From (3.1) and (3.2) we get

Ric(X)·ψ =− 1
2

n∑
i=1

ei· (W (ei)·W (X)−W (X)·W (ei)) ·ψ

−
n∑
i=1

ei· ((∇XW )(ei)− (∇ei
W )(X)) ·ψ

=1
2
tr(W )W (X)·ψ + 1

2

n∑
i=1

(
−W (X)·ei − 2g(W (X), ei)

)
·W (ei)·ψ

+∇X(tr(W ))ψ +
n∑
i=1

ei·(∇ei
W )(X)·ψ.

whence

(3.3) Ric(X)·ψ = tr(W )W (X)·ψ −W 2(X)·ψ +X(tr(W ))ψ +
n∑
i=1

ei·(∇ei
W )(X)·ψ.
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We set X = ej in (3.3), take the Clifford product with ej and sum over j. Using (3.1)
again we obtain

−Scalψ = −tr2(W )ψ + tr(W 2)ψ +∇(tr(W ))·ψ +
n∑

i,j=1

ej·ei·(∇ei
W )(ej)·ψ

= −tr2(W )ψ + tr(W 2)ψ + dtr(W )·ψ +
n∑

i,j=1

(−ei·ej − 2δij)·(∇ei
W )(ej)·ψ

= −tr2(W )ψ + tr(W 2)ψ + 2dtr(W )·ψ + 2δW ·ψ,

which implies simultaneously (2.11) and (2.12) (indeed, if fψ = X·ψ for some real f and
vector X, then −|X|2ψ = X·X·ψ = X·(fψ) = f 2ψ, so both f and X vanish). �

Theorem 3.2. Let (Z, gZ) be a Ricci-flat spin manifold with Levi-Civita connection ∇Z

and let M ⊂ Z be any oriented analytic hypersurface. Assume there exists some spinor
ψ ∈ C∞(ΣZ|M) which is parallel along M :

∇Z
Xψ = 0, ∀X ∈ TM ⊂ TZ.(3.4)

Assume moreover that the application π1(M) → π1(Z) induced by the inclusion is onto.
Then there exists a parallel spinor Ψ ∈ C∞(ΣZ) such that Ψ|M = ψ.

Proof. Any Ricci-flat manifold is analytic, cf. [27], [16], thus the analyticity of M makes
sense. The proof is split in two parts.

Local extension. Let ν denote the unit normal vector field along M . Every x ∈ M has
an open neighborhood V in M such that the exponential map (−ε, ε) × V → Z, (t, y) 7→
expy(tν) is well-defined for some ε > 0. Its differential at (0, x) being the identity, one can
assume, by shrinking V and choosing a smaller ε if necessary, that it maps (−ε, ε) × V
diffeomorphically onto some open neighborhood U of x in Z. We extend the spinor ψ to a
spinor Ψ on U by parallel transport along the normal geodesics expy(tν) for every fixed y.
It remains to prove that Ψ is parallel on U in horizontal directions.

Let {ei} be a local orthonormal basis along M . We extend it on U by parallel transport
along the normal geodesics, and notice that {ei, ν} is a local orthonormal basis on U . More
generally, every vector field X along V gives rise to a unique horizontal vector field, also
denoted X, on U satisfying ∇νX = 0. For every such vector field we get

(3.5) ∇Z
ν (∇Z

XΨ) = RZ(ν,X)Ψ +∇Z
[ν,X]Ψ = RZ(ν,X)Ψ +∇Z

W (X)Ψ.

Since Z is Ricci-flat, (3.2) applied to the local orthonormal basis {ei, ν} of Z yields

(3.6) 0 = 1
2
RicZ(X)·Ψ =

n∑
i=1

ei·RZ(ei, X)Ψ + ν·RZ(ν,X)Ψ .
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We take the Clifford product with ν in this relation, differentiate again with respect to ν
and use the second Bianchi identity to obtain:

∇Z
ν (R

Z(ν,X)Ψ) =∇Z
ν

(
ν·

n∑
i=1

ei·RZ(ei, X)Ψ

)
= ν·

n∑
i=1

ei·(∇Z
νR

Z)(ei, X)Ψ

=ν·
n∑
i=1

ei·
(
(∇Z

ei
RZ)(ν,X)Ψ + (∇Z

XR
Z)(ei, ν)Ψ

)
,

whence

∇Z
ν (R

Z(ν,X)Ψ) = ν·
n∑
i=1

ei·
(
∇Z
ei
(RZ(ν,X)Ψ) +RZ(W (ei), X)Ψ−RZ(ν,∇Z

ei
X)Ψ

−RZ(ν,X)∇Z
ei
Ψ +∇Z

X(RZ(ei, ν)Ψ)−RZ(∇Z
Xei, ν)Ψ

+RZ(ei,W (X))Ψ−RZ(ei, ν)∇Z
XΨ
)
.

(3.7)

Let ν⊥ denote the distribution orthogonal to ν on U and consider the sections A,B ∈
C∞((ν⊥)∗ ⊗ ΣU) and C ∈ C∞(Λ2(ν⊥)∗ ⊗ ΣU) defined for all X, Y ∈ ν⊥ by

A(X) := ∇Z
XΨ, B(X) := RZ(ν,X)Ψ, C(X, Y ) := RZ(X, Y )Ψ.

We have noted that the metric gZ is analytic since it is Ricci-flat. From the assumption
that M is analytic and that ψ is parallel along M it follows that Ψ, and thus the tensors
A, B and C, are analytic.

Equations (3.5) and (3.7) read in our new notation:

(3.8) (∇Z
νA)(X) = B(X) + A(W (X)),

and

(∇Z
νB)(X) = ν·

n∑
i=1

ei·
(
(∇Z

ei
B)(X) + C(W (ei), X)−RZ(ν,X)A(ei)

− (∇Z
XB)(ei) + C(ei,W (X))−RZ(ei, ν)A(X)

)
.

