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1. Details on the paper “Bergman and Calderón projectors for Dirac
operators”

For a Dirac operator Dḡ over a spin compact Riemannian manifold with boundary (X, g),
we give a natural construction of the Calderón projector and of the associated Bergman
projector on the space of harmonic spinors on X, and we analyze their Schwartz kernels.
Our approach is based on the conformal covariance of Dḡ and the analysis of the complete
conformal metric g = g/ρ2 where ρ is a smooth function on X which is equal to the distance

to the boundary near ∂X. We then show that 1
2
(Id + S̃(0)) is the orthogonal Calderón

projector, where S̃(λ) is the holomorphic family in {<(λ) ≥ 0} of normalized scattering
operators constructed in [22], which are classical pseudo-differential of order 2λ. Finally we
construct natural conformally covariant odd powers of the Dirac operator on any compact
spin manifold.

2. Details on the paper “Chern-Simons line bundle on Teichmüller space”

In [11], S.S. Chern and J. Simons defined secondary characteristic classes of connections
on principal bundles, arising from Chern-Weil theory. Their work has been extensively
developed to what is now called Chern-Simons theory, with many applications in geometry
and topology, but also in theoretical physics. For a Riemannian oriented 3-manifold X, the
Chern-Simons invariant CS(ω, S) of the Levi-Civita connection form ω in an orthonormal
frame S is given by the integral of the 3-form on X

1
16π2 Tr(ω ∧ dω + 2

3
ω ∧ ω ∧ ω).

On closed 3-manifolds, the invariant CS(ω) is independent of S up to integers. By the
Atiyah-Patodi-Singer theorem for the signature operator, the Chern-Simons invariant of
the Levi-Civita connection is related to the eta invariant by the identity 3η ≡ 2CS modulo
Z (see for instance [45]).

The theory has been extended to SU(2) flat connections on compact 3-manifolds with
boundary by Ramadas-Singer-Weitsman [39], in which case CS(ω) does depend on the
boundary value of the section S. The Chern-Simons invariant e2πiCS(·) can be viewed as a
section of a complex line bundle (with a Hermitian structure) over the moduli space of flat
SU(2) connections on the boundary surface. They proved that this bundle is isomorphic
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to the determinant line bundle introduced by Quillen [38]. Some more systematic studies
and extensions of the Chern-Simons bundle have been developed by Freed [19] and Kirk-
Klassen [29]. One contribution of our present work is to give an explicit isomorphism
between these Hermitian holomorphic line bundles in the Schottky setting.

An interesting field of applications of Chern-Simons theory is for hyperbolic 3-manifolds
X = Γ\H3, which possess a natural flat connection θ over a principal PSL2(C)-bundle. For
closed manifolds, Yoshida [45] defined the PSL2(C)-Chern-Simons invariant as above by

CS(θ) = − 1
16π2

∫
X

S∗
(
Tr(θ ∧ dθ + 2

3
θ ∧ θ ∧ θ)

)
where S : X → P are particular sections coming from the frame bundle over X. This is a
complex number with imaginary part− 1

2π2 Vol(X), and real part equal to the Chern-Simons
invariant of the Levi-Civita connection on the frame bundle. Up to the contribution of a
link in X, the function F := exp( 2

π
Vol(M)+4πiCS(M)) extends to a holomorphic function

on a natural deformation space containing closed hyperbolic manifolds as a discrete set.
Our setting in this paper is that of 3-dimensional geometrically finite hyperbolic mani-

folds X without rank-1 cusps, in particular convex co-compact hyperbolic manifolds, which
are conformally compactifiable to a smooth manifold with boundary. Typical examples
are quotients of H3 by quasi-Fuchsian or Schottky groups. The ends of X are either fun-
nels or rank-2 cusps. The funnels have a conformal boundary, which is a disjoint union
of compact Riemann surfaces forming the conformal boundary M of X. The deformation
space of X is essentially the deformation space of its conformal boundary, i.e. Teichmüller
space. Before defining a Chern-Simons invariant, it is natural to ask about a replacement
of the volume in this case. For Einstein conformally compact manifolds, the notion of
renormalized volume VolR(X) has been introduced by Henningson-Skenderis [25] in the
physics literature and by Graham [21] in the mathematical literature. In the particular
setting of hyperbolic 3-manifolds, this has been studied by Krasnov [31] and extended by
Takhtajan-Teo [41], in relation with earlier work of Takhtajan-Zograf [43], to show that
VolR is a Kähler potential for the Weil-Petersson metric in Schottky and quasi-Fuchsian
settings. Krasnov and Schlenker [37] gave a more geometric proof of this, using the Schläfli
formula on convex co-compact hyperbolic 3-manifolds to compute the variation of VolR in
the deformation space

