
Adiabatic limit of the Eta invariant over cofinite

quotients of PSL(2, R)

Paul Loya, Sergiu Moroianu and Jinsung Park

Abstract

The eta invariant of the Dirac operator over a noncompact cofinite quotient of
PSL(2,R) is defined through a regularized trace following Melrose. It reduces to
the standard definition in terms of eigenvalues in the case of a totally nontrivial
spin structure. When the S1-fibers are rescaled, the metric becomes of nonexact
fibred-cusp type near the ends. We completely describe the continuous spectrum of
the Dirac operator with respect to the rescaled metric and its dependence on the
spin structure, and show that the adiabatic limit of the eta invariant is essentially
the volume of the base hyperbolic Riemann surface with cusps, extending some of
the results of Seade and Steer.

1. Introduction

The eta invariant was introduced by Atiyah-Patodi-Singer [2] as the boundary correction
term in their index formula. This non-local invariant turned out to be quite elusive, although
its variation is local. Motivated by physics, one successful approach to the study of the eta
invariant is the so-called adiabatic limit, in which the eta invariant on the total space of a
fibration is investigated when the fiber is collapsed. This was initiated by Witten [29] and later
rigorously treated by Bismut and Freed [5] and independently by Cheeger [9]. Expanding on
the earlier work of [5, 9, 29], Bismut and Cheeger [8] and then Dai [10] studied the adiabatic
limit for general fibrations of compact manifolds.

The eta invariant of compact quotients of PSL(2,R) was studied by Seade and Steer [26].
In this situation, the total space of the fibration is a circle bundle that fibers over a compact
hyperbolic Riemann surface. There has been much interest in more general spectral problems
for the case when the fibers are circles, e.g. [1, 4, 11, 14, 23, 24, 26, 31]. In all these papers
the base manifold is compact.

Here we consider the spectral properties of the Dirac operator and the adiabatic limit of
its eta invariant on a cofinite quotient X in the case when the base Riemann surface has finite
volume but is not compact,

S1 −→ Xy
Σg,κ .

(1.1)

We assume that the base of the fibration is a complete hyperbolic Riemann surface Σg,κ of
genus g with κ cusps. One of our motivations is related to the index formula of a Dirac
type operator over a locally symmetric space [27] where one has to deal with the adiabatic
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limit of the eta invariants for the maximal faces, which have a fibration structure over a
noncompact locally symmetric space. Ours is the simplest possible example of a fibration
over a noncompact locally symmetric space, yet its spectral analysis turns out to be highly
nontrivial.

We fix a spin structure and then replace the circle S1 in (1.1) with a circle of radius r. We
denote the corresponding Dirac operator by Dr. The first purpose of this paper is to study the
spectral properties ofDr. In particular, we analyze the dependence of the continuous spectrum
of Dr on the choice of spin structure. Every end of X is diffeomorphic to the trivial fibration
with fiber S1 over a corresponding end R+ × S1 of Σg,κ. We say that the spin structure is
trivial on an end of X if it induces the trivial (i.e., non-bounding) spin structure on the circle
from the base.

Theorem 1.1. Let X be a cofinite quotient of PSL(2,R). Fix a spin structure on X, and
denote by κt the number of ends on which the induced spin structure is trivial. Then for all
r > 0, the continuous spectrum of the Dirac operator Dr consists of κt-copies of countably
many families of half-lines(

−∞, −r
2
− |m|

(
1 + r−2

)1/2
] ⋃ [

−r
2

+ |m|
(
1 + r−2

)1/2
, +∞

)
indexed by odd integers m ∈ 1 + 2Z if the spin structure along the S1-fiber is trivial, or by
even integers m ∈ 2Z otherwise.

This theorem can be regarded as a generalization of the result of C. Bär in [3] to the
fibred cusp case where the continuous spectrum of Dr depends on the spin structures of
the S1-fibers and of the S1 cross sections of the base manifold Σg,κ near the ends. Another
novelty of this theorem is that the Riemannian metric over the cusps are not the exact fibred
cusp metrics which have been extensively studied in, for example, [18, 19, 28]. It is because
of the non-exactness of the fibred cusp metric that the continuous spectrum of Dr is quite
complicated.

The second main result of this paper is the computation of the adiabatic limit of the eta
invariant of Dr as the fiber is collapsed (that is, r → 0). According to Theorem 1.1, the Dirac
operator Dr typically has non-empty continuous spectrum; moreover, the corresponding odd
heat kernel of D2

r is not of trace class. Therefore, the standard definition of the eta function
using the eigenvalues or the trace of the odd heat kernel is not valid unless the spin structure
is nontrivial on every end. This requires us to define a regularized eta function, which is
reminiscent of the b-eta function of R. B. Melrose [22] and similar to the regularized eta
function used by one of us [25] over hyperbolic manifolds with cusps. Denote by η(Dr, s) the
eta function of Dr defined through a regularized trace (see Definition in (4.6)), the following
is our main result:

Theorem 1.2. We assume that the spin structure along the S1-fiber is trivial.

i) For a sufficiently small r > 0, η(Dr, s), defined for <(s) > 2, extends meromorphically to
C with a possible double pole at s = 1 and possible simple poles at {2, 0,−1,−2,−3, . . .}.
If the spin structure is nontrivial on each end, then η(Dr, s) may have only simple poles
at {2, 1, 0,−1,−2,−3, . . .}.

ii) Define η(Dr) as the finite part at s = 0 of the meromorphic extension η(Dr, s). In the
adiabatic limit, the following identity holds:

lim
r→0

η(Dr) = − 1
12π

Vol(Σg,κ) =
1
6

(2− 2g − κ) . (1.2)
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For the compact case and for the trivial spin structure, a result corresponding to the
formula (1.2) in Theorem 1.2 was proved by Seade and Steer [26], who also obtained the
value of the eta invariant of the original fibration (when r = 1) by applying the APS index
formula for a manifold with smooth boundary. However, in our noncompact case, it would be
very difficult to prove an index formula for manifolds whose boundaries are manifolds with
nonexact fibred cusp ends. Another possible approach (suggested by the referee) is to use the
variation formula as in Bismut-Freed [6]. This problem will be considered elsewhere.

The paper is organized as follows. In Section 2 we develop the required background ma-
terial, including a discussion of spin structures and of the Dirac operator Dr. In Section 3 we
analyze the Dirac operator in terms of the fibred cusp calculus of Mazzeo–Melrose [21] and
we prove Theorem 1.1. In Section 4 we define the regularized eta invariant and in Sections
5, 6, and 7 we analyze the geometric and spectral sides of the Selberg trace formula in our
context, which will be used to prove Theorem 1.2.

Acknowledgements This work was partly done while the authors visited KIAS and
École Polytechnique. The authors would like to express their gratitude to these institutions
for their hospitality. Sergiu Moroianu was partially supported from a PN-II-ID-PCE-2008-2
contract. The authors also thank the anonymous referee for many helpful comments.

2. Dirac operator and Spin structure

In this section, we define the Dirac operator over a cofinite quotient of PSL(2,R) by a discrete
subgroup. Equivalently we consider the Lie groupG = SL(2,R) and a discrete subgroup Γ ⊂ G
containing {±1}; then the quotient Γ\G is the same as the quotient (Γ/{±1})\PSL(2,R).

For r ∈ (0,∞) we define a family of metrics gr over G such that the left translations of
E := r−1C,A,H are orthonormal w.r.t. gr where C,A,H is a basis of g = sl(2,R) given by

C =
(

0 1
−1 0

)
, A =

(
0 1
1 0

)
, H =

(
1 0
0 −1

)
. (2.1)

Recall that the corresponding Levi-Civita connection ∇r is determined by the Koszul formula

2gr(∇r
UV,W ) = Ugr(V,W ) + V gr(W,U)−Wgr(U, V )

+ gr([U, V ],W )− gr([U,W ], V )− gr([V,W ], U)

where U, V,W denote vector fields over G.

Since G is topologically the same as S1×H where H is the Poincaré upper half plane, there
are two spin structures on G. We choose the one determined by the left invariant trivialization.
Denoting the lifted connection to the spinor bundle by the same notation ∇r, we define the
Dirac operator by

D̂r := E.∇r
E +A.∇r

A +H.∇r
H

where U. denotes the Clifford action by U . By a straightforward computation as in [14], [26],
we obtain

D̂rψ =
1
2
(2 + r2

r2
− 2

)
C.A.H.ψ

for a basic spinor ψ.
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We twist D̂r by multiplying with the volume element ω := E.A.H. to define D̃r, that is,

D̃r := E.A.H.D̂r,

which has the following simplified form,

D̃rψ =
(2− r2

2r

)
ψ

for a basic spinor ψ. The Clifford algebra generated by E,A,H has the Pauli matrix repre-
sentation given by

E 7→
(
i 0
0 −i

)
, A 7→

(
0 1
−1 0

)
, H 7→

(
0 −i
−i 0

)
.