(3.9)

Moreover, the second Bianchi identity yields

(∇Z
νC)(X, Y ) =(∇Z

νR
Z)(X, Y )Ψ = (∇Z

XR
Z)(ν, Y )Ψ + (∇Z

YR
Z)(X, ν)Ψ

=∇Z
X(RZ(ν, Y )Ψ)−RZ(∇Z

Xν, Y )Ψ−RZ(ν,∇Z
XY )Ψ−RZ(ν, Y )∇Z

XΨ

−∇Z
Y (RZ(ν,X)Ψ) +RZ(∇Z

Y ν,X)Ψ +RZ(ν,∇Z
YX)Ψ +RZ(ν,X)∇Z

Y Ψ

=(∇Z
XB)(Y ) + C(W (X), Y )−RZ(ν, Y )∇Z

XΨ

− (∇Z
YB)(X) + C(X,W (Y )) +RZ(ν,X)∇Z

Y Ψ,

thus showing that

(∇Z
νC)(X, Y ) =(∇Z

XB)(Y ) + C(W (X), Y )−RZ(ν, Y )(A(X))

− (∇Z
YB)(X) + C(X,W (Y )) +RZ(ν,X)(A(Y )).

(3.10)
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The hypothesis (3.4) is equivalent to A = 0 for t = 0. Differentiating this again in the
direction of M and skew-symmetrizing yields C = 0 for t = 0. Finally, (3.6) shows that
B = 0 for t = 0. We thus see that the section S := (A,B,C) vanishes on along the
hypersurface {0} × V of U .

The system (3.9)–(3.10) is a linear PDE for S and the hypersurfaces t = constant
are clearly non-characteristic. The Cauchy-Kowalewskaya theorem shows that S vanishes
everywhere on U . In particular, A = 0 on U , thus proving our claim.

Global extension. Now we prove that there exists a parallel spinor Ψ ∈ C∞(ΣZ) such that
Ψ|M = ψ. Take any x ∈ M and an open neighborhood U like in Theorem 3.2 on which a

parallel spinor Ψ extending ψ is defined. The spin holonomy group H̃ol(U, x) thus preserves
Ψx. Since any Ricci-flat metric is analytic (cf. [16, p. 145]), the restricted spin holonomy

group H̃ol0(Z, x) is equal to H̃ol0(U, x) for every x ∈ Z and for every open neighborhood

U of x. By the local extension result proved above, H̃ol0(U, x) acts trivially on Ψx, thus

showing that Ψx can be extended (by parallel transport along every curve in Z̃ starting

from x) to a parallel spinor Ψ̃ on the universal cover Z̃ of Z. The deck transformation
group acts trivially on Ψ̃ since every element in π1(Z, x) can be represented by a curve in
M (here we use the surjectivity hypothesis) and Ψ was assumed to be parallel along M .
Thus Ψ̃ descends to Z as a parallel spinor. �

This result, together with Corollary 3.1 yields the solution to the analytic Cauchy prob-
lem for parallel spinors stated in Theorem 1.1.

4. Construction of generalized Killing spinors

The goal of this section is to describe a method which yields generalized Killing spinors
on many 3-dimensional spin Riemannian manifolds. We will obtain both analytic and non-
analytic generalized Killing spinors. The analytic ones will yield examples for applying
Theorem 1.1. The non-analytic ones only yield a formal Taylor series in the sense of
Proposition 2.7, and we will show that in general this solution is not the Taylor series of
a Ricci-flat metric. Thus we see that the analyticity assumption in Theorem 1.1 cannot
be removed. The method consists in combining techniques developed elsewhere. We state
below the relevant results and briefly explain the underlying ideas.

Note that further examples of manifolds with generalized Killing spinors which can not
be embedded as hypersurfaces in manifolds with parallel spinors were recently constructed
(although not explicitly stated), by Bryant [20] in the context of K-structures satisfying
the so-called weaker torsion condition.

4.1. Minimizing the first Dirac eigenvalue in a conformal class. In [2] and [3] the
following problem was studied: Suppose M is an n-dimensional compact spin manifold,
n ≥ 2 endowed with a fixed spin structure. For any metric g on M let Dg be the Dirac
operator on M . The spectrum of Dg is discrete, and all eigenvalues have finite multiplicity.
The first positive eigenvalue of Dg will be denoted by λ+

1 (g). In general, the dimension
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of the kernel of Dg depends on g, and on many manifolds (in particular on all compact
spin manifolds of dimension n ≡ 0, 1, 3, 7 mod 8, n ≥ 3) metrics gi are known such that
gi → g in the C∞-topology, dim kerDgi < dim kerDg and λ+

1 (gi) → 0. Thus g 7→ λ+
1 (g) is

not continuous when defined on the set of all metrics.

We now fix a conformal class [g0] on M , and only consider metrics g ∈ [g0]. Then the
above properties change essentially. Due to the conformal behavior of the Dirac opera-
tor, the dimension of the kernel of Dg is constant on [g0], and furthermore [g0] → R+,
g 7→ λ+

1 (g) is continuous in the C1-topology. For any positive real number α one has
λ+

1 (α2g) = α−1λ+
1 (g). The normalized first positive eigenvalue function [g0] → (0,∞),

g 7→ λ+
1 (g)vol(M, g)1/n, is thus scaling invariant and continuous in the C1-topology. It is

unbounded from above, see [8], and bounded from below by a positive constant, see [43]
in the case kerDg0 = 0 and [1, 3] for the general case. We introduce

(4.1) λ+
min(M, [g0]) := inf

g∈[g0]
λ+

1 (g)vol(M, g)1/n > 0.

If there is a metric of positive scalar curvature in [g0], then the Yamabe constant

(4.2) Y (M, [g0]) := inf
g∈[g0]

vol(M, g)(2−n)/n

∫
M

Scalg dvg

is positive, and Hijazi’s inequality [35, 36] then yields

(4.3) λ+
min(M, [g0])

2 ≥ n
4(n−1)

Y (M, [g0]).

