On the Generalized Derivation Induced by Two Projections

Dan Popovici

Department of Mathematics, University of the West from Timişoara
B-dul Vasile Parvan 4, 300223 Timişoara, Romania
E-mail: popovici@math.uvt.ro

International Conference on Operator Theory (June 29 - July 4, 2010, Timişoara, Romania)

Outline

(9) Preliminaries

- Publication
- Motivation
- The Generalized Derivation
(2) Norm Equalities and Inequalities
- A Generalized Akhiezer-Glazman Equality
- A Generalized Kato Inequality
(3) The Invertibility of PX-XQ
- Necessary and/or Sufficient Conditions
- The Kato Condition

4 Operators with Closed Ranges

- An Example
- Invertibility and Operators with Dense Ranges
- Direct Sums of Closed Subspaces

Publication

Authors: D.P. and Zoltán Sebestyén

Article: On the Generalized Derivation Induced by Two Projections

Journal: Integral Equations and Operator Theory
Number (Year): 65 (2009)
Pages: 285-304

The Theorem of Akhiezer and Glazman

Notation

- $\mathcal{L}(\mathscr{H}, \mathscr{K})$ denotes the Banach space of all bounded linear operators between complex Hilbert spaces \mathscr{H} and \mathscr{K}.
- $\mathcal{L}(\mathscr{H}):=\mathcal{L}(\mathscr{H}, \mathscr{H})$.
- ker T, respectively ran T denote the kernel, respectively the range of $T \in \mathcal{L}(\mathscr{H}, \mathscr{K})$.

Let P and Q be orthogonal projections on \mathscr{H}.

Theorem (N.I. Akhiezer - I.M. Glazman, 1993)

$$
\|P-Q\|=\max \{\|(1-P) Q\|,\|P(1-Q)\|\}
$$

The Theorem of Buckholtz

Let \mathscr{L} and \mathscr{R} be closed subspaces in \mathscr{H}. We denote by P, respectively Q the orthogonal projections with ranges \mathscr{L}, respectively \mathscr{R}.

Theorem (D. Buckholtz, 2000)

The following conditions are equivalent:
(a) $\mathscr{H}=\mathscr{L} \dot{+} \mathscr{R}$.
(b) There exists a bounded idempotent with range \mathscr{L} and kernel \mathscr{R}.
(c) $P-Q$ is invertible.
(d) $\|P+Q-1\|<1$.
(e) $\|P Q\|,\|(1-P)(1-Q)\|<1$.

Other Related Results

Extensions and Generalizations

We extend and/or generalize results by:

- N.I. Akhiezer and I.M. Glazman
- D. Buckholtz
- S. Maeda
- Z. Boulmaarouf, M. Fernandez Miranda and J.-Ph. Labrouse
- T. Kato
- Y. Kato
- J.J. Koliha and V. Rakočević

Motivation

Possibility of Applications

Applications

These problems have been discusses in connection to various applications in:

- perturbation theory for linear operators
- probability theory
- Fredholm theory
- complex geometry
- statistics
- wavelet theory
- invariant subspace theory

Definition

Let $P \in \mathcal{L}(\mathscr{H})$ and $Q \in \mathcal{L}(\mathscr{K})$ be orthogonal projections.

Definition

The generalized derivation induced by P and Q is defined as

$$
\mathcal{L}(\mathscr{K}, \mathscr{H}) \ni X \mapsto \delta_{P, Q}(X):=P X-X Q \in \mathcal{L}(\mathscr{K}, \mathscr{H}) .
$$

Simple Formulas

- $\left[\delta_{P, Q}(X)\right]^{*}=-\delta_{Q, P}\left(X^{*}\right)$
- $\delta_{P, Q}(X)=-\delta_{1-P, 1-Q}(X)$
- $\left|\delta_{P, 1-Q}(X)\right|^{2}+\left|\delta_{P, Q}(X)\right|^{2}=\left|\delta_{0, Q}(X)\right|^{2}+\left|\delta_{0,1-Q}(X)\right|^{2}$
- $\left|\delta_{P, Q}(X)\right|^{2}=\left|P \delta_{P, Q}(X)\right|^{2}+\left|\delta_{P, Q}(X) Q\right|^{2}$

A Generalized Akhiezer-Glazman Equality

Let $\left\{T_{i}\right\}_{i=1}^{n}$ be a finite family of bounded linear operators between \mathscr{H} and \mathscr{K}.

Lemma

If $T_{i}^{*} T_{j}=0_{\mathscr{H}}$ and $T_{i} T_{j}^{*}=0_{\mathscr{K}}$ for every $i \neq j$ then

$$
\left\|\sum_{i=1}^{n} T_{i}\right\|=\max _{i=1}^{n}\left\|T_{i}\right\| .
$$

Let $P \in \mathcal{L}(\mathscr{H}), Q \in \mathcal{L}(\mathscr{K})$ be two orthogonal projections and $X \in \mathcal{L}(\mathscr{K}, \mathscr{H})$.

Theorem

$$
\|P X-X Q\|=\max \{\|(1-P) X Q\|,\|P X(1-Q)\|\} .
$$

Remarks and Consequences 1

Remarks

-

$$
\|P X-X Q\| \leq\|X\| .
$$

- If $X \in \mathcal{L}(\mathscr{H})$ is selfadjoint and $Q=1-P$ then

$$
\|P X-X P\|=\|(1-P) X P\| ;
$$

in particular,

$$
\|P Q-Q P\|=\|(1-P) Q P\|=\|(1-Q) P Q\|,
$$

where P and Q are two orthogonal projections on \mathscr{H} (S. Maeda, 1990).