Then we have

ωE 7→ −i
(

1 0
0 −1

)
, ωA 7→

(
0 1
−1 0

)
, ωH 7→ i

(
0 1
1 0

)
.

From these, for any spinor αψ1 + βψ2 written in terms of basic spinors ψ1, ψ2 and smooth
functions α, β on G, we have the following representation of D̃r,

D̃r

(
α
β

)
=

(2− r2

2r

) (
α
β

)
+

(
−iE A+ iH

−A+ iH iE

) (
α
β

)
. (2.2)

Now we let
Z := −iC, 2X+ := A− iH, 2X− := A+ iH

(Our convention is slightly different from the one in [26]). These vector fields satisfy

[Z,X+] = 2X+, [Z,X−] = −2X−, [X+, X−] = Z,

and we have

D̃r =
(2− r2

2r

)
+

(
r−1Z 2X−
−2X+ −r−1Z

)
acting on C∞(G)⊕ C∞(G).

It is also easy to check that

D̃2
r =

(
−(A2 +H2 + r−2C2) 0

0 −(A2 +H2 + r−2C2)

)
+ lower order terms, (2.3)

hence the Dirac Laplacian D̃2
r is a generalized Laplacian whose principal symbol is given by

the metric gr, as expected.
To define the Dirac operator overX = Γ\G, let us discuss the spin structures onX = Γ\G,

which will play a crucial role throughout this paper. First recall that there are |H1(X,Z2)|-
number of spin structures over X, since every orientable 3-dimensional manifold is spin. This
can be understood from the following diagram,

S̃ −−−−→ Sy y
X̃

π−−−−→ X

where S̃,S are Spin(3) bundles over the universal cover X̃ and over X, respectively. Since
S̃ ∼= X̃ × Spin(3) and S̃ ∼= π∗S, the possible Spin bundle S is given by a Z2-representation ρ
of π1(X) as follows:

Sρ = X̃ ×ρ Spin(3) (2.4)
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with the obvious Z2-action on Spin(3). Therefore, each Z2-representation of π1(X) provides
us with an inequivalent spin structure on X. Recall that

π1(X) =
{
xi, yi, hj , k

∣∣ 1 6 i 6 g, 1 6 j 6 κ,
g∏

i=1

[xi, yi]
κ∏

j=1

hj = 1, [xi, k] = [yi, k] = [hj , k] = 1
}
,

where g, κ denote the genus and the number of cusps, respectively, of the base Riemann
surface Σg,κ of the fibration (1.1).

Among spin structures, there are spin structures which are determined by those Z2-
representations ρ of π1(X) with ρ(hj) = −1 for some j. In [3] such a spin structure over
the Riemann surface Σg,κ is called nontrivial along the cusp corresponding to j. Following [3],
we call such a spin structure nontrivial along the cusp if ρ(hj) = −1 for the corresponding j,
and a totally nontrivial spin structure if it is determined by a Z2-representation ρ with

ρ(hj) = −1 for all j = 1, . . . , κ. (2.5)

From the relations of the generators of π1(X), there exists an obstruction for this:
κ∏

j=1

ρ(hj) = 1.

Hence, for a spin structure to be totally nontrivial the number of cusps κ should be even.
We also distinguish two classes of spin structures according to the (non)triviality of the spin
structure along the fiber S1/{±1}. We call the spin structure trivial along the fiber if the spin
structure is trivial along the fiber S1/{±1} (or equivalently, if the representation ρ maps the
generator k to 1), and nontrivial along the fiber otherwise. Note that if the spin structure is
trivial along the S1/{±1}-fiber, this spin structure does not extend to a spin structure over
the disc bundle over Σg,κ. From the above discussion we have:

Proposition 2.1. There are 22g+κ spin structures over X = Γ\G. There exist totally non-
trivial spin structures over X if and only if κ is even.

For the trivial representation of π1(X), the resulting Spin bundle denoted by S1 is topo-
logically trivial, and is determined by the left invariant trivialization over X = Γ\G. The
associated spinor bundle Σ1 = S1×Spin(3) Σ(3) (where Σ(3) ∼= C2 is the spinor representation
of Spin(3) ∼= SU(2)) is therefore also trivial and if Σρ denotes the spinor bundle associated to
a representation ρ, that is, Σρ = Sρ ×Spin(3) Σ(3), then

Σρ = Σ1 ⊗ Cρ

where Cρ → X is the flat line bundle associated to ρ.

If Dr denotes the induced Dirac operator from D̃r pushed down to X, then from the
definition of D̃r over G and the equality (2.4), we can see that

Dr =
(2− r2

2r

)
+

(
r−1Z 2X−
−2X+ −r−1Z

)
acting on C∞0 (Γ\G,χ) (2.6)

where C∞0 (Γ\G,χ) (χ = ρ ⊕ ρ) consists of the smooth functions with co-compact supports
such that f(γx) = χ(γ)f(x) for γ ∈ π1(X), x ∈ G. We also denote the L2-closure of Dr (with
respect to a certain metric explained in (4.1)) by Dr, that is,

Dr : L2(Γ\G,χ) −→ L2(Γ\G,χ). (2.7)
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3. Analysis of fibred cusp operators

In this section we show that the metrics gr are of conformal fibred cusp type. Consequently,
we show that the Dirac operators Dr belong to the class of weighted fibred cusp operators
introduced by Mazzeo and Melrose [21], and we prove Theorem 1.1.

First we introduce some subgroups of G = SL(2,R),

N0 =
{(

1 x
0 1

)}
, A0 =

{(
e

u
2 0
0 e−

u
2

)}
, K =

{(
cos θ sin θ
− sin θ cos θ

)}
(3.1)

where x, u, θ ∈ R. Then the standard parabolic subgroup P0 is given by N0A0Z where Z =
{±1} ⊂ K and any parabolic subgroup P of G is conjugate to P0 by an element kP in K.
A parabolic subgroup P has a decomposition P = NPAZ where NP is the derived group of
P and A is any conjugate of A0 in P , to be called a Cartan subgroup. It is clear that A0 is
the unique Cartan subgroup P0 with Lie algebra orthogonal to that of K. Therefore, P has
a unique Cartan subgroup with the same property. From now on, we assume that the pair
(P,A) satisfies this condition. For such a pair (P,A) with N = NP , we have the Iwasawa
decomposition G = NAK.

For a given Γ ⊂ G, a parabolic subgroup P of G is called Γ-cuspidal if N = NP contains
a nontrivial element of Γ. It is well-known that the finitely many ends of X ∼= Γ\G are
parametrized by Γ-conjugacy classes {P}Γ = {γPγ−1 | γ ∈ Γ/ΓP } where ΓP := Γ ∩ P . We
refer to the chapter 3 of [7] for an explanation concerning this fact. Let P be a Γ-cuspidal
parabolic subgroup of G corresponding to one end of X = Γ\G. This subgroup determines a
cusp cP , an incomplete manifold which is identified with a neighborhood of the cuspidal end
of the quotient ΓP \G.

Assume first that P = P0 is the standard parabolic subgroup of G. The manifold ΓP \G
has two commuting free S1 actions: the action of K to the right and that of ΓN0\N0 to the
left where ΓN0 := Γ ∩N0. The first S1 action exists in fact globally on X = Γ\G, while the

second one exists only on the cusp. Let γl :=
(

1 l
0 1

)
be the generator of ΓN0 . Then ΓP \G is

identified with R/lZ× R× R/2πR by the map

(x, u, θ) 7→
(

1 x
0 1

) (
e

u
2 0
0 e−

u
2

) (
cos θ sin θ
− sin θ cos θ

)
. (3.2)

By projection on the last two terms, we view this as the total space of a fibration with fiber
S1. Note that this fibration makes sense only near the end and is not the fibration in (1.1)
where the roles of the two S1’s are reversed.

As seen above, the spinor bundle corresponding to the representation ρ is the spinor
bundle for the trivial representation, twisted by the flat line bundle Cρ defined by ρ. The
Dirac operator on G has been computed in (2.6) with respect to the orthonormal vector fields
E = r−1C, A, H defined in (2.1) and the representation χ. The same expression holds on the
spinor bundle on the cusp ΓP \G, where the vector fields E, A, H now act on Σρ. There is no
ambiguity about the action of these vector fields since the twisting bundle Cρ is flat.