Example 4.1. If (M, g0) = Sn is the sphere Sn with the conformal structure given by
the standard metric σn of volume ωn, then Obata’s theorem [48, Prop. 6.2] implies that

the infimum in (4.2) is attained in g = σ, and thus Y (Sn) = n(n − 1)ω
2/n
n . We obtain

λ+
min(Sn) ≥ n

2
ω

1/n
n . On the other hand (M,σ) carries a Killing spinor to the Killing constant

−1/2, thus λ+
1 (σ) = n

2
. As a consequence, equality is attained in (4.3), the infimum in (4.1)

is attained in g = σ and λ+
min(Sn) = n

2
ω

1/n
n .

Now let (M, g0) be again arbitrary. By “blowing up a sphere” one can show that
λ+

min(M, [g0]) ≤ λ+
min(Sn), see [1, 6]. This inequality should be seen as a spinorial analogue

of Aubin’s inequality between the Yamabe constants Y (M, [g0]) ≤ Y (Sn) = n(n− 1)ω
2/n
n .

For the Yamabe constants one even gets a stronger statement: If (M, g0) is not conformal
to the round sphere, then

(4.4) Y (M, [g0]) < Y (Sn).

This inequality leads to a solution of the Yamabe problem, see [42]. It was proved in some
cases by Aubin [10]. Later Schoen and Yau [50, 51] could solve the remaining cases, using
the positive mass theorem.

It is thus natural to ask the following question which is still open in general.
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Question 4.2. Under the assumption that (M, [g0]) is not conformal to (Sn), n ≥ 2, does
the inequality

(4.5) λ+
min(M, [g0]) < λ+

min(S
n).

always hold?

We will explain below that many Riemannian manifolds, in particular “generic” metrics
on compact spin 3-dimensional manifolds, do satisfy (4.5). It is interesting to notice that
using (4.3) the inequality (4.5) would imply (4.4) without referring to the positive mass
theorem.

In analogy to the Yamabe problem which consists in finding a smooth metric attaining
the infimum in (4.2), one can try to find a metric attaining the infimum in (4.1). If this
infimum is achieved in a metric g ∈ [g0], then the corresponding Euler-Lagrange equation
provides the existence of an eigenspinor ψ of constant length of eigenvalue λ+

1 (g0). In
dimension n = 3, such constant-length eigenspinors are generalized Killing spinors, see
Subsection 4.3, and – as said above – it is the goal of this section to construct generalized
Killing spinors.

Unfortunately, it is unclear whether the infimum in (4.1) can be achieved by a (smooth)
metric. However, if we assume that (4.5) holds, and if we allow degenerations in the confor-
mal factor, the infimum is attained. To explain the nature of these possible degenerations
precisely, we introduce the following. A generalized metric in the conformal class [g0] is a
metric of the form f 2g0 where f is continuous on M and smooth on M∗ := M \ f−1(0).
Moreover, we only admit such generalized metrics for which M∗ is dense in M . The set of
all such admissible generalized metric associated to the conformal class [g0] will be denoted

by [g0].

Remark 4.3. The above definitions are slight more restrictive than in [2], but sufficient for
the purpose of the present article and didactically simpler. For example, the condition
that M∗ is supposed to be dense, guarantees that [g0] ∩ [g1] = ∅ if g0 and g1 are not
conformal.

The functions λ1
+, vol : [g0] → R+ extend continuously to functions [g0] → R+, and the

infimum in (4.1) does not change when we replace [g0] by [g0]. We then have

Theorem 4.4 ([2, Theorem 1.1(B)]). Let (M, g0) be a compact Riemannian spin manifold

of dimension n ≥ 2. There exists a generalized metric g ∈ [g0] at which the infimum in (4.1)
is attained. On (M∗, g) there exists a spinor ψ of constant length with Dψ = λ1

+(g)ψ.

The key idea in the proof of this theorem is to reformulate the problem of minimiz-
ing (4.1) as a variational problem. For this we define

Fq(φ) =

∫
〈Dg0φ, φ〉g0 dvolg0

‖Dg0φ‖2
Lq(g0)

, µg0q := sup Fg0
q (φ),(4.6)
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where the supremum runs over all spinors φ of regularity C1 which are not in the kernel
of Dg0 . It was shown in [2, Prop. 2.3] that for q = 2n

n+1
we have

µg02n/(n+1) = 1
λ+
min(M,[g0])

.

Furthermore the infimum in (4.1) is attained in a smooth metric g ∈ [g0] if and only if there
is a nowhere vanishing spinor ψ0 which attains the supremum in (4.6). If the infimum is
attained in g and the supremum in ψ0, then both are related via

(4.7) g = |Dg0ψ0|4/(n+1)g0.

Proposition 4.5 ([2, Theorem 1.1 (A)]). Under the condition (4.5) the supremum is
attained in a spinor ψ0 of regularity C2,α for small α > 0.

The strategy of proof is similar to the classical approach to the Yamabe problem as
e.g. in [42]. A maximizing sequence for the functional will in general not converge, due to
conformal invariance. One then defines “perturbed” or “regularized” modifications of this
functional such that their maximizing sequences converge to a maximizer. In a final step
one shows, assuming (4.5), that the maximizers of the perturbed functionals converge to
a maximizer of the unperturbed functional.

Let us now continue with the sketch of proof of Theorem 4.4. From Prop. 4.5 we know
that the supremum of F is attained at some spinor ψ0 which satisfies an Euler-Lagrange
equation. By suitably rescaling ψ0 and by possibly adding an element of kerDg0 to ψ0, the
Euler-Lagrange equation reads

Dg0ψ0 = λ+
min(M, [g0])|ψ0|2/(n−1)ψ0, ‖ψ0‖L2n/(n−1)(g0) = 1.

However, it is unclear whether Dg0ψ0 (or equivalently ψ0) has zeros or not, and therefore
if the metric g defined in (4.7) makes sense.

We will show in the following subsection that the zero set is nowhere dense, in other
words its complement is dense. Then g := |Dg0ψ0|4/(n+1)g0 defines a generalized metric,
and by naturally extending the definition of λ+

1 to generalized metrics, we see that the
infimum in (4.1) is then attained in this generalized metric.