Before we introduce the Chern-Simons invariant in our setting, let us first recall the
definition of VolR used by Krasnov-Schlenker [37]. A hyperbolic funnel is some collar
(0, ε)x ×M equipped with a metric

g =
dx2 + h(x)

x2
, h(x) ∈ C∞(M,S2

+T
∗M), h(x) = h0

(
(Id + x2

2
A)·, (Id + x2

2
A)·
)

(1)

where M is a Riemann surface of genus ≥ 2 with a hyperbolic metric h0, A is an endomor-
phism of TM satisfying divh0A = 0, and Tr(A) = −1

2
scalh0 . The metric g on the funnel

is of constant sectional curvature −1, and every end of a convex co-compact hyperbolic
manifold X is isometric to such a hyperbolic funnel, see [18, 37]. A couple (h0, A0) can
be considered as an element of T ∗h0

T, if A0 = A − 1
2
tr(A)Id is the trace-free part of the
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divergence-free tensor A. We therefore identify the cotangent bundle T ∗T of T with the
set of hyperbolic funnels modulo the action of the group D0(M), acting trivially in the x
variable. Let x be any smooth positive function on X which extends the function x defined
in each funnel by (1), and is equal to 1 in each cusp end. The renormalized volume of
(X, g) is defined by

VolR(X) := FPε→0

∫
x>ε

dvolg

where FP means finite-part (i.e. the coefficient of ε0 in the asymptotic expansion as ε→ 0).
The tangent bundle to any 3-manifold is trivial. If ω is the so(3)-valued Levi-Civita

connection 1-form on X in an oriented orthonormal frame S = (S1, S2, S3), we define

(2) CS(g, S) := − 1
16π2 FPε→0

∫
x>ε

Tr(ω ∧ dω + 2
3
ω ∧ ω ∧ ω).

We ask that S be even to the first order at {x = 0} and also that, in each cusp end, S be
parallel in the direction of the vector field pointing towards to cusp point. Equipped with
the conformal metric ĝ := x2g, the manifold X extends to a smooth Riemannian manifold
X = X ∪M with boundary M . The Chern-Simons invariant CS(ĝ, Ŝ) is therefore well

defined if Ŝ = x−1S is an orthonormal frame for ĝ. We define the PSL2(C) Chern-Simons

invariant CSPSL2(C)(g, S) on (X, g) by the renormalized integral (2) where we replace ω
by the complex-valued connection form θ := ω + iT ; here T is the so(3)-valued 1-form
defined by Tij(V ) := g(V × Sj, Si) and × is the vector product with respect to the metric
g. There exists a natural flat connection on a PSL2(C) principal bundle FC(X) over X
(which can be seen as a complexified frame bundle), with sl2(C)-valued connection 1-form

Θ, and we show that CSPSL2(C)(g, S) also equals the renormalized integral of the pull-back
of the Chern-Simons form − 1

4π2 Tr(Θ ∧ dΘ + 2
3
Θ3) of the flat connection Θ. We first show

Proposition 2.1. On a geometrically finite hyperbolic 3-manifold (X, g) without rank-1

cusps, one has CS(g, S) = CS(ĝ, Ŝ), and

(3) CSPSL2(C)(g, S) = − i
2π2 VolR(X) + i

4π
χ(M) + CS(g, S)

where χ(M) is the Euler characteristic of the conformal boundary M .

The relation between CS(g, S) and CS(ĝ, Ŝ) comes rather easily from the conformal
change formula in the Chern-Simons form (the boundary term turns out to not contribute),
while (3) is a generalization of a formula in Yoshida [45], but we give an independent easy
proof. Similar identities to (3) can be found in the physics literature (see for instance [32]).

Like the function F of Yoshida, it is natural to consider the variation of CSPSL2(C)(g, S)
in the set of convex co-compact hyperbolic 3-manifolds, especially since, in contrast with
the finite volume case, there is a finite dimensional deformation space of smooth hyper-
bolic 3-manifolds, which essentially coincides with the Teichmüller space of their conformal
boundaries. One of the problems, related to the work of Ramadas-Singer-Weitsman [39]

is that e2πiCSPSL2(C)(g,S) depends on the choice of the frame S, since X is not closed. This
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leads us to define a complex line bundle L over Teichmüller space T of Riemann surfaces

of a fixed genus, in which e2πiCSPSL2(C)
and e2πiCS are sections.