Introduce the function ν := e−u on the cusp and glue the “boundary at infinity” R/lZ×
{ν = 0}×R/2πR to the cusp, thus getting a manifold with boundary ΓP \G. The S1-fibration
structures extend to the boundary. We will show that for each fixed r, the metric gr on X is
conformal to a fibred cusp metric (with respect to the fibration of the boundary induced from
the ΓN0\N0 action). In the coordinates (x, ν = e−u, θ) of ΓP \G, the coefficients of a matrix
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a b
c d

)
are given by the inverse of the map (3.2):

x =
ac+ bd

c2 + d2
, ν = c2 + d2, θ = − arctan

( c
d

)
.

We then compute

E = r−1∂θ,

A = − cos 2θ∂θ + 2ν−1 cos 2θ∂x − 2ν sin 2θ∂ν , (3.3)

H = sin 2θ∂θ − 2ν−1 sin 2θ∂x − 2ν cos 2θ∂ν .

These equalities also can be found on p. 52 of [13] or p. 115 of [17]. It follows that in the
coordinates (x, ν, θ) the metric gr is given by

1
4ν2

dν2 +
ν2

4
dx2 + r2(dθ +

ν

2
dx)2,

thus

gΦ :=
4
ν2
gr =

(
dν

ν2

)2

+ r2
(

2dθ
ν

+ dx

)2

+ dx2.

This is what is called a fibred cusp metric, or a smooth metric on the fibred cusp tangent
bundle. To define this bundle, consider the subalgebra ΦV of the Lie algebra V of smooth
vector fields on the manifold with boundary ΓP \G, spanned over C∞(ΓP \G) by the vector
fields

Vν := ν2∂ν , Vθ := ν∂θ, Vx := ∂x.

This sub-algebra is by definition a free C∞(ΓP \G)-module so it is the space of sections of
a smooth vector bundle over C∞(ΓP \G). This vector bundle is denoted by ΦTΓP \G and it
comes equipped with a bundle morphism to the usual tangent bundle TΓP \G, induced from
the inclusion of the spaces of sections ΦV ↪→ V, which is an isomorphism over ΓP \G.

Since ΦV is a Lie algebra and the metric gΦ defined above is non-degenerate and smooth on
fibred cusp vector fields, it follows immediately from the Cartan formula that the Levi-Civita
connection on ΓP \G with respect to the metric gΦ extends to the boundary in the sense that
for every Vi, Vj , Vk ∈ ΦV, we have

〈∇ViVj , Vk〉 ∈ C∞(ΓP \G).

The spinor bundle Σρ extends over the boundary, such that the Clifford multiplication by Vi

is a smooth map. Take now the orthonormal frame

V1 := Vν , V2 := Vx − Vθ/2, V3 :=
1
2r
Vθ.

Its relationship to the global frame (E,A,H) is deduced from (3.3):

V1 =− ν

2
(sin 2θA+ cos 2θH)

V2 =
ν

2
(cos 2θA− sin 2θH)

V3 =
ν

2
E.

(3.4)

Denote by V a local lift to the spinor bundle of the orthonormal frame (V1, V3, V2). Let
σ : ΓP \G → Σ(3) be a smooth map into the 3-spinor representation space. It follows from
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the local formula

DΦ[V, σ] =
3∑

i=1

c(Vi)

[V, Vi(σ)] +
1
2

∑
j<k

c(Vj)c(Vk)〈∇ViVj , Vk〉


=

(
c(V1)(ν2∂ν−

ν

2
) + c(V2)(∂x −

ν∂θ

2
) + c(V3)∂θ

ν

2r
−rν

4

)
[V, σ]

(3.5)

that the Dirac operator with respect to gΦ (defined first on compactly supported spinors over
ΓP \G) extends to smooth spinors up to the boundary. Such an operator, a combination of
fibred cusp vector fields and of smooth bundle endomorphisms down to the boundary {ν = 0},
is called a fibred cusp differential operator. Thus,

DΦ ∈ Diff1
Φ(ΓP \G,Σρ).

The Dirac operator changes very nicely with respect to conformal changes of the metric.
We simply have

Dr = 2ν−2 ◦DΦ ◦ ν
so for r > 0, the Dirac operator Dr is a differential operator in ν−1Diff1

Φ(ΓP \G,Σρ).
The normal operator N (DΦ)(θ, ξ, τ) of DΦ (see [21]) is obtained by formally replacing

Vν 7→ iξ, Vθ 7→ iτ

and then restricting to ν = 0. The result is a family of differential operators on the fibers of
the boundary fibration (the x-circles) with coefficients in the spinor bundle, with parameters
θ ∈ S1, (ξ, τ) ∈ R2:

N (DΦ)(θ, ξ, τ) = c(V1)iξ + c(V2)
(
∂x −

iτ

2

)
+ c(V3)

iτ

2r
.

Definition 3.1. The operator DΦ is called fully elliptic if N (DΦ)(θ, ξ, τ) is invertible for all
(θ, ξ, τ) ∈ S1 × R2.

If DΦ is fully elliptic, then by the results of [21] it has a parametrix inside the calculus of
fibered cusp pseudodifferential operators Ψ−1

Φ (X) modulo compact operators.
Proof of Theorem 1.1. According to the decomposition principle (see e.g. [3, Proposition

1]), the essential spectrum of Dr can be computed outside a compact subset of X, thus it is a
superposition of the essential spectra of any self-adjoint extension ofDr over each cuspidal end
cP defined by νP < εP . We must make sure that such an extension exists (the Dirac operator
on a manifold with boundary may not admit self-adjoint extensions, e.g. on R+). We may take
for instance the Atiyah-Patodi-Singer boundary condition at the torus boundary {νP = εP }.
Special care is needed for the nullspace of the Dirac operator along the torus, we allow in the
domain only harmonic spinors of the form (u, c(V3)u) where u is in the i-eigenspace of c(V1).

Since any Γ-parabolic subgroup P is conjugated by an element in the maximal compact
subgroup K to the standard parabolic subgroup P0, we see that the cusp corresponding to P
is isometric to the “canonical” cusp P0\G. Thus, without loss of generality we work with the
canonical parabolic subgroup P0.

We have seen above that Dr belongs to ν−1Diff1
Φ(ΓP \G,Σρ) near the cuspidal end.

Lemma 3.2. The fibered cusp operator DΦ is fully elliptic on the cusp cP if and only if the
spin structure is nontrivial along cP .

8



Adiabatic limit of the Eta invariant

Proof. We have computed above the normal operator N := N (DΦ)(θ, ξ, τ). Clearly, N is an
elliptic self-adjoint operator on the circle in the variable x. Therefore N is invertible if and
only if N 2 is. Now by the anti-commutation of the Clifford variables,

N 2 = ξ2 +
τ2

4r2
+ (i∂x −

τ

2
)2.

This family of operators is independent of θ; it is strictly positive (hence invertible) for
(ξ, τ) 6= 0 ∈ R2. For ξ = τ = 0, N = −∂2

x, so ker(N ) is made of those spinors which are
constant in x in the trivialization V of the spinor bundle. For fixed θ, such spinors exist
globally on the x-circle if and only if the local lift V satisfies Vx=l = Vx=0. Now the frame
(V1, V2, V3) is obtained from (E,A,H) by the transformation (3.4) which is constant in x; thus
the lift V exists globally around the cusp if and only if the lift of (E,A,H) exists globally
around the cusp, which is by definition equivalent to the triviality of the spin structure around
the cusp cP .

If DΦ is fully elliptic, it follows from the above lemma and from the general theory of
fibred cups operators that Dr = 2ν−2DΦν has a parametrix Q ∈ νΨ−1

Φ over the cusp cP ,
modulo compact operators. But Q itself is compact due to the decaying weight ν; hence the
self-adjoint operator Dr has pure-point spectrum over the cusp.

Conversely, assume that the spin structure is trivial along the cusp. The operator Dr =
2ν−2DΦν computed in (3.5) has constant coefficients in x, thus it preserves the orthogonal
decomposition into zero-modes and high-energy modes

L2(ΓP \G∩{νP < εP },Σρ) =: H0 ⊕H′

where H0 is the space of spinors constant in x in the trivialization V (we have seen above
that V exists globally around the cusp if the spin structure is trivial along cP ) and H′ its
orthogonal complement. Over H′, by the same argument as above, there exists a compact
parametrix of Dr inside the fibered cusp calculus. Thus the essential spectrum of Dr over the
cusp cP only arises from the zero-modes, i.e., it is the essential spectrum of the operator

2ν−1

(
c(V1)(ν∂ν−

1
2
)− c(V2)

∂θ

2
+ c(V3)

∂θ

2r
−r

4

)
ν

acting in L2([0, ε)×S1,Σρ, dνdθ) with any boundary condition at ε which makes it self-adjoint.
We conjugate this operator through the Hilbert space isometry

L2 (dνdθ) → L2

(
dν

ν
dθ

)
φ 7→ ν

1
2φ.