Consistently with the above we set M∗ := M \ ψ−1
0 (0). From the standard formula

for the behavior of the Dirac operator under conformal change (see e.g. [37]) the spinor
ψ := ψ0

|ψ0| on M∗ satisfies

Dgψ = λ+
min(M, [g0])ψ, |ψ| ≡ 1.

This finishes the proof for Theorem 4.4, up to the density of M∗ explained below.

4.2. The zero set of the maximizing spinor. The goal of this subsection is to study
the zero set of the maximizing spinor ψ0 from the previous section.

Lemma 4.6. Let (M, g0) be a connected Riemannian spin manifold. Assume that a spinor
φ of regularity C1 satisfies

(4.8) Dg0φ = c|φ|rφ
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where r ≥ 0 and c ∈ R. If φ vanishes on a non-empty open set, then it vanishes on M .

Applying the lemma to φ := ψ0 6≡ 0 and r := 2/(n − 1) one obtains the density of M∗

in M .

Proof. The lemma is a special case of the weak unique continuation principle [18]. More
exactly we apply [18, Theorem 2.7] with D/A = Dg0 and PA(φ, x) := −|φ(x)|r. As φ
is locally bounded, we see that x 7→ PA(φ, x) is locally bounded as well. Thus PA is
an admissible perturbation in the sense of [18], and [18, Theorem 2.7] then yields the
weak unique continuation principle for this equation which is exactly the statement of the
lemma. �

We propose two conjectures around the above lemma.

The first conjecture relies on the following remark: if r is an even integer, then |φ|rφ
is a smooth function of φ, so the Main Theorem in [14] shows that the zero set of φ is
a countably (n − 2)-rectifiable set, and thus of Hausdorff dimension at most n − 2. In
contrast, if r is not an even integer, then Bär’s method of proof does not apply, but the
result seems likely to remain true.

Conjecture 4.7. The zero set of any solution of (4.8) is of Hausdorff dimension at most
n− 2.

The second conjecture is motivated from the following, cf. [34]: for generic metrics on
a compact 2- or 3-dimensional spin manifold all eigenspinors, i.e. all non-trivial solutions
of (4.8) with r = 0, do not vanish anywhere; in other words they are everywhere non-zero.

We conjecture that the same fact is true for r := 2
(n−1)

. This constant r is special, as

then (4.8) and thus the zero set of φ is conformally invariant.

Conjecture 4.8. Let r := 2
(n−1)

, and let M be connected. For generic conformal classes on

M , any solution of (4.8) with φ 6≡ 0 is everywhere non-zero.

If Conjecture 4.7 holds and if M is connected, then the manifold M \φ−1(0) is connected.
Fortunately, for the maximizing spinor ψ0 the following fact can be proven independently
of the above conjectures:

Lemma 4.9. Assume M to be connected. Let ψ0 be the maximizing spinor provided by
Proposition 4.5. Then M∗ = M \ ψ−1

0 (0) is connected.

Proof. Assume that there exists a partition M∗ = Ω1 t Ω2 into non-empty disjoint open
sets. We define the continuous spinor ψ1 by ψ1|Ω1 := ψ0|Ω1 and ψ1|M\Ω1 :≡ 0. Then
‖ψ1‖L2n/(n−1) < ‖ψ0‖L2n/(n−1) . As a first step we prove by contradiction that ψ1 is C1, or
equivalently that ∇ψ0 = 0 on ∂Ω1.

Suppose that there existed x ∈ ∂Ω1 ∩ ∂Ω2 such that ∇ψ0 is non-zero in x. Because
of (Dφ)(x) = 0 the map TxM → ΣxM , X 7→ ∇Xψ0 has rank at least 2. The implicit
function theorem then implies that there is a connected open neighborhood U of x and
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a submanifold S ⊂ U of codimension 2 such that ψ−1
0 (0) ∩ U ⊂ S. This implies that

U \ S ⊂ Ω1. One easily concludes that S ∩ Ω2 = ∅, thus we obtain the contradiction
x 6∈ ∂Ω2.

We have proven that ψ1 is C1, and thus ψ1 is a solution to

Dg0ψ1 = λ+
min(M, [g0])|ψ1|2/(n−1)ψ1, 0 < ‖ψ1‖L2n/(n−1)(g0) < 1.

A straightforward calculation then yields

F2n/(n+1)(ψ1) >
1

λ+
min(M,[g0])

= µg02n/(n+1)

which contradicts the definition of µg02n/(n+1). �

4.3. From eigenspinors of constant length to generalized Killing spinors. In this
section we specialize to the case n = 3. We will see that in this dimension any eigenspinor
of constant length is a generalized Killing spinor.

Proposition 4.10. Let ψ be a solution of Dψ = Hψ, H ∈ C∞(M), of constant length 1,
on a manifold of dimension n = 3. Then ψ is a generalized Killing spinor.

This proposition is the natural generalization of a result in [30] from n = 2 to n = 3.
We will include a simple proof here.

Proof. Let g be the metric on M and 〈·, ·〉 the real part of the Hermitian metric on ΣM .
We define A ∈ End(TM) by

g(A(X), Y ) := 〈∇Xψ, Y · ψ〉
for all X, Y ∈ TM . Note that for any point p ∈M and any vector X ∈ TpM we have

〈∇Xψ, ψ〉 = 1
2
∂X〈ψ, ψ〉 = 0,

in other words ∇Xψ ∈ ψ⊥ = {φ ∈ ΣpM | 〈φ, ψ〉 = 0}. Let e1, e2, e3 be an orthonormal basis
of TpM . By possibly changing the order of this basis, we can achieve e1 · e2 · e3 = 1 in the
sense of endomorphisms of ΣM . The spinors e1 · ψ, e2 · ψ and e3 · ψ form an orthonormal
system of ψ⊥, and because of dimR ψ

⊥ = 3, it is a basis. It follows ∇Xψ = A(X) · ψ.