Let T be the Teichmüller space of a (not necessarily connected) oriented Riemann surface
M of genus g = (g1, . . . , gN), gj ≥ 2, defined as the space of hyperbolic metrics on M
modulo the group D0(M) of diffeomorphisms isotopic to the identity. This is a complex
simply connected manifold of complex dimension 3|g| − 3, equipped with a natural Kähler
metric called the Weil-Petersson metric. The mapping class group Mod of isotopy classes of
orientation preserving diffeomorphisms of M acts properly discontinuously on T. Let (X, g)
be a geometrically finite hyperbolic 3-manifold without cusp of rank 1, with conformal
boundary M . By Theorem 3.1 of [34], there is a smooth map Φ from T to the set of
geometrically finite hyperbolic metrics on X (up to diffeomorphisms of X homotopic to
identity) such that the conformal boundary of Φ(h) is (M,h) for any h ∈ T. The subgroup
ModX of Mod consisting of elements which extend to diffeomorphisms on X homotopic
to the identity acts freely, properly discontinuously on T and the quotient is a complex
manifold of dimension 3|g| − 3. The map Φ is invariant under the action of ModX and
the deformation space TX of X is identified with a quotient of the Teichmüller space
TX = T/ModX , see [34, Th. 3.1] .

Theorem 2.2. Let (X, g) be a geometrically finite hyperbolic 3-manifold without rank-1
cusp, and with conformal boundary M . There exists a holomorphic Hermitian line bundle
L over T equipped with a Hermitian connection ∇L, with curvature given by i

8π
times the

Weil-Petersson symplectic form ωWP on T. The bundle L with its connection descend to
TX and if gh = Φ(h) is the geometrically finite hyperbolic metric with conformal boundary
h ∈ T, then h→ e2πiCS(gh,·) is a global section of L.

The line bundle is defined using the cocycle which appears in the Chern-Simons action
under gauge transformations. We remark that the computation of the curvature of L

reduces to the computation of the curvature of the vertical tangent bundle in a fibration
related to the universal Teichmüller curve over T, and we show that the fiberwise integral
of the first Pontrjagin form of this bundle is given by the Weil-Petersson form, which is
similar to a result of Wolpert [44]. An analogous line bundle, but in a more general setting,
has been recently studied by Bunke [10].

Since funnels can be identified to elements in T ∗T, the map Φ described above induces
a section σ of the bundle T ∗T (which descends to T ∗TX) by assigning to h ∈ T the funnels
of Φ(h). The image of σ

H := {σ(h) ∈ T ∗TX , h ∈ TX}
identifies the set of geometrically finite hyperbolic metrics on X as a graph in T ∗TX .

Let us still denote by L the Chern-Simons line bundle pulled-back to T ∗T by the pro-
jection πT : T ∗T → T, and define a modified connection

(4) ∇µ := ∇L + 2
π
µ1,0

on L over T ∗T, where µ1,0 is the (1, 0) part of the Liouville 1-form µ on T ∗T. As before,
the connection descends to T ∗TX , and notice that it is not Hermitian (since µ1,0 is not
purely imaginary) but ∇µ and ∇L induce the same holomorphic structure on L.
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By Theorem 2.2 and Proposition 2.1, e2πiCSPSL2(C)
is a section of L on TX , its pull-back

by πT also gives a section of L on H, which we still denote e2πiCSPSL2(C)
.

Theorem 2.3. Let V ∈ TH be a vector field tangent to H, then ∇µ
V e

2πiCSPSL2(C)
= 0, i.e.

∇µ is flat on H ⊂ T ∗TX .

The curvature of ∇µ vanishes on H by Theorem 2.3 while the curvature of ∇L is i
8π
ωWP

(by Theorem 2.2). By considering the real and imaginary parts of these curvature identities,
we obtain as a direct corollary :

Corollary 2.4. The manifold H is Lagrangian in T ∗TX for the Liouville symplectic form
µ and d(VolR ◦ σ) = −1

4
µ on H. The renormalized volume is a Kähler potential for Weil-

Petersson metric on TX :

∂̄∂(VolR ◦ σ) = i
16
ωWP.