We get the operator

Ar = 2c(V1)ν∂ν +
(
c(V3)
r

− c(V2)
)
∂θ−

r

2
.

This can be again decomposed according to the frequencies in the θ variable. Note that
although the local lift V may not exist globally, the ambiguity is locally constant so the
operator i∂θ is well-defined; moreover, it clearly commutes with Ar.

From (3.4), the frame (V1, V2, V3) is obtained (after rescaling) from the frame (E,A,H) by
a complete rotation around the E axis in time π. Such a rotation is a generator of π1(SO(3)) =
Z/2Z. Hence V exists globally around the θ circle if and only if the lift of (E,A,H) does not,
i.e., if the spin structure is nontrivial along the fiber S1/{±1}. Otherwise, if the spin structure
is trivial along the fiber S1/{±1}, then after time π the lift V changes sign.

9
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A spinor [V, σ] is in the m-eigenspace of i∂θ if and only if

σ(t+ θ) = e−imθσ(t). (3.6)

The resulting spinor should be π-periodic (since we work on PSL(2,R), we assumed that
−1 ∈ Γ). We distinguish two cases:

– The spin structure is nontrivial along the S1/{±1} fiber. Then V (π) = V (0) so we want
σ(π) = σ(0). The eigenspinor equation (3.6) gives m ∈ 2Z;

– The spin structure is trivial along the S1/{±1} fiber. Then V (π) = −V (0) so we want
σ(π) = −σ(0). The eigenspinor equation (3.6) gives m ∈ 1 + 2Z.

In both cases, the m-eigenspaces are 2-dimensional representation spaces for c(Vj), j = 1, 2, 3.
Denote by Ar,m the action of Ar on the m-eigenspace of i∂θ. We get a b-operator Ar,m (in

the sense of Melrose) in L2([0, ε),C2, ν−1dν)

Ar,m = 2c(V1)ν∂ν − c

(
V3

r
− V2

)
im−r

2
.

The b-normal operator of Ar,m is obtained by replacing ν∂ν with is where s is a complex pa-
rameter. One knows from the general theory of b-operators [22] that the following statements
are equivalent:

– λ does not belong to the essential spectrum of Ar,m, i.e., Ar,m − λ is Fredholm;
– N (Ar,m)(s)− λ is invertible for all s ∈ R.

We use now the representation

c(V1) =
[
i 0
0 −i

]
, c

(
V3

r
− V2

)
=

[
0 1 + r−2

−1 0

]
so that

N (Ar,k)(s) =
[
−2s −im(1 + r−2)
im 2s

]
−r

2
.

An easy computation shows that N (Ar,k)(s)− λ is invertible for all s ∈ R exactly for

λ ∈
(
−r

2
− |m|(1 + r2)

1
2 r−1, −r

2
+ |m|(1 + r2)

1
2 r−1

)
.

Thus the essential spectrum of Dr is the superposition of the complements of these intervals
for each k and for each cusp cp with trivial spin structure.

In the sequel, we will assume that the spin structure is trivial along the S1/{±1} fiber,
so the essential spectrum does not touch 0 for small r > 0. In this case an alternate proof of
Theorem 1.1 will follow from a computation using harmonic analysis over G (see Section 5).

4. Regularized trace and Geometric side

In this section, we study the relation of certain regularized trace of the odd heat operator of
Dr with the geometric side of the Selberg trace formula.

To use harmonic analysis over G, we need to fix the Haar measures over G and its sub-
groups. First, the parametrizations in (3.1) for A0, N0 carry the Lebesgue measure du, dn
from R to A0, N0. Now we fix Haar measures on K by vol(K/Z) = 1 and on G by∫

G
f(g) dg =

∫
N0

∫
A0

∫
K
f(nauk)e−u dn du dk (4.1)

10
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for f0 ∈ C0(G) and au = diag(e
u
2 , e−

u
2 ). For aP,u := k−1

P aukP ∈ A = k−1
P A0kP , we put

HP (g) = u for g ∈ NaP,uK.

The Iwasawa decomposition H ∼= G/K ∼= NA provides a parametrization of the geodesics
nA ·i ⊂ H to infinity. The parameter value is given by the function HP whose potential curves
are N -orbits (horocycles) on H. However, this parametrization is not adapted to Γ. To rectify
this, we replace kP by gP = auP kP where e−uP = vol(ΓN\N) where ΓN := Γ ∩ N . For the
new parameter

HP (g) + uP = HP0(gP g),

then the value 0 of this new parameter corresponds to the horocycle whose projection on Γ\H
has length 1.

For φ ∈ H := L2(Z\K) = 〈eimθ |m ∈ 2Z〉 and s ∈ C, we extend φ to G by

φs(nauk) = esuφ(k) for n ∈ N0, k ∈ K.

These functions constitute the Hilbert space Hs
∼= H in which the representation πs induced

from the parabolic subgroup P0 = N0A0Z acts as

(πs(g)φs)(x) = φs(xg).

From now on, we assume that P = {P1, . . . , Pκ} is a set of representatives for Γ-conjugacy
classes of the cuspidal parabolic subgroups and that the spin structure over cPi for 1 6 i 6 κt

is trivial. We also assume that the representation ρ maps the generator k ∈ π1(X) to the
identity 1, thus we consider only spin structures which are trivial along the S1/{±1}-fiber.
For the representation space V ∼= C2 of χ = ρ⊕ ρ, we let V P be the invariant subspace of V
under the action χ|ΓP

. Then

V Pi =

{
V if 1 6 i 6 κt

{0} if κt + 1 6 i 6 κ
.

For a cuspidal parabolic subgroup P , s ∈ C with <(s) > 1 and φ ∈ H ⊗ V P , the Eisenstein
series E(P, φ, s) is defined by

E(P, φ, s)(g) :=
∑

γ∈Γ/ΓP

χ(γ)φs(gPγ
−1g).

We refer to section 5 of [15] for more about the Eisenstein series where the Hecke operator
action is also involved. Note that there is no Eisenstein series attached to Pi if κt +1 6 i 6 κ.
The Eisenstein series E(P, φ, s) converges absolutely and locally uniformly for <(s) > 1 and
has the meromorphic extension over C. In particular, E(P, φ, s) is an automorphic form, that
is,

E(P, φ, s)(γg) = χ(γ)E(P, φ, s)(g) for γ ∈ Γ, g ∈ G.
For φ ∈ H⊗ V cst with V cst := ⊕P∈PV

P , we define

E(φ, s) =
∑
P∈P

E(P,prPφ, s) (4.2)

where prP denotes the orthogonal projection onto V P , and

Ecst(φ, s)(g) =
(
EP (φ, s)(g−1

P g)
)
P∈P

.

11
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Here, the constant term of EP (φ, s) is defined by

EP (φ, s)(g) := vol(ΓN\N)−1

∫
ΓN\N

prP E(φ, s)(ng) dn

for N = NP . Then we have
Ecst(φ, s) = φs +

(
C(s)φ)1−s

where C(s) is the scattering operator acting on H⊗ V cst.
Now let us describe the spectral decomposition of L2(Γ\G,χ),

L2(Γ\G,χ) = L2(Γ\G,χ)cus ⊕ L2(Γ\G,χ)res ⊕ L2(Γ\G,χ)ct.

Here L2(Γ\G,χ)cus is the space of the cusp forms in L2(Γ\G,χ), and decomposes into a
Hilbert direct sum of closed irreducible G-invariant subspaces with finite multiplicities. The
residual part L2(Γ\G,χ)res is the direct sum of the constants and of finitely many copies of
the complementary series representation of G such that some Eisenstein series has a pole at
s ∈ (1

2 , 1). These two spaces constitute the discrete part L2(Γ\G,χ)dis. The continuous part
L2(Γ\G,χ)ct is isometric to{

Φ ∈ L2(
1
2

+ iR,
dτ

4π
)⊗̂H⊗ V cst | Φ(

1
2
− iτ) = C(

1
2

+ iτ)Φ(
1
2

+ iτ)
}

by

IctΦ =
1
4π

∫ ∞

−∞
E(Φ,

1
2

+ iτ) dτ (4.3)

where E(Φ, 1
2 + iτ) is defined as in (4.2) with φ = Φ and s = 1

2 + iτ . For f ∈ L1(G), we define
a representation on L2(Γ\G,χ) by

π(f) :=
∫

G
f(g)π(g) dg

where π is the right translation action given by
(
π(g)φ

)
(x) = φ(xg) for φ ∈ L2(Γ\G,χ). We

put πdis(f) = prdis ◦ π(f), πct(f) = prct ◦ π(f) where prdis,prct denote the orthogonal pro-
jections onto L2(Γ\G,χ)dis, L

2(Γ\G,χ)ct respectively. In particular, πct(f) intertwines with
πcst

1
2
+iτ

(f) := π 1
2
+iτ (f)⊗ IdV cst by Ict given in (4.3).