Furthermore

〈A(e2), e1〉 = 〈∇e2ψ, e1 · ψ〉 = 〈e2 · ∇e2ψ, e2 · e1 · ψ︸ ︷︷ ︸
e3·ψ

〉

= H 〈ψ, e3 · ψ〉︸ ︷︷ ︸
=0

−〈e1 · ∇e1ψ, e3 · ψ〉 − 〈e3 · ∇e3ψ, e3 · ψ〉

= 〈e3 · e1 · ∇e1ψ, ψ〉 − 〈∇e3ψ, ψ〉 = −〈e2 · ∇e1ψ, ψ〉
= 〈A(e1), e2〉

and similarly 〈A(e1), e3〉 = 〈A(e3), e1〉 and 〈A(e2), e3〉 = 〈A(e3), e2〉. Thus A is symmetric.
�

Summarizing our knowledge until now, we have:
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Corollary 4.11. Assume that (M, g0) is a compact connected spin manifold of dimension
n = 3 satisfying λ+

min(M, [g0]) < λ+
min(S3) = 3

2
(2π2)1/3. Then there exist

(1) an open, connected and dense subset M∗;
(2) a metric g on M∗ conformal to g0|M∗and of volume 1;
(3) an eigenspinor ψ to Dg to the real eigenvalue λ1

+(g),

such that ψ has constant length and thus is a generalized Killing spinor on (M∗, g). We
obtain a selfadjoint section A of End(TM) such that ∇Xψ = A(X) ·ψ and trA = −λ1

+(g).

4.4. Analytic manifolds.

Definition 4.12. Let g1 be a Riemannian metric on a smooth manifold M . We say
that [g1] is an analytic conformal class if M has a compatible structure of a (real-)analytic
manifold for which one of the following equivalent statements holds:

(a) there is a (real-)analytic metric h ∈ [g1];
(b) for any point x ∈ M there is an open set U 3 x, such that there is an analytic metric

gU on U with gU ∈ [g1|U ].

Lemma 4.13. Conditions (a) and (b) in Definition 4.12 are equivalent.

Proof. The implication from (a) to (b) is trivial. The implication from (b) to (a) is a direct
consequence of uniformization in dimension n = 2, thus we restrict to the case n ≥ 3.

Let g be a smooth metric in the given analytic conformal class. We have to show that
the locally defined metrics gU provided by (b) can be deformed conformally such that they
match together to a globally defined metric. Let Lp := {λgp |λ > 0} ⊂ T ∗

pM ⊗ T ∗
pM , and

let L :=
⋃
Lp. The bundle π : L→M is a smooth R+-principal bundle over M . All local

Riemannian metrics gU are local sections of π : L→M , gU : U → L. If two local analytic

metrics gU and gŨ are given, then there is an analytic function f : Ũ ∩ U → R+ such that

gU = fgŨ on Ũ ∩U . Consequently, π : L→M carries a structure of analytic R+-principal
bundle over M , and thus the total space L of the bundle is an analytic manifold. The
smooth map g : M → L can be approximated in the strong C1-topology by an analytic
map gω : M → L, see [38, Chap. 2, Theorem 5.1] which is proven by Grauert and Remmert
in [32]. The map π ◦ gω : M →M is a smooth analytic map, which is close to the identity
in the C1-topology, and thus (for suitably chosen gω) it is an analytic diffeomorphism.

As a consequence, the map gω ◦ (π ◦ gω)−1 : M → L is an analytic section of L and thus
an analytic representative of the given conformal class. �

Lemma 4.14. If an analytic conformal class is conformally flat on a non-empty open
set U , and if M is connected, then the conformal class is already conformally flat on M .

Proof. Being conformally flat on an open set U is equivalent to the vanishing of the Weyl
curvature (resp. Schouten tensor) in dimension m ≥ 4 (resp. m = 3). The Weyl curvature
and the Schouten tensor of an analytic metric are analytic as well. Thus if they vanish
on U they must vanish on all of M . �
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Lemma 4.15. Let φ be a smooth solution of Dφ = c|φ|αφ, φ 6= 0 on a (not necessarily
complete) analytic Riemannian spin manifold (U, g, χ). Then φ is analytic as well.

Proof. The equation is an elliptic semi-linear equation, and has analytic coefficients on
the set M \ φ−1(0). We apply analytic regularity results for properly elliptic systems as
developed by Douglis and Nirenberg and refined by Morrey, see [46] and [47]. To apply
these tools it is convenient to deduce a second order equation

D2φ =
(
c2|φ|2α + c grad(|φ|α)

)
· φ

which has again analytic coefficients on M \ φ−1(0). The linearization of this second order
equation has the principal symbol of a Laplacian and is thus properly elliptic. The lemma
then follows directly from [47, Theorem 6.8.1] or [46]. �

Lemma 4.16. Constant mean curvature hypersurfaces in an analytic Riemannian man-
ifolds are analytic. In particular, the metric and the second fundamental form of such a
hypersurface are analytic.

Proof. Let M be an n-dimensional hypersurface in an analytic Riemannian manifold (Z, h)
of dimension n + 1. We choose an analytic parametrization U × (a, b) → Z with U open
in Rn, such that locally the hypersurface M is the graph of a function F : U → (a, b). The
standard basis of Rn+1 is denoted by e1, . . . , en+1. The tangent space T(x,F (x))M is then
spanned by (ei, ∂iF ), i = 1, . . . , n.

Let hij ∈ Cω(U × (a, b)) be the coefficients of the metric h, and let gij ∈ C∞(U) be the
coefficients of g. The inverse matrices are denoted by (hij)1≤i,j≤n+1 and (gij)1≤i,j≤n.

The first fundamental form of the hypersurface in the chart given by U is

gij = hij + hn+1,j∂iF + hn+1,i∂jF + hn+1,n+1(∂iF )(∂jF ).

The coefficients of the matrices (gij) and (gij) are thus polynomial expressions in h, F
and dF . The vector field

X :=
n+1∑
i=1

((
−

n∑
j=1

hij∂jF
)

+ hi,n+1
)
ei

is normal to M , and both X and the unit normal vector field ν := X/|X|h are analytic
expressions in h, F and dF .