Our final result relates the Chern-Simons line bundle L to the Quillen determinant line
bundle det ∂ of ∂ on functions in the particular case of Schottky hyperbolic manifolds. If
M is a connected surface of genus g ≥ 2, one can realize any complex structure on M as
a quotient of an open set ΩΓ ⊂ C by a Schottky group Γ ⊂ PSL2(C) and using a marking
α1, . . . , αg of π1(M) and a certain normalization, there is complex manifold S, called the
Schottky space, of such groups. This is isomorphic to TX , where X := Γ\H3 is the solid
torus bounding M in which the curves αj are contractible. The Chern-Simons line bundle
L can then be defined on S. The Quillen determinant bundle det ∂ is equipped with
its Quillen metric and a natural holomorphic structure induced by S, therefore inducing
a Hermitian connection compatible with the holomorphic structure. Moreover, there is a
canonical section of det ∂ = Λg(coker ∂) given by ϕ := ϕ1∧· · ·∧ϕg where ϕj are holomorphic
1-forms on M normalized by the marking through the requirement

∫
αj
ϕk = δjk. Using a

formula of Zograf [46, 47], we show

Theorem 2.5. There is an explicit isometric isomorphism of holomorphic Hermitian line
bundles between the inverse L−1 of the Chern-Simons line bundle and the 6-th power
(det ∂)⊗6 of the determinant line bundle det ∂, given by

(Fϕ)⊗6 7→ e−2πiCSPSL2(C)

.

Here ϕ is the canonical section of det ∂ defined above, cg is a constant, and F is a holomor-
phic function on S which is given, on the open set where the product converges absolutely,
by

F (Γ) = cg
∏
{γ}

∞∏
m=0

(1− q1+m
γ ),

where qγ is the multiplier of γ ∈ Γ, {γ} runs over all distinct primitive conjugacy classes
in Γ ∈ S except the identity.
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Novelties and perspectives. Our main contribution in this work is to introduce the
Chern-Simons theory and its line bundle over Teichmüller space in relation with Kleinian
groups. The strength of this construction appears through a variety of applications to Te-
ichmüller theory in essentially the most general setting, all at once and self-contained. For
example, the property of the renormalized volume of being a Kähler potential for the Weil-
Petersson metric, previously known in the particular cases of Schottky and quasi-Fuchsian
groups [31, 42, 43, 37], follows directly from our Chern-Simons approach for all geometri-
cally finite Kleinian groups without cusps of rank 1 (for instance, the proof in [37] is based
on an explicit computation at the Fuchsian locus and does not seem to be extendable to
general groups). In fact, finding Kähler potentials for the Weil-Petersson metric start-
ing from a general Kleinian cobordism is not only a generalisation of the quasi-Fuchsian
and Schottky cases. Indeed, the Chern-Simons bundle L is a “prequantum bundle” and

together with the canonical holomorphic sections e2πiCSPSL2(C)
corresponding to each hy-

perbolic cobordism, it could be used for a geometric definition of a Topological Quantum
Field Theory through the quantization of Teichmüller space. We shall pursue this question
elsewhere.

The existence of a non-explicit isomorphism between the Chern-Simons bundle on the
(compact) moduli space of SU(2) flat connections and the determinant line bundle was
discovered in [39]. In contrast, in our non-compact PSL2(C) setting we find an explicit
isomorphism, involving a formula of Zograf on Schottky space, which as far as we know is
the first of its kind; we expect to generalize this to all convex co-compact groups.

More generally, we expect the results of this paper to extend to all geometrically finite
hyperbolic 3-manifolds. Several technical difficulties appear when we perform our analysis
to cusps of rank 1, this will be carried out elsewhere.

3. Details on the paper “Currents on locally conformally Kähler
manifolds”

A locally conformally Kähler manifold (LCK for short) is a Hermitian manifold (M,J, g)
for which the fundamental two-form ω(X, Y ) = g(JX, Y ) satisfies

(5) dω = θ ∧ ω, dθ = 0

for some one-form θ called the Lee form.
There are many examples of compact LCK and non-Kähler manifolds, among them the

Hopf manifolds.
As dθ = 0, the twisted differential dθ := d−θ∧ defines a twisted cohomology which is the

Morse-Novikov cohomology of X. The LCK condition simply means that the fundamental
form of (X, J, g) is dθ-closed.