Since D̃r is a left invariant differential operator, there is a function f̂t,r ∈ C∞(G,M(2,C))
such that

f̂t,r(x−1y) =
(
D̃re

−t eD2
r
)
(x, y) for x, y ∈ G.

By the heat kernel estimates in [12], which also holds for the generalized Laplacian D̃2
r with

the form in (2.3), we have

||di
t d

j
x d

k
y f̂t,r(x−1y)|| 6 Ct−

5
2
−i−j−k exp

(
−
d2

G(x, y)
4t

)
(4.4)

where C is a positive constant and dG is the metric over G. (Note that we apply the method
in [12] to a certain co-compact discrete subgroup Γ′ in G to obtain the above estimate.) Put
ft,r := tr(f̂t,r) where ‘tr’ denotes the local trace over M(2,C). Then the estimate (4.4) implies
that ft,r lies in the Harish-Chandra L1-Schwartz space C1(G)(⊂ L1(G)) defined by

C1(G) =
{
f ∈ C∞(G)

∣∣ |f(D1kθ1aukθ2D2)|

6 Ce−|u|(1 + |u|+ |θ1 + θ2|)−n, ∀n ∈ N, D1, D2 ∈ g
}

12
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where f(D1kθ1aukθ2D2) denotes the convolution D1 ∗ δkθ1
∗ δau ∗ δkθ2

∗D2 evaluated on f . Let
us put

K(t, x, y) :=
∑

γ∈Z\Γ

f̂t,r(x−1γy)χ(γ) =
∑

γ∈Z\Γ

D̃re
−t eD2

r (x, γy)χ(γ) for x, y ∈ G,

which is absolutely uniformly convergent on compact sets in G. For a Γ-cuspidal parabolic
subgroup Pj = P = NAZ, we define the constant term of K(t, x, y) along P as follows,

KP (t, x, y) = vol(ΓN\N)−1

∫
ΓN\N

∑
γ∈Z\ΓP

f̂t,r(x−1γny)χ(γ) prP dn.

For u ∈ R, let αP (u) be the characteristic function of {x ∈ G |HP (x) + uP > u}, which
projects on certain region CP,u ⊂ Γ\G for a large u. Then the truncation of K(x, x) is defined
by

ΛuK(t, x, x) := K(t, x, x)−
∑
P∈P

αP (u)KP (t, x, x),

which is an automorphic form over Γ\G.

Proposition 4.1. (Maass-Selberg Relation) For u� 0, we have∫
Γ\G

tr
(
ΛuK(t, x, x)

)
dx

= u
1
2π

∫ ∞

−∞
Tr

(
πcst

1
2
+iτ

(ft,r)
)
dτ + Tr

(
πdis(ft,r)

)
+

1
4
Tr

(
C(

1
2
)πcst

1
2

(ft,r)
)

− 1
4π

∫ ∞

−∞
Tr

(
C ′(

1
2
− iτ)C(

1
2

+ iτ)πcst
1
2
+iτ

(ft,r)
)
dτ. (4.5)

Proof. For a test function with compact support and K-finite condition, we can prove this
proposition just following the argument in p.58–60 of [15]. Then this can be generalized
easily to our test function ft,r as in proof of the theorem 25 of [15]. The finiteness of the
integrand of the integrals on the right-hand side follows from Theorem 1.1 and Lemma
5.2 since Tr

(
πcst

1
2
+iτ

(ft,r)
)

is given by κt-copies of Θ 1
2
+iτ (ft,r) := Tr

(
π 1

2
+iτ (ft,r)

)
recalling

πcst
1
2
+iτ

(ft,r) := π 1
2
+iτ (ft,r)⊗ IdV cst .

From Proposition 4.1, one can see that the first term on the right side of (4.5) is blowing
up as u→∞. Hence it is natural to remove this term in the following definition,

Tr
(
Dre

−tD2
r
)

:=Tr
(
πdis(ft,r)

)
+

1
4
Tr

(
C(

1
2
)πcst

1
2

(ft,r)
)

(4.6)

− 1
4π

∫ ∞

−∞
Tr

(
C ′(

1
2
− iτ)C(

1
2

+ iτ)πcst
1
2
+iτ

(ft,r)
)
dτ.

This regularized trace is the essentially same as the b-trace of Melrose [22], and is related with
the geometric side of the Selberg trace formula as we will see in Proposition 4.2. Denote

h(τ) = Θ 1
2
+iτ (f), h(n) = Θn(f)

where Θ 1
2
+iτ (f) := Tr

(
π 1

2
+iτ (f)

)
for a principal series representation π 1

2
+iτ , and Θn(f) :=

Tr
(
πn(f)

)
for a discrete series representation πn. An operator J(s) over H = L2(Z\K) is

13
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defined by

J(s)φm =
1√
π
·

Γ(s)Γ(s− 1
2)

Γ(s+ m
2 )Γ(s− m

2 )
φm (4.7)

for the basis φm(kθ) = eimθ ∈ H where kθ =
(

cos θ sin θ
− sin θ cos θ

)
. The following proposition

follows from Theorem 13 and Lemma 24 in [15].

Proposition 4.2. (Selberg Trace Formula)

Tr
(
Dre

−tD2
r
)

=
vol(Γ\G)

2π

( ∫ ∞

−∞
τ tanh(πτ)ht,r(τ) dτ +

∑
n≡0(mod2)

(|n| − 1)ht,r(n)
)

(4.8)

+
∑

[γ]∈Z\Γhyp

tr
(
χ(γ)

)
uγ

4π[Γγ : Z] sinh uγ

2

∫ ∞

−∞
cos(uγτ)ht,r(τ) dτ

− 2κt
( 1

2π

∫ ∞

−∞
ψ(1 + 2iτ)ht,r(τ) dτ +

1
2

∑
n≡0(mod2)

ht,r(n)
)

+ 2(κ− κt)
log 2
2π

∫ ∞

−∞
ht,r(τ) dτ

+
κt

2
ht,r(0)− 1

4π
p.v.

∫ ∞

−∞
Tr

(
J(

1
2

+ iτ)−1J ′(
1
2

+ iτ)π 1
2
+iτ (ft,r)

)
dτ

where ht,r(τ), ht,r(n) are defined for ft,r, the sum
∑

[γ]∈Γhyp
is given over the Γ-conjugacy class

of hyperbolic elements γ conjugate to auγ , and ψ(z) = Γ′(z)Γ(z)−1.

5. Fourier transforms ht,r(τ), ht,r(n)

In this section, we compute ht,r(τ), ht,r(n) which are needed to analyze the right hand side
of the Selberg trace formula.

First, let us consider ht,r(τ). For this, recall

ht,r(τ) = Tr
(
π 1

2
+iτ (ft,r)

)
=

∞∑
n=1

∫
G
ft,r(g)

(
π 1

2
+iτ (g)ξn, ξn

)
dg (5.1)

where {ξn}∞n=1 is the orthonormal basis of the representation space of π 1
2
+iτ , which is given

by the union of the following spaces indexed by m ∈ Z for s = 1
2 + iτ ,

H(s,m) :=
{
φs ∈ Hs

∣∣φs(naukθ) = esueimθ for naukθ ∈ N0A0K
}
.

Since D̃r is Z-invariant, the Fourier transform ht,r(τ) is nontrivial only ifm is an even number.
Recalling

D̃r =
(2− r2

2r

)
+

(
r−1Z 2X−
−2X+ −r−1Z

)
the problem is again reduced to the following lemma, which can be obtained applying the
equalities in (3.3).

Lemma 5.1. We have

Zf = mf, X±f = − i
2
(
m± 2s

)
e±2iθf for f ∈ H(s,m).

14
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The second equality in Lemma 5.1 implies that X± maps H(s,m) to H(s,m ± 2). From
these facts,

D̃r

(
φτ,m−2

φτ,m

)
=

(
r−1(m− 2) + 2−1` −i(m− 1− 2iτ)
i(m− 1 + 2iτ) −r−1m+ 2−1`

) (
φτ,m−2

φτ,m

)
where ` = 2−r2

r and φτ,m−2 ∈ H(1
2 + iτ,m − 2), φτ,m ∈ H(1

2 + iτ,m). Hence the action of D̃r

on H(1
2 + iτ,m− 2)⊕ H(1

2 + iτ,m) is given by the roots of

λ2 + rλ+
r2

4
− (m− 1)2

r2
= (m− 1)2 + 4τ2, (5.2)

that is,

λ±(τ,m) = −r
2
±

(
(m− 1)2(1 + r−2) + 4τ2

)1/2 for m ∈ 2 Z, τ ∈ R+.