The second fundamental form has the coefficients

kij = −〈∇(ei,∂iF )ν, (ej, ∂jF )〉
= − 1

|X|h
〈∇(ei,∂iF )X, (ej, ∂jF )〉

= 1
|X|h

(∂i∂jF + F(h, dh, F, dF )) ,

where 1 ≤ i, j ≤ n and F is a polynomial expression in its arguments.

The mean curvature H is given as H = 1
n

∑
ij g

ijkij. Thus the mean curvature operator
P : F 7→ H is a quasi-linear second order differential operator with analytic coefficients.
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We fix a function F̃ describing a hypersurface of constant mean curvature, the corre-
sponding normal field will be denoted by X̃. In other words P (F̃ ) is a constant.

The linearization P̂ := TF̃P of P in F̃ is a linear second order differential operator with
principal symbol

Rm → R, ξ 7→ |ξ|2
|X̃|h

.

Thus P is (properly) elliptic in a neighborhood of 0.

The analytic regularity theorem for elliptic systems of Morrey [47, Theorem 6.8.1] or [46]
tells us that F̃ is analytic, and this implies the lemma. �

4.5. Three-dimensional real projective space. In this and in the following subsection
we provide examples of compact Riemannian spin manifolds satisfying (4.5). In the present
subsection we study deformations of round metrics on RP 3 with a suitable spin structure.
This already provides examples of non-analytic Riemannian manifolds with generalized
Killing spinor, showing the necessity of the analyticity assumption in Theorems 1.1 and 2.1.
In the following section we will then see that such examples are abundant.

Lemma 4.17. If M is a compact spin manifold, we denote the set of metrics with invertible
Dirac operator as Rinv(M), equipped with the C1-topology. Then the function

Rinv(M) → R+, g 7→ λ+
1 (g)

is continuous.

This lemma is a special case of [13, Prop. 7.1], see also [49, Kor. 1.3.3] for more details.

Let us equip SU(2) with the unique bi-invariant metric of sectional curvature 1, hence
SU(2) is isometric to S3. The left multiplication of SU(2) on itself lifts to an action of SU(2)
on Σ SU(2), for any choice of orientation of SU(2) and any choice of the spinor represen-
tation. The spinor bundle is then trivialized by left-invariant spinors. A straightforward
calculation, see e.g. [3], shows that

∇Xφ = ±1
2
X · φ

for any left-invariant spinor φ and all X ∈ T SU(2). Thus all left-invariant spinors are
Killing spinors to the Killing constant ±1/2. The sign depends on the choice of orientation
and on the choice of spinor representation. The same discussion also applies to right-
invariant spinors, and these are Killing spinors whose Killing constant have the opposite
sign. We assume that these choices are made such that left-invariant spinors have Killing
constant −1/2, and thus right-invariant ones have Killing constant +1/2.

If Γ is a non-trivial discrete subgroup of SU(2), we choose a spin structure on Γ\ SU(2)
such that left-invariant spinors on S3 descend to Γ\ SU(2). Then Γ\ SU(2) carries a complex
2-dimensional space of Killing spinors with Killing constant−1/2, but no non-trivial Killing
spinor with Killing constant 1/2. For quotients SU(2)/Γ, the role of 1/2 and −1/2 have to
be exchanged. All other (Riemannian) quotients of S3 do not carry any non-trivial Killing
spinor.
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In the special case Γ = {±1} both quotients Γ\ SU(2) and SU(2)/Γ are isometric to
RP 3, but they come with different spin structures. These are the 2 non-equivalent spin
structures on RP 3. We thus have obtained:

Lemma 4.18. Let σ3 be the standard metric on 3-dimensional real projective space RP 3.
There are two spin structures on RP 3. For one spin structure Killing spinors to the con-
stant −1/2 exist, but not for the constant 1/2. For the other spin structure Killing spinors
to the constant 1/2 exist, but not for the constant −1/2.

Thus for a suitable choice of spin structure, we have

λ+
min(RP

3, [σ3]) = 3
2

(
ω3

2

)1/3
= 3π2/3

2
< λ+

min(S
3) = 3

2
ω

1/3
3 = 3π2/3

22/3 .

Corollary 4.19. There is a non-analytic conformal class and a spin structure on RP 3 for
which inequality (4.5) holds.

Proof. We choose a metric g1 close to σ3 on RP 3 which is conformally flat on some non-
empty open set U1 and non-conformally flat on some non-empty open set U2. If g were an
analytic metric, conformal to g1, then g would have a vanishing Schouten tensor on U1.
By Lemma 4.14 it would be flat everywhere, thus also on U2. This shows that [g1] is a
non-analytic conformal class. Applying the previous lemmata, we obtain the corollary. �

4.6. The mass endomorphism and application to inequality (4.5). The goal of this
subsection is to prove that inequality (4.5) holds for “generic” metrics, in a sense explained
below.

In this section we assume that M is a compact connected spin manifold of dimension
n ≥ 3, and that the index of M in KO−n(pt) vanishes. We fix a point p ∈ M and a flat
metric gflat in a neighborhood U of p, U 6= M . We assume that U is isometric to a convex
ball and that gflat can be extended to a metric on M . The set of all such extensions is
denoted by RU,gflat

(M). We define

Rinv
U,gflat

(M) := {g ∈ RU,gflat
(M) |Dg is invertible},

i.e. this is the set of all extensions of gflat such that the Dirac operator is invertible. In [5]
we proved that Rinv

U,gflat
(M) is open and dense in RU,gflat

(M) with respect to the Ck-topology
where k ≥ 1 is arbitrary.

Definition 4.20. We say that a property (A) holds for generic metrics in RU,gflat
(M) if

there is a subset R′ ⊂ RU,gflat
(M) that is open and dense with respect to the Ck-topology

for all k ≥ 1, such that property (A) holds for all g ∈ R′.