A Generalized Akhiezer-Glazman Equality

Remarks and Consequences 2

Remarks

$$
\|P X-2 P X Q+X Q\|=\|P X-X Q\| ;
$$

in particular, if $\mathscr{K}=\mathscr{H}, X=1_{\mathscr{H}}$ and $P Q=Q P$ then
$P=Q$ or $\|P-Q\|=1$ (S. Maeda, 1976).

- Let $V \in \mathcal{L}(\mathscr{H}, \mathscr{K})$ be a partial isometry, $P=V^{*} V, Q=V V^{*}$ and let $X \in \mathcal{L}(\mathscr{K}, \mathscr{H})$. Then

$$
\|P X-X Q\| \leq \max \{\|P X-X V\|,\|V X-X Q\|\} ;
$$

in particular, when $\mathscr{K}=\mathscr{H}$ and $X=1 \mathscr{H}$ we actually have that

$$
\|P-Q\| \leq\|P-V\|=\|V-Q\|
$$

(S. Maeda, 1990).

Remarks and Consequences 3

Remarks

- Let M be an idempotent and P an orthogonal projection, both acting on the Hilbert space \mathscr{H}. Then

$$
\|M P-P M\| \leq \frac{\|M\|+\sqrt{\|M\|^{2}-1}}{2}
$$

in particular, if M is an orthogonal projection Q then $\|P Q-Q P\| \leq \frac{1}{2}$ (S. Maeda, 1990).

- Let $M \in \mathcal{L}(\mathscr{H})$ be an idempotent and $P \in \mathcal{L}(\mathscr{H})$ the range projection of M. In the special case $Q=1-P$ and $X=M^{*} M$ we deduce that $\|M-P\|=\left\|M-M^{*}\right\|$
(Z. Boulmaarouf, M. Fernandez Miranda and J.-Ph. Labrouse, 1997).

A Generalized Kato Inequality

A Generalized Kato Inequality

Let

- $M \in \mathcal{L}(\mathscr{H})$ and $N \in \mathcal{L}(\mathscr{K})$ be two idempotents,
- P and Q the range projections of M and, respectively, N,
- $X \in \mathcal{L}(\mathscr{K}, \mathscr{H})$.

Theorem

$$
\|P X-X Q\| \leq \max \left\{\|M X-X N\|,\left\|M^{*} X-X N^{*}\right\|\right\} .
$$

A Generalized Kato Inequality

Remarks and Consequences

Remarks

- For the case $\mathscr{K}=\mathscr{H}$ and $X=1_{\mathscr{H}}$ we obtain the following inequality of T. Kato (1995):

$$
\|P-Q\| \leq\|M-N\| .
$$

- For the case $\mathscr{K}=\mathscr{H}$ and $P=Q$, if M is an idempotent on \mathscr{H}, P is the range projection of M and $X \in \mathcal{L}(\mathscr{H})$ then

$$
\|P X-X P\| \leq \max \left\{\|M X-X M\|,\left\|M^{*} X-X M^{*}\right\|\right\}
$$

in particular, if X is selfadjoint then

$$
\|P X-X P\| \leq\|M X-X M\| .
$$

A Generalized Maeda Characterization

Let P be a selfadjoint projection on \mathscr{H} and $A \in \mathcal{L}(\mathscr{K}, \mathscr{H}) \backslash\{0\}$.

Lemma

The following conditions are equivalent:
(a) $\operatorname{ran}(P A)=\operatorname{ran} P$.
(b) $\operatorname{ran}\left(P A A^{*} P\right)=\operatorname{ran} P$.
(c) $\left\|P\left(\|A\|^{2}-A A^{*}\right)^{1 / 2}\right\|<\|A\|$.
(d) $P A A^{*} P$ is invertible in $P \mathcal{L}(\mathscr{H}) P$.
(e) $\|A\|^{2}(1-P)+P A A^{*} P$ is invertible.
(f) $\|A\|^{2}(1-P)+P A A^{*}$ is invertible.

Remark

For the case when A is a selfadjoint projection the equivalence $(a) \Leftrightarrow(c)$ is due to S. Maeda, 1977.

Injectivity

Proposition

The following conditions are equivalent:
(a) $P X-X Q$ is one-to-one.
(b) $\overline{\operatorname{ran}\left[(1-Q) X^{*} P\right]}=\operatorname{ker} Q$ and $\overline{\operatorname{ran}\left[Q X^{*}(1-P)\right]}=\operatorname{ran} Q$.
(c) $\|(P X+X Q-X) k\|^{2}<\|X Q k\|^{2}+\|X(1-Q) k\|^{2}$ for every $k \in \mathscr{K}, k \neq 0$.

Remarks

- In the special case when $\mathscr{K}=\mathscr{H}$ and $X=1_{\mathscr{H}}$ the equivalence $(a) \Leftrightarrow(b)$ is due to Z. Takeda and T. Turumaru, 1952, while $(a) \Leftrightarrow(c)$ to S. Maeda, 1977.
- We can exchange the roles of P with Q and of X with X^{*} to obtain necessary and sufficient conditions to ensure that $P X-X Q$ has dense range.

A Necessary and a Sufficient Condition for Invertibility

Proposition

If $P X-X Q$ is left invertible then
$\operatorname{ran}\left(Q X^{*}\right)=\operatorname{ran} Q$, $\operatorname{ran}\left[(1-Q) X^{*}\right]=\operatorname{ker} Q$ and

$$
\|P X+X Q-X\|<\max \{\|X Q\|,\|X(1-Q)\|\} .
$$

Proposition

$$
\begin{aligned}
& \text { If } \operatorname{ran}\left(Q X^{*}\right)=\operatorname{