Therefore we have

Lemma 5.2.

ht,r(τ) = Θ 1
2
+iτ (ft,r) =

∑
m∈2Z

(
λ+(τ,m)e−tλ+(τ,m)2 + λ−(τ,m)e−tλ−(τ,m)2

)
.

Just repeating the above computation applied to the Eisenstein series E(P, φm, s), we can
also prove Theorem 1.1.

Next we compute ht,r(n) for the discrete series representation πn. We review the discrete
series representations of G = SL(2,R). For this it is more convenient to use the Lie group
SU(1, 1) which is conjugate to SL(2,R) within SL(2,C):(

1 i
i 1

)
SU(1, 1)

(
1 i
i 1

)−1

= SL(2,R).

Here

SU(1, 1) =
{(

α β

β α

) ∣∣∣ |α|2 − |β|2 = 1
}
.

Then the holomorphic discrete series πn (n ∈ N) as a representation of SU(1, 1) acts on
analytic functions on the disc by

πn

(
α β

β α

)
f(z) = (−βz + α)−nf

(
αz − β

−βz + α

)
,

and the norm, except for a constant factor, is given by

||f || =

{ ∫
|z|<1 |f(z)|2 (1− |z|2)n−2 dzdz̄ for n > 2

sup06r<1

∫ 2π
0

∣∣f(reiθ)
∣∣2 dθ for n = 1

.

The anti-holomorphic discrete series πn (n ∈ −N) as a representation of SU(1, 1) acts on
analytic functions on the disc by

πn

(
α β

β α

)
f(z) = (−βz + α)−nf

(
αz − β

−βz + α

)
with the same norm. We refer to sections 5,6 of chapter II in [16] for a nice introduction on
the discrete series πn of SL(2,R).
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Lemma 5.3. For the basis {zN}N∈{0}∪N of the space of analytic functions on the disc, we
have

X+z
N = (N + n)zN+1, X−z

N = −NzN−1,

Z zN = (2N + n) zN by the action of πn, n ∈ N,

X+z
N = −NzN+1, X−z

N = (N + n)zN−1,

Z zN = −(2N + n)zN by the action of πn, n ∈ −N.

Proof. By elementary computations, we can see that the subgroups generating K,H,A are
transformed as follows:(

cos θ sin θ
− sin θ cos θ

)
−→

(
eiθ 0
0 e−iθ

)
(
et 0
0 e−t

)
−→

(
cosh t i sinh t
−i sinh t cosh t

)
(

cosh t sinh t
sinh t cosh t

)
−→

(
cosh t sinh t
sinh t cosh t

)
where the matrices on the right side denote elements in SU(1, 1). To see the action of K under
πn for n ∈ N, let us consider

πn

(
eiθ 0
0 e−iθ

)
zN = e(2N+n)iθzN , (5.3)

which implies

Z zN = −i d
dθ

∣∣∣
θ=0

πn

(
eiθ 0
0 e−iθ

)
zN = (2N + n) zN .

In a similar way, we can show that the action πn for n ∈ N by H,A are given by

H zN = i(N + n)zN+1 + iNzN−1, A zN = (N + n)zN+1 −NzN−1.

These imply the equalities for πn for n ∈ N. The case for πn for n ∈ −N can be obtained by
taking the complex conjugates of equalities for the action of πn for n ∈ N.

Now we consider the action of D̃r under πn for n ∈ N. From (5.3), we can see that zN are
the K-type vectors of weight m if m = 2N + n. By Proposition 5.3, over (α, β) for K-type
(m− 2),m vectors α, β in the representation space of πn the Dirac operator D̃r acts by(

2− r2

2r

)
Id +

(
r−1(m− 2) n−m
−(n+m− 2) −r−1m

)
noting N = (m− n)/2. We have two cases: First, if β is not the minimal K-type for πn, that
is, m  n, as in the derivation of (5.2), we can obtain the corresponding eigenvalue equation

λ2 + rλ+
r2

4
− (m− 1)2

r2
= (m− 1)2 − (n− 1)2.

Hence

λ±(n,m) = −r
2
±

(
(m− 1)2(1 + r−2)− (n− 1)2

)1/2 for m = n+ 2, n+ 4, . . ..
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Second, if β is the minimal K-type for πn, that is, K-type m = n vector, then α is just trivial.
Hence, the eigenvalue is given by

λ(n) = −r
2

+
1− n

r
.

Repeating the same procedure as in the case of πn for n ∈ N, we can obtain the same
eigenvalues λ±(n,m), λ(n) for πn for n ∈ −N. In our case, n should be an even number since
Γ contains −Id. Combining all the facts derived in the above, we have

Lemma 5.4. For n ∈ 2N, h(n) = Θn(f), we have

ht,r(n) = ht,r(−n) =
(
λ(n)e−tλ(n)2

+
∑

m∈n+2N

(
λ+(n,m)e−tλ+(n,m)2 + λ−(n,m)e−tλ−(n,m)2

))
where λ(n) = − r

2 + 1−n
r , λ±(n,m) = − r

2 ±
(
(m− 1)2(1 + r−2)− (n− 1)2

)1/2
.

6. Eta function of Dr: Principal series part

Now we study the eta function defined by

η(Dr, s) :=
1

Γ( s+1
2 )

∫ ∞

0
t

s−1
2 Tr

(
Dre

−tD2
r
)
dt

for <(s) � 0 and r near 0. First let us recall that the bottom of each branch of continuous
spectrum of Dr goes to ∞ as r → 0 by Theorem 1.1. Hence for a small r > 0, Tr

(
Dre

−tD2
r
)

decays exponentially as t→∞. To analyze Tr
(
Dre

−tD2
r
)

in more detail, we apply Proposition
4.2 which relates Tr

(
Dre

−tD2
r
)

with the geometric side. Note that this geometric side can be
decomposed into two parts:

Trp
(
Dre

−tD2
r
)

=Tr
(
Dre

−tD2
r
)
− Trd

(
Dre

−tD2
r
)
,

Trd
(
Dre

−tD2
r
)

=
vol(Γ\G)

2π

∑
n≡0(mod2)

(|n| − 1)ht,r(n)− κt
∑

n≡0(mod2)

ht,r(n)

and accordingly we also decompose the eta function η(Dr, s) into

η(Dr, s) = ηp(Dr, s) + ηd(Dr, s).

The principal part of the eta function ηp(Dr, s) is studied in this section and the other part
ηd(Dr, s) will be considered in the next section.

We start with the following lemma.

Lemma 6.1. Putting I(m, r, τ) =
(
(m− 1)2(1 + r−2) + 4τ2

) 1
2 ,

ht,r(τ) = exp
(
− r2

4
t− 4τ2t

)
·

∑
m∈2Z

e−(m−1)2(1+r−2)t
( ∞∑

k=0

(
− r

(rt)2k

(2k)!
+ 2

(rt)2k−1

(2k − 1)!
)
I(m, r, τ)2k

)
where the term (rt)2k−1

(2k−1)! for k = 0 vanishes and for t ∈ [0, 1] and r ∈ (0, 1] the following
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estimate holds,

|ht,r(τ)| 6 2r exp
(
− r2

4
t− 4τ2t

)
·

∑
m∈2Z

e−(m−1)2(1+r−2)t
(
1 + I(m, r, τ)2 + eI(m,r,τ)2rt

)
. (6.1)

Proof. We can rewrite ht,r(τ) as follows,

ht,r(τ) = exp
(
− r2

4
t− 4τ2t

) ∑
m∈2Z

e−(m−1)2(1+r−2)t

·
(
− r

2
(
eI(m,r,τ)rt + e−I(m,r,τ)rt

)
+ I(m, r, τ)

(
eI(m,r,τ)rt − e−I(m,r,τ)rt

) )
. (6.2)

Now the Taylor expansion of eI(m,r,τ)rt ± e−I(m,r,τ)rt gives us the claimed form of the first
equality. To prove the second estimate, we note that

∞∑
k=0

(
− r

(rt)2k

(2k)!
+ 2

(rt)2k−1

(2k − 1)!
)
I(m, r, τ)2k

= −r + rt
(
2− r2t

2
)
I(m, r, τ)2 +

∞∑
k=2

(rt)2k−1

(2k − 1)!
(
2− r2t

2k
)
I(m, r, τ)2k.