The aim of this paper is to obtain an analogue of the intrinsic characterization in [HL]
for Kähler manifolds in the context of LCK geometry.

Our main result is the following:
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Theorem 3.1. Let X be a compact, complex manifold of complex dimension n ≥ 2, and
let θ be a closed one-form on X. Then X admits a LCK metric with Lee form θ if and only
if there are no non-trivial positive currents which are (1, 1) components of dθ-boundaries.

Remark 3.2. Suppose X is a compact complex manifold, admitting a LCK metric, ω, with
Lee form θ. Then any closed 1-form η ∈ [θ]dR will be a Lee form for a conformal metric of ω
and moreover, any conformal change of ω will be LCK with a Lee form in the same de Rham
cohomology class as θ. Therefore, we need not fix θ, we can directly use its cohomology
class, [θ]dR. By this observation, the theorem above can be rephrased as follows: Let X
be a compact, complex manifold of complex dimension n ≥ 2, and let [θ]dR a cohomology
class in H1

dR(X). Then X admits a LCK metric with Lee form θ if and only if there are no
non-trivial positive currents which are (1, 1)-components of dη-boundaries, for any closed
one-form η belonging to [θ]dR.

4. Details on the paper “Pair correlation of angles between reciprocal
geodesics on the modular surface”

The existence of the limiting pair correlation for angles between reciprocal geodesics on
the modular surface is established. An explicit formula is provided, which captures geomet-
ric information about the length of reciprocal geodesics, as well as arithmetic information
about the associated reciprocal classes of binary quadratic forms. One striking feature is
the absence of a gap beyond zero in the limiting distribution, contrasting with the analog
Euclidean situation.

5. Details on the paper “The Cauchy problems for Einstein metrics and
parallel spinors”

This paper aims to solve the problem of extending a spinor from a hypersurface to a par-
allel spinor on the total space. This problem is related to that of extending a Riemannian
metric on a hypersurface to an Einstein metric on the total space, since parallel spinors
can only exist over Ricci-flat manifolds.

The Cauchy problem for Einstein metrics. In the Lorentzian setting, Ricci-flat or
more generally Einstein metrics form the central objects of general relativity. Given a
space-like hypersurface, a Riemannian metric, and a symmetric tensor which plays the
role of the second fundamental form, there always exists a local extension to a Lorentzian
Einstein metric [17], [15], provided that the local conditions given by the contracted Gauss
and Codazzi-Mainardi equations are satisfied. One crucial step in the proof is the reduction
to an evolution equation which is (weakly) hyperbolic due to the signature of the metric.
The corresponding equations in the Riemannian setting are (weakly) elliptic and no general
local existence results are available.

In fact, if (M, g) is any hypersurface of an Einstein manifold (Z, gZ), then the Weingarten
tensorW is a symmetric endomorphism field onM which satisfies certain constraints, which
are contractions of the Gauss and Codazzi-Mainardi equations. Conversely, one can ask
the following question:
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(Q1): If W is a symmetric endomorphism field on M which satisfies the
constraints, does there exist a isometric embedding of M into a (Riemann-
ian) Einstein manifold (Zn+1, gZ) with Weingarten tensor W? Is gZ unique
near M up to isometry?

The uniqueness part is known to have a positive answer by recent results of Biquard [6,
Thm. 4] and Anderson-Herzlich [3]. The existence was settled in a paper by Koiso [30] in
the real analytic setting. As we were unaware of that paper, in a previous draft of this
work we had proved in detail that the answer to the existence part of the above Cauchy
problem is positive in the analytic setting. We review the proof and show that the answer
is negative, in general, in the smooth setting.

Let us also mention that DeTurck [16] analyzed in the Riemannian setting the somewhat
related problem of finding a metric with prescribed nonsingular Ricci tensor.