Using this definition, the above mentioned result from [5] says that the Dirac operator
with respect to a generic metric is invertible.

Given a metric g ∈ Rinv
U,gflat

(M), let G be the Green’s function of the Dirac operator on
(M, g) at the point p ∈M , i.e. a distributional solution of

(4.9) DG = δpIdΣpM ,
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where δp is the Dirac distribution at p and G is viewed as a linear map which associates to
each spinor in ΣpM a smooth spinor field on M \ {p} defining a spinor-valued distribution
on M . We write Gg and Dg for G and D to indicate their dependence on the metric g.

We also introduce the Euclidean Green’s function centered at 0, defined distributionally
on Rn

Geuclψ = − 1
ωn−1|x|nx · ψ.

It satisfies (4.9) for G = Geucl and D = Deucl on Rn.

Identifying U with a ball in Rn via an isometry, both G = Gg and G = Geucl are solutions
of (4.9) on U . Thus Dg(Gg − Geucl) = 0 on U and by elliptic regularity, Gg − Geucl is a
smooth section, see also [7]. We obtain for any ψ0 ∈ ΣpM :

Gg(x)ψ0 = − 1
ωn−1|x|nx · ψ0 + vg(x)ψ0,

where the spinor field vg(x)ψ0 is smooth on U and satisfies Dg(vg(x)ψ0) = 0 on U .

Definition 4.21. The mass endomorphism αg : ΣpM → ΣpM for a point p ∈ U ⊂ M is
defined by

αg(ψ0) := vg(p)ψ0.

The mass endomorphism is thus (up to a constant) defined as the zeroth order term in
the asymptotic expansion of the Green’s function in Euclidean coordinates around p. This
definition is analogous to the definition of the mass in the Yamabe problem.

Theorem 4.22 ([33] for n = 3, [4] for n ≥ 3). For generic metrics in RU,gflat
(M) the mass

endomorphism in p is non-zero.

An important application of this theorem is inequality (4.5). The proofs in [7] yield:

Proposition 4.23. If the mass endomorphism in a point p with flat neighborhood is non-
zero, then λ+

min(M, [g]) < λ+
min(Sn).

It follows:

Corollary 4.24. For generic metrics g in RU,gflat
(M) we have λ+

min(M, [g]) < λ+
min(Sn).

We now deduce:

Corollary 4.25. Let M be an n-dimensional compact spin manifold with vanishing index
ind(M) ∈ KO−n(pt). There there is both an analytic conformal class [gan] and a non-
analytic, smooth conformal class [gnon−an] on M with

λ+
min(M, [gan]) < λ+

min(S
n), λ+

min(M, [gnon−an]) < λ+
min(S

n).

In this corollary M is a priori equipped with a C∞-structure and the “non-analyticity”
means by definition that M does not carry any analytic structure in which gnon−an is
analytic.
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Proof. We choose an open set U and a metric gflat as above. Then choose g ∈ RU,gflat
(M)

with λ+
min(M, [g]) < λ+

min(Sn). Choose another smooth metric gnon−an, coinciding on U with
g = gflat, such that gnon−an is not (everywhere) conformally flat on M \ U , and C1-close
enough to g so that λ+

min(M, [gnon−an]) < λ+
min(Sn). The metric gnon−an is conformally flat

on U but not on M \ U , hence its Schouten tensor cannot be analytic in any analytic
structure. Thus as in Lemma 4.14 the conformal class [gnon−an] cannot be analytic.

At the same time, g can be C1-approximated by an analytic metric gan so that the
inequality λ+

min(M, [gan]) < λ+
min(Sn) continues to hold. Such an analytic approximation

can be done either with Abresch’s smoothing technique or by using the Ricci flow: if gt is
a solution of the Ricci flow equation d

dt
(gt) = −2Ricgt , defined for short times t ∈ [0, t0)

with initial data g0 = g, then gt is analytic for all t > 0. We set gan := gt for a sufficiently
small t > 0. �

4.7. Analytic examples. Summarizing the results of the preceding subsections we obtain.

Theorem 4.26. Assume that (M, [gan]) is a compact connected analytic Riemannian spin
manifold of dimension 3 with λ+

min(M, [gan]) < λ+
min(Sn). Then there is a connected, open

and dense subset M∗ of M carrying an analytic metric g∗ and an analytic spinor field
ψ ∈ Γ(Σg∗M∗) such that

(1) g∗ is conformal to gan|M∗;
(2) vol(M∗, g∗) = 1;
(3) ψ is a generalized-Killing spinor on (M∗, g∗).

Such Riemannian metrics gan exist on each compact 3-dimensional spin manifold, due
to the preceding section. The corresponding endomorphism W is then analytic as well,
and Theorem 1.1 can be applied. We obtain a Ricci-flat metric of the form dt2 + gt where
g0 = g∗ defined on an open neighborhood of {0} ×M∗ in R×M∗, and carrying a parallel
spinor. Further the mean curvature of {0}×M∗ in this neighborhood is constant and equal
to (2/3)λ+

min(M, [g]).

4.8. Non-analytic examples. Here we finally prove the existence of metrics with gener-
alized Killing spinors on manifolds with non-analytic metrics. According to Lemma 4.16
such manifolds do not embed isometrically as constant mean curvature hypersurfaces in
Ricci-flat manifolds. Thus the analyticity assumptions in Theorem 1.1 cannot be removed.