For t ∈ [0, 1] and r ∈ (0, 1], observe that

∞∑
k=2

(rt)2k−1

(2k − 1)!
(
2− r2t

2k
)
I(m, r, τ)2k 6 2r

∞∑
k=0

(rt)k

k!
I(m, r, τ)2k,

from which it is easy to derive the estimate.

Our first task in this section is to get the asymptotic expansion of Trp
(
Dre

−tD2
r
)

as t→ 0.
By Lemma 6.1, we can rewrite the first part of Trp

(
Dre

−tD2
r
)

from (4.8) as follows,∫ ∞

−∞
τ tanh(πτ)ht,r(τ) dτ =

∑
m∈2Z

exp
(
− r2

4
t− (m− 1)2(1 + r−2)t

)
(6.3)

·
∞∑

k=0

∑
k=p+q

(
ak,p,q(r)t2k + bk,p,q(r)t2k−1

)
· (m− 1)2p(1 + r−2)p

∫ ∞

−∞
τ tanh(πτ) (2τ)2qe−4τ2t dτ.

Here the coefficients ak,p,q(r), bk,p,q(r) are given by

ak,p,q(r) = −
(
k

p

)
r2k+1

(2k)!
, bk,p,q(r) = 2

(
k

p

)
r2k−1

(2k − 1)!
(with b0,p,q(r) = 0),

which are of order O(r) uniformly for small r > 0. The integral in the last line can be handled
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as follows,∫ ∞

−∞
τ tanh(πτ) (2τ)2qe−4τ2t dτ =(−1)q∂q

t

∫ ∞

−∞
τ tanh(πτ) e−4τ2t dτ

=(−1)q∂q
t

∫ ∞

0
tanh(π

√
x)e−4tx dx

=(−1)q∂q
t

π

8t

∫ ∞

0

( ∞∑
k=0

(−4tx)k

k!

)cosh−2(π
√
x)√

x
dx.

Hence we have∫ ∞

−∞
τ tanh(πτ) (2τ)2qe−4τ2t dτ ∼

∞∑
k=0

ak t
−q−1+k as t→ 0 (6.4)

where ak are independent of r. Now we note the following equalities for the first and the third
factors on the right hand side of (6.3),∑

m∈2Z
(m− 1)2p(1 + r−2)p exp

(
− (m− 1)2(1 + r−2)t

)
(6.5)

=(−1)p∂p
t

∑
m∈Z

exp
(
− 4(m− 1

2
)2(1 + r−2)t

)
=(−1)p∂p

t

∑
m∈Z

(−1)m

√
π

2
√

(1 + r−2)t
exp

(
− π2m2

4(1 + r−2)t
)

=(−1)p∂p
t

 √
πr

2
√

(1 + r2)t
+

∑
m∈Z−{0}

(−1)m

√
π

2
√

(1 + r−2)t
exp

(
− π2m2

4(1 + r−2)t
)

where the second equality is the Poisson summation formula. Note that the terms for nonzero
m in the last line of (6.5) decays exponentially as t → 0, so that small time asymptotics is
given by the first term in the last line of (6.5). Therefore we have∑

m∈2Z
(m− 1)2p(1 + r−2)p exp

(
− (m− 1)2(1 + r−2)t

)
∼ a(r) t−

1
2
−p as t→ 0 (6.6)

where a(r) is given by r√
1+r2

up to a constant, hence it is of O(r) for small r > 0.

By (6.3) and the asymptotic expansions in (6.4), (6.6), taking care of the r-dependence of
their coefficients, we can conclude∫ ∞

−∞
τ tanh(πτ)ht,r(τ) dτ ∼

∞∑
k=0

ak(r) t−
3
2
+k as t→ 0 (6.7)

where ak(r) depends only on r and is of O(r2) for small r > 0 uniformly with respect to the
index k.

Now for the second part of Trp
(
Dre

−tD2
r
)
, we repeat the above process and noting∫ ∞

−∞
cos(uγτ) (2τ)2qe−4τ2t dτ = (−1)q∂q

t

∫ ∞

−∞
cos(uγτ) e−4τ2t dτ

= (−1)q∂q
t

( √π√
t

exp(−
u2

γ

4t
)
)
,

we can see that this term does not contribute to the asymptotics as t→ 0.
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To deal with the third part of Trp
(
Dre

−tD2
r
)
, we recall

ψ(1 + z) ∼ log z +
1
2z

−
∞∑

k=1

B2k

2k
z−2k as z →∞ (6.8)

where B2k is the Bernoulli’s number, which implies∫ ∞

−∞
ψ(1 + 2iτ) (2τ)2qe−4τ2t dτ (6.9)

∼ b t−
1
2
−q log t + c +

∞∑
k=0

ak t
−q− 1

2
+k as t→ 0

where the constant c vanishes unless q = 0. Proceeding as before and using (6.9),∫ ∞

−∞
ψ(1 + 2iτ)ht,r(τ) dτ ∼

∞∑
k=0

ak(r) t−1+ k
2 + bk(r) t−1+k log t as t→ 0 (6.10)

where ak(r), bk(r) depend only on r and is of O(r2) for small r > 0 uniformly with respect to
the index k.

For the fourth part of Trp
(
Dre

−tD2
r
)
, it is also easy to get the following asymptotic ex-

pansion ∫ ∞

−∞
ht,r(τ) dτ ∼

∞∑
k=0

ak(r) t−1+k as t→ 0 (6.11)

where ak(r) depends only on r and is of O(r2) for small r > 0 uniformly with respect to the
index k.

Now it is easy to see that the next term κt
2 ht,r(0) contributes to the small time asymptotics

by (6.7) with the first term a1(r)t−
1
2 .

By (4.7), the integrand of the last integral of the geometric side can be expressed by

ψ
(1
2

+ iτ
)

+ ψ
(
iτ

)
− ψ

(1 +m

2
+ iτ

)
− ψ

(1−m

2
+ iτ

)
. (6.12)

Using the following formulas about ψ(z),

ψ(z + 1) =
1
z

+ ψ(z), ψ(z) + ψ(z +
1
2
) = 2

(
ψ(2z)− log 2

)
, (6.13)

the terms in (6.12) can be rewritten as

2
(
ψ(1 + iτ)− ψ(1 + 2iτ)

)
− 1
iτ

+ 2 log 2

− 4
( 1

1 + 4τ2
+

3
32 + 4τ2

+ . . .+
m− 1

(m− 1)2 + 4τ2

)
.

The terms in the first line gives us the asymptotics as (6.10). The terms in the second line also
can be handled as in a similar way and we can show that these term gives us the asymptotics

∞∑
k=0

ak(r) t
−1+k

2 as t→ 0 (6.14)

where ak(r) depends only on r and is of O(r2) for small r > 0 uniformly with respect to the
index k. Combining (6.7), (6.10), (6.14) and facts derived in the above, we obtain
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Theorem 6.2. The small time asymptotics is given by

Trp
(
Dre

−tD2
r
)
∼

∞∑
k=0

ak(r) t
−3+k

2 + bk(r) t−1+k log t as t→ 0 (6.15)

where ak(r), bk(r) depend only on r and is of O(r2) for small r > 0 uniformly with respect to
the index k. In particular, if κt = 0, it has the following simple form,

Trp
(
Dre

−tD2
r
)
∼

∞∑
k=0

ak(r) t
−3+k

2 as t→ 0.

This theorem also immediately implies

Theorem 6.3. For a sufficiently small r > 0, the function ηp(Dr, s) defined for <(s) > 2
extends meromorphically to C and may have a double pole at s = 1 and simple poles at
s ∈ {2, 0,−1,−2,−3, . . .}. In particular, if κt = 0, ηp(Dr, s) may have only simple poles at
s ∈ {2, 1, 0,−1,−2,−3, . . .}.

In view of Theorem 6.3, it is natural to define the principal part of the eta invariant of
Dr by

ηp(Dr) :=
(
ηp(Dr, s)−

r0
s

)∣∣∣
s=0

where r0 is the residue of the simple pole of ηp(Dr, s) at s = 0. Now let us consider the
adiabatic limit of ηp(Dr) as r → 0. For this, we need

Proposition 6.4. As r → 0, Trp
(
Dre

−tD2
r
)

converges to 0 for t ∈ (0,∞), and t
3
2 Trp

(
Dre

−tD2
r
)

converges to 0 uniformly for t ∈ [0, 1].