Extension of generalized Killing spinors to parallel spinors. Our main focus in this
paper is the extension problem for spinors. In order to introduce it, we must recall some
basic facts about restrictions of spin bundles to hypersurfaces. If Z is a Riemannian spin
manifold, any oriented hypersurface M ⊂ Z inherits a spin structure and it is well-known
that the restriction to M of the complex spin bundle ΣZ if n is even (resp. Σ+Z if n is
odd) is canonically isomorphic to the complex spin bundle ΣM (cf. [5]). If W denotes
the Weingarten tensor of M , the spin covariant derivatives ∇Z on ΣZ and ∇g on ΣM are
related by ([5, Eq. (8.1)])

ccc(6)

for all spinors (resp. half-spinors for n odd) Ψ on Z. We thus see that if Ψ is a parallel
spinor on Z, its restriction ψ to any hypersurface M is a generalized Killing spinor on M ,
i.e. it satisfies the equation

∇g
Xψ = 1

2
W (X)·ψ, ∀ X ∈ TM,(7)

and the symmetric tensor W , called the stress-energy tensor of ψ, is just the Weingarten
tensor of the hypersurface M . It is natural to ask whether the converse holds:

(Q2): If ψ is a generalized Killing spinor on Mn, does there exist an iso-
metric embedding of M into a spin manifold (Zn+1, gZ) carrying a parallel
spinor Ψ whose restriction to M is ψ?

This question is the Cauchy problem for metrics with parallel spinors asked in [5].
The answer is known to be positive in several special cases: if the stress-energy tensor W

of ψ is the identity [4], if W is parallel [35] and if W is a Codazzi tensor [5]. Even earlier,
Friedrich [20] had worked out the 2-dimensional case n + 1 = 2 + 1, which is also covered
by [5, Thm. 8.1] since on surfaces the stress-energy of a generalized Killing spinor is
automatically a Codazzi tensor. Some related embedding results were also obtained by
Kim [28], Lawn–Roth [33] and Morel [36]. The common feature of each of these cases is
that one can actually construct in an explicit way the “ambient” metric gZ on the product
(−ε, ε)×M .
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Our aim is to show that the same is true more generally, under the sole additional
assumption that (M, g) and W are analytic.

Theorem 5.1. Let ψ be a spinor field on an analytic spin manifold (Mn, g), and W an
analytic field of symmetric endomorphisms of TM . Assume that ψ is a generalized Killing
spinor with respect to W , i.e. it satisfies (7). Then there exists a unique metric gZ of
the form gZ = dt2 + gt, with g0 = g, on a sufficiently small neighborhood Z of {0} ×M
inside R×M such that (Z, gZ), endowed with the spin structure induced from M , carries
a parallel spinor Ψ whose restriction to M is ψ.

In particular, the solution gZ must be Ricci-flat. Einstein manifolds are analytic but
of course hypersurfaces can lose this structure so our hypothesis is restrictive. Note that
Einstein metrics with smooth initial data can be constructed for small time as constant
sectional curvature metrics when the second fundamental form is a Codazzi tensor, see [5,
Thm. 8.1]. In particular in dimensions 1 + 1 and 2 + 1 Theorem 5.1 remains valid in the
smooth category since the tensor W associated to a generalized Killing spinor is automat-
ically a Codazzi tensor in dimensions 1 and 2.

The situation changes drastically in higher dimensions for smooth (instead of analytic)
generalized Killing spinors. What we can still achieve then is to solve the Einstein equation
(and the parallel spinor equation) in Taylor series near the initial hypersurface. More
precisely, starting from a smooth hypersurface (M, g) with prescribed Weingarten tensor W
we prove that there exist formal Einstein metrics gZ such that W is the second fundamental
form at t = 0, i.e., we solve the Einstein equation modulo rapidly vanishing errors. Guided
by the analytic and the low dimensional (n = 1 or n = 2) cases, one could be tempted to
guess that actual germs of Einstein metrics do exist for any smooth initial data. However
this turns out to be false. Counterexamples were found very recently in some particular
cases in dimensions 3 and 7 by Bryant [9]. We give a general procedure to construct
counterexamples in all dimensions .

Note that several particular instances of Theorem 5.1 have been proved in recent years,
based on the characterization of generalized Killing spinors in terms of exterior forms in low
dimensions. Indeed, in dimensions 5, 6 and 7, generalized Killing spinors are equivalent to
so-called hypo, half-flat and co-calibrated G2 structures respectively. In [26] Hitchin proved
that the cases 6 + 1 and 7 + 1 can be solved up to the local existence of a certain gradient
flow. Later on, Conti and Salamon [13], [14] treated the cases 5 + 1, 6 + 1 and 7 + 1 in the
analytical setting, cf. also [12] for further developments.