Theorem 4.27. Any 3-dimensional compact connected spin manifold M with a fixed C∞-
structure has a connected open dense subset M∗ carrying a smooth Riemannian metric g∗

with a generalized Killing spinor, such that the metric is not analytic for any choice of
analytic structure on M . For this manifold (M∗, g∗) the associated formal solution provided
by Proposition 2.7 cannot be chosen to be Ricci-flat on a neighborhood of {0}×M , in other
words the conclusion of Theorem 1.1 does not hold. If M = RP 3 or more generally if
M = Γ\ SU(2) for a non-trivial subgroup Γ of SU(2), then we can find such a Riemannian
metric g∗ defined on the whole manifold M .
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Proof. By Corollary 4.25 there exists a smooth conformal class [gnon−an] whose Schouten
tensor vanishes on a non-empty open set and does not vanish on another open set, and
for which λ+

min(M, [gnon−an]) < λ+
min(S3). The infimum in (4.1) is then attained, according

to Theorem 4.4, at a generalized metric g∗, which is a smooth Riemannian metric on a
connected dense open subset M∗ of M . It is clear that the restricted conformal class
[gnon−an|M∗ ] is not analytic, and thus the metric g∗ cannot be analytic either. Theorem 4.4
provides moreover a Dirac eigenspinor of constant length on (M∗, g∗) which is, due to
Subsection 4.3, a generalized Killing spinor. Furthermore, the trace of the associated
symmetric tensor W ∈ End(TM) is constant and equal to −(2/3)λ+

min(M, [gnon−an]).

If the formal solution provided by Proposition 2.7 (for M∗ instead of M) were Ricci-
flat in a neighborhood of {0} ×M∗, then M∗ would be a hypersurface of constant mean
curvature in a 4-dimensional Ricci-flat manifold. As Ricci-flat metrics are analytic in a
suitable analytic structure, Lemma 4.16 would imply that g∗ was analytic, which is a
contradiction.

Now assume that M = RP 3. We take a sequence of non-analytic metrics gi (constructed
similarly as above) converging in the C∞-topology to the standard round metric σ3 on
RP 3. As the functional Fg

q depends continuously on g in the C1-topology, we see for
q = 2n/(n+ 1)

(4.10) µ := lim inf
i→∞

µq(RP 3, gi) ≥ µq(RP 3, σ3) = 2
3

(
2
ω3

)2/3

> µq(S3) = 2
3

(
1
ω3

)2/3

Now let ψi be a maximizing spinor on (RP 3, gi) with Lp-norm 1, p = 2n/(n − 1) = 3.
These ψi are uniformly bounded in the C0-norm. This uniform C0-boundedness follows
from [2, Theorem 6.1] whose proof is also valid for p = 2n/(n−1) although the formulation
of [2, Theorem 6.1] assumed p < 2n/(n − 1). Then [2, Theorem 5.2] implies that ψi is a
bounded sequence in C1,α for any α ∈ (0, 1).

After passing to a suitable subsequence we then see that ψi converges to a solution ψ of

Dσ3

ψ = µ−1|ψ|ψ, ‖ψ‖L3(RP 3,σ3) = 1.

Calculating F2n/(n+1)(ψ) = µ̄ we conclude µ = µq(RP 3, σ3). Using the regularity theorem

[2, Prop. 5.1] one sees that ψ is C2. We now apply [2, Prop. 4.1] where ψ ∈ Γ(ΣS3) is the
pullback of ψ to S3. One calculates F2n/(n+1)(ψ) = µq(S3), thus ψ is a maximizing spinor
on S3. The conformal map A : S3 → S3 in the conclusion of [2, Prop. 4.1] has to be an
isometry as it is the lift of a map RP 3 → RP 3. Thus [2, Prop. 4.1] implies that ψ is a
Killing spinor to the Killing constant −1/2. As such a Killing spinor nowhere vanishes, ψi
nowhere vanishes for large i.

The other quotients Γ\ SU(2) are completely analogous. �

Using products with manifolds carrying parallel spinors, one can easily obtain in every
dimension n ≥ 3 examples of n-dimensional manifolds with generalized Killing spinors
which do not embed isometrically as hypersurfaces in manifolds with parallel spinors.
More precisely we have the following:
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Lemma 4.28. Let (M∗, g∗) be a 3-dimensional non-analytic Riemannian manifold with
generalized Killing spinors given by Theorem 4.27. Then the Riemannian product (M∗, g∗)×
(Rn−3, geucl) carries a generalized Killing spinor Ψ but can not be embedded isometrically
as a hypersurface in any manifold with parallel spinors which restrict to Ψ.

Proof. Let p∗1(ΣM
∗) and p∗2(ΣRn−3) denote the pullbacks to Z := M∗ × Rn−3 of the spin

bundles of (M∗, g∗) and (Rn−3, geucl) with respect to the standard projections. It is a
standard fact that the spin bundle ΣZ is isomorphic to p∗1(ΣM

∗) ⊗ p∗2(ΣRn−3) if n is
odd and to p∗1(ΣM

∗) ⊗ p∗2(ΣRn−3) ⊗ C2 if n is even, and this isomorphism preserves the
spin connections. The isomorphism can be chosen such that in the first case, the Clifford
product is given by

(X1, X2)·(φ⊗ ψ) = (X1·φ)⊗ ψ + φ⊗ (X2·ωC·ψ),

where ωC is the complex volume form in the Clifford algebra of Rn−3. In the second case,
the Clifford product is given by

(X1, X2)·(φ⊗ ψ ⊗ v) = (X1·φ)⊗ ψ ⊗ a(v) + φ⊗ (X2·ψ)⊗ b(v),

for every v ∈ C2, where a =

(
1 0
0 −1

)
and b =

(
0 1
1 0

)
. The first assertion now follows

immediately: take any generalized Killing spinor φ on M∗ satisfying ∇Xφ = W (X)·φ for
all X ∈ TM∗ and let ψ be a parallel spinor on Rn−3. One can of course assume that

ωC·ψ = ψ if n is odd. Then Ψ := φ⊗ ψ (resp. Ψ := φ⊗ ψ ⊗
(

1
0

)
) is a generalized Killing

spinor on Z for n odd (resp. even), with associated tensor W̄ =

(
W 0
0 0

)
.

To prove the second assertion, assume that Z is a hypersurface in some spin manifold
Z̄ and that Φ is a parallel spinor on Z̄ restricting to Ψ on Z. The second fundamental
form of Z is W̄ , which has constant trace by construction. Thus Z has constant mean
curvature, so is analytic by Lemma 4.16. Each factor of Z is then analytic, contradicting
the non-analyticity of M∗. �
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