Proof. From the expression of ht,r(τ) in (6.2), we can see

|ht,r(τ)| 6 C exp
(
− r2

4
t− 4τ2t

) ∑
m∈2Z

e−c(m−1)2(1+r−2)t for small r > 0

where C, c are the positive constants that do not depend on r, τ . Hence, the integral∫ ∞

−∞
τ tanh(πτ)ht,r(τ) dτ

vanishes as r → 0 by the dominated convergence theorem. The same argument holds for
the other terms defining Trp

(
Dre

−tD2
r
)
. Hence Trp

(
Dre

−tD2
r
)

converges to 0 as r → 0. The
uniform convergence of t

3
2 Trp

(
Dre

−tD2
r
)

follows from the following estimate∣∣∣t 3
2 Trp

(
Dre

−tD2
r
)∣∣∣ 6 Cr2 for t ∈ [0, 1], (6.16)

which also follows easily from (6.1) and (6.5).

Now we have

Theorem 6.5.

lim
r→0

ηp(Dr) = 0.
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Proof. Let us consider

ηp(Dr) =
1√
π

∫ ∞

1
t−

1
2 Trp

(
Dre

−tD2
r
)
dt

+
( 1

Γ( s+1
2 )

∫ 1

0
t

s−1
2 Trp

(
Dre

−tD2
r
)
dt− r0

s

)∣∣∣
s=0

.

For the integration over [1,∞), recalling that Trp
(
Dre

−tD2
r
)

is exponentially decaying as
t→∞, it is easy to see that this part vanishes as r → 0 by Proposition 6.4 and the dominated
convergence theorem. By (6.15) the meromorphic extension of the integral

∫ 1
0 · dt has the

following form for <(s) > −ε with small ε > 0,∫ 1

0
t

s−1
2 Trp

(
Dre

−tD2
r
)
dt =

2a0

s− 2
+

2a1

s− 1
− 4b0

(s− 1)2
+

2a2

s

+
2a3

s+ 1
− 4b1

(s+ 1)2
+

∫ 1

0
t

s−1
2 Tr∗p

(
Dre

−tD2
r
)
dt, (6.17)

where

Tr∗p
(
Dre

−tD2
r
)

:= Trp
(
Dre

−tD2
r
)
− a0 t

− 3
2 − a1 t

−1 − b0t
−1 log t− a2 t

− 1
2 − a3 − b1 log t.

By Theorem 6.2, all the coefficients a0, a1, a2, a3, b0, b1 (as function of variable r) vanish as
r → 0. Hence putting s = 0 except the term 2a2

s , we can see that −a0 − 2a1 − 4b1 + 2a3 − 4b1
vanishes as r → 0. For the last integral with s = 0 also vanishes as r → 0 since∣∣∣t− 1

2 Tr∗p
(
Dre

−tD2
r
)∣∣∣ 6 Cr2 for t ∈ [0, 1],

which follows from (6.16) and the coefficients a0, a1, a2, a3, b0, b1 vanish as order of r2. This
completes the proof.

7. Eta function of Dr: Discrete series part

In this section we study the discrete part of the eta function ηd(Dr, s) when r > 0 is sufficiently
small.

First, from Lemma 5.4, let us recall that ht,r(n) is given by λ(n)’s and λ±(n,m)’s and we
decompose Trd

(
Dre

−tD2
r
)

into the corresponding two parts. Then we also have

ηd(Dr, s) = η1
d(Dr, s) + η2

d(Dr, s) for <(s) � 0

where

η1
d(Dr, s) = rs (2g − 2 + κ)

(
−

∞∑
k=1

2(2k − 1)
(2k − 1 + r2

2 )s

)
+ rsκt

( ∞∑
k=1

2
(2k − 1 + r2

2 )s

)

η2
d(Dr, s) = (2g − 2 + κ)

(
2
∞∑

k=1

(2k − 1)
∑

`∈k+N
λ+(2k, 2`)−s − λ−(2k, 2`)−s

)
− κt

(
2
∞∑

k=1

∑
`∈k+N

λ+(2k, 2`)−s − λ−(2k, 2`)−s
)
.
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Here we used the fact
vol(Γ\G) = 2π (2g − 2 + κ)

where the volume of Γ\G is given with respect to the Haar measure in (4.1) (recall that the
volume of the circle K/Z is normalized to be 1).

Now we investigate η1
d(Dr, s). Let us recall the Hurwitz zeta function

ζ(s, a) =
∞∑

k=0

(k + a)−s

which has a meromorphic extension to the whole C with a simple pole at s = 1. If we set

ζ0(s, a) =
∞∑

k=1

(2k − 1 + a)−s,

then
ζ0(s, a) = ζ(s, a)− 2−sζ(s,

a

2
).

By these definitions, for <(s) > 2,

η1
d(Dr, s) = 2 (2− 2g − κ) rs

(
ζ0(s− 1,

r2

2
)− r2

2
ζ0(s,

r2

2
)
)

+ 2κtrsζ0(s,
r2

2
).

The right hand side gives the meromorphic extension of η1
d(Dr, s) over C with simple poles

at s = 1, 2. We can also see that η1
d(Dr, s) is regular at s = 0 from this equality. Recalling

ζ(0, a) =
1
2
− a, ζ(−1, a) = −1

2

(
a2 − a+

1
6

)
,

we can see that

ζ0(0, a) = −a
2
, ζ0(−1, a) = −1

4

(
a2 − 1

3

)
.

Using these, we obtain

η1
d(Dr, 0) = (2− 2g − κ)

(
1
6

+
r4

8

)
− κt r

2

2
.

Summarizing all these for η1
d(Dr, s), we have

Proposition 7.1. For a sufficiently small r > 0, the function η1
d(Dr, s), define for <(s) > 2,

extends meromorphically to C and may have simple poles at s = 1, 2. The following equality
holds,

lim
r→0

η1
d(Dr, 0) =

1
6

(2− 2g − κ) . (7.1)

To get the meromorphic extension of η2
d(Dr, s) over C, we rewrite this as follows,

η2
d(Dr, s) = 2 (2g − 2 + κ) rsfr(s)− 2κtrsgr(s).

Here

fr(s) =
∑

`>k>1

(2k − 1)
((
qr(k, `)−

r2

2
)−s −

(
qr(k, `) +

r2

2
)−s

)
,

gr(s) =
∑

`>k>1

(
qr(k, `)−

r2

2
)−s −

(
qr(k, `) +

r2

2
)−s
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where
qr(k, `) =

(
(2`− 1)2(1 + r2)− r2(2k − 1)2

) 1
2 .

Now we put hr(s) =
∑

`>k>1(2k − 1)qr(k, `)−s which can be written as

hr(s) =
∑
k>1

(2k − 1)1−s
∑
`>k

(2`− 1)−s
( 1 + r2

(2k − 1)2
− r2

(2`− 1)2
)− s

2
.

From this and the above analysis of ζ0(s, 0), we can see that hr(s) is holomorphic for <(s) > 2.
For the meromorphic extension of hr(s) over C, we use the identity as = exp(s log(1+(a−1)))
to get ( 1 + r2

(2k − 1)2
− r2

(2`− 1)2
)− s

2

=1− s

2
( 1 + r2

(2k − 1)2
− r2

(2`− 1)2
− 1

)
+
s

4
( 1 + r2

(2k − 1)2
− r2

(2`− 1)2
− 1

)2 + . . . .

From this, we can see that hr(s) has the meromorphic extension over C and may have simple
poles at s = 2, 1, 0,−1, . . . with the residues which are continuous with respect to r. Using
the following equality

fr(s) =
(
r2shr(s+ 1) + r6

s(s+ 1)(s+ 2)
24

hr(s+ 3) + r10θ(s, r)
)

where θ(s, r) is regular at s = 0 and is continuous at r = 0, we can conclude that fr(s) is
regular at s = 0 and the limit of fr(0) as r → 0 is trivial. In a similar way, we can see that
the same conclusion is true for gr(s). By all these facts, we have

Proposition 7.2. For a sufficiently small r > 0, the function η2
d(Dr, s), defined for <(s) > 2,

extends meromorphically to C and may have simple poles at s ∈ {1,−1,−2,−3, . . .}. The
following equality holds,

lim
r→0

η2
d(Dr, 0) = 0. (7.2)

By Proposition 7.1, 7.2, we can define

ηd(Dr) := ηd(Dr, s)
∣∣
s=0

= η1
d(Dr, 0) + η2

d(Dr, 0)

and we summarize our results in the following

Theorem 7.3. For a sufficiently small r > 0, the discrete part of the eta function ηd(Dr, s),
defined for <(s) > 2, extends meromorphically to C and may have simple poles at s ∈
{2, 1,−1,−2,−3, . . .}. Moreover,

lim
r→0

ηd(Dr) =
1
6

(2− 2g − κ) .
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