A construction related to the Cauchy problem for Einstein metrics has been studied
starting with the work of Fefferman-Graham [18] concerning asymptotically hyperbolic
Poincaré-Einstein metrics. The starting hypersurface (Mn, g0) is then at infinite distance
from the manifold Z = (0, ε) ×M , the metric gZ being conformal to a metric ḡ of class
Cn−1 on the manifold with boundary Z = [0, ε)×M :

gZ = x−2ḡ, ḡ = dx2 + gx

such that the conformal factor x is precisely the distance function to the boundary x = 0
with respect to ḡ. The metric is required to be Einstein of negative curvature up to an error
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term which vanishes with all derivatives at infinity. Such a metric always exists; when n is
odd, it is smooth down to x = 0 and its Taylor series at infinity is determined by the initial
metric g0 and the symmetric transverse traceless tensor gn appearing as coefficient of xn

in gx, while in even dimensions some logarithmic terms must be allowed, more precisely gx
is smooth as a function of x and xn log x.

Let us stress that existence results of Einstein metrics with prescribed first fundamental
form and Weingarten tensor clearly cannot hold globally in general.

Counterexamples in the smooth setting. In the second part of the paper we apply
the existence results from the analytic setting to prove nonexistence of solutions for certain
smooth initial data in any dimension at least 3.

The argument goes along the lines of works of the first author and his collaborators on
the Yamabe problem and the mass endomorphism. We consider the functional

F(φ) :=
〈D0φ, φ〉L2

‖D0φ‖2
L2n/(n+1)

defined on the C1 spinor fields φ on a compact connected Riemannian spin manifold (M, g0)
which are not in the kernel of the Dirac operator D0. If the infimum of the lowest positive
eigenvalue of the Dirac operator in the volume-normalized conformal class of g0 is strictly
lower than the corresponding eigenvalue for the standard sphere, this functional attains its
supremum in a spinor ψ0 of regularity C2,α. Moreover, ψ0 is smooth outside its zero set.

To construct g0 we fix p ∈M and we look at metrics on M which are flat near p. If the
topological index of M vanishes in KO−n(pt), then for generic such metrics the associated
Dirac operator is invertible. The mass endomorphism at p is defined as the constant term
in the asymptotic expansion of the Green kernel of D near p. Again for generic metrics, this
mass endomorphism is non-zero, which by a result of [1] ensures the technical Condition
for generic metrics which are flat near p. By construction this class of metrics contains
metrics which are not conformally flat on some open subset of M , i.e., whose Schouten
tensor (in dimension 3), resp. Weyl curvature (in higher dimensions) is nonzero on some
open set. We assume g0 was chosen with these properties.

We return now to the spinor ψ0 maximizing the functional F. The Euler-Lagrange
equation of F at ψ0 can be reinterpreted as follows: the Dirac operator with respect to the
conformal metric g := |ψ0|4/(n−1)g0 admits an eigenspinor of constant length 1, ψ := ψ0

|ψ0| .

If the dimension n equals 3, by algebraic reasons this spinor field must be a generalized
Killing spinor with stress-energy tensor W of constant trace.

The metric g is defined on the complement M∗ of the zero set of ψ0. This set is open,
connected and dense in M . Recall that g0 was chosen such that its Schouten tensor vanishes
identically on an open set of M and is nonzero on another open set. Then the same remains
true on M∗, and therefore on M∗ there exists no analytic metric in the conformal class of
g0. In particular, the metric g = |ψ0|4/(n−1)g0 cannot be analytic.

Assuming now that the existence theorem continues to hold for smooth initial data, we
could apply it to (M∗, g,W ) to get an embedding in a Ricci-flat (hence analytic) Riemann-
ian manifold (Z, gZ), with second fundamental form W . Since the trace of W is constant
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by construction, M would have constant mean curvature, which would imply that it were
analytic, contradicting the non-analyticity proved above.

The above construction actually yields counterexamples to the Cauchy problem for Ricci-
flat metrics in the smooth setting in any dimension n ≥ 3, by taking products with flat
spaces.

6. Details on the paper “The renormalized volume and uniformisation of
conformal structures”

We study the renormalized volume of asymptotically hyperbolic Einstein (AHE in short)
manifolds (M, g) when the conformal boundary ∂M has dimension n even. Its definition
depends on the choice of metric h0 on ∂M in the conformal class at infinity determined by
g, we denote it by VolR(M, g;h0). We show that VolR(M, g; ·) is a functional admitting a
“Polyakov type” formula in the conformal class [h0] and we describe the critical points as
solutions of some non-linear equation vn(h0) = constant, satisfied in particular by Einstein
metrics. In dimension n = 2, choosing extremizers in the conformal class amounts to
uniformizing the surface, while in dimension n = 4 this amounts to solving the σ2-Yamabe
problem. Next, we consider the variation of VolR(M, ·; ·) along a curve of AHE metrics gt

with boundary metric ht0 and we use this to show that, provided conformal classes can be
(locally) parametrized by metrics h solving vn(h) =

∫
∂M

vn(h)dvolh, the set of ends of AHE
manifolds (up to diffeomorphisms isotopic to the identity) can be viewed as a Lagrangian
submanifold in the cotangent space to the space T(∂M) of conformal structures on ∂M .
We obtain as a consequence a higher-dimensional version of McMullen’s quasifuchsian
reciprocity. We finally show that conformal classes admitting negatively curved Einstein
metrics are local minima for the renormalized volume for a warped product type filling.

7. Details on the paper “Positivity of the renormalized volume of
almost-Fuchsian hyperbolic 3-manifolds ”

The renormalized volume VolR is a numerical invariant associated to an infinite-volume
Riemannian manifold with some special structure near infinity, extracted from the di-
vergent integral of the volume form. Early instances of renormalized volumes appear in
Henningson–Skenderis [25] for asymptotically hyperbolic Einstein metrics, and in Kras-
nov [31] for Schottky hyperbolic 3-manifolds. In Takhtajan–Teo [41] the renormalized
volume is identified to the so-called Liouville action functional, a cohomological quantity
known since the pioneering work of Takhtajan–Zograf [43] to be a Kähler potential for the
Weil–Petersson symplectic form on the deformation space of certain Kleinian manifolds:

(8) ∂∂VolR =
1

8i
ωWP.

Krasnov–Schlenker [37] studied the renormalized volume using a geometric description
in terms of foliations by equidistant surfaces. In the context of quasi-Fuchsian hyperbolic
3-manifolds they computed the Hessian of VolR at the Fuchsian locus. They also gave a
direct proof of the identity (8) in that setting. Recently, Guillarmou–Moroianu [23] studied
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the renormalized volume VolR in a general context, for geometrically finite hyperbolic 3-
manifolds without rank-1 cusps. There, VolR appears as the log-norm of a holomorphic
section in the Chern–Simons line bundle over the Teichmüller space.

Huang–Wang [27] looked at renormalized volumes in their study of almost-Fuchsian
hyperbolic 3-manifolds. However, their renormalization procedure does not involve uni-
formization of the surfaces at infinity, hence the invariant RV thus obtained is constant
(and negative) on the moduli space of almost-Fuchsian metrics.

There is a superficial analogy between VolR and the mass of asymptotically Euclidean
manifolds. Like in the positive mass conjecture, one may ask if VolR is positive for all convex
co-compact hyperbolic 3-manifolds, or at least for quasi-Fuchsian manifolds. One piece of
supporting evidence follows from the computation by Takhtajan–Teo [41] of the variation
of VolR (or equivalently, of the Liouville action functional) on deformation spaces. In the
setting of quasi-Fuchsian manifolds, Krasnov–Schlenker [37] noted that the functional VolR
vanishes at the Fuchsian locus. When one component of the boundary is kept fixed, the
only critical point of VolR is at the unique Fuchsian metric. Moreover, this point is a local
minimum because the Hessian of VolR is positive definite there as it coincides with the
Weil-Petersson metric. Therefore, at least in a neighborhood of the Fuchsian locus, we
do have positivity. We emphasize that to ensure vanishing of the renormalized volume for
Fuchsian manifolds, the renormalization procedure used in Krasnov–Schlenker [37] differs
from Guillarmou–Moroianu [23] or from Huang–Wang [27] by the universal constant 2π(1−
g) where g ≥ 2 is the genus. It is the definition from Krasnov–Schlenker [37] that we
use below. These results are not sufficient to conclude that VolR is positive since the
Teichmüller space is not compact and VolR is not proper (by combining the results in
Schlenker [40] and Brock [8], one sees that the difference between VolR and the Teichmüller
distance is bounded, while the Teichmüller metric is incomplete). Another piece of evidence
towards positivity was recently found by Schlenker [40], who proved that VolR is bounded
from below by some explicit (negative) constant.

In this paper we prove the positivity of VolR on the almost-Fuchsian space, which is an
explicit open subset of the space of quasi-Fuchsian metrics.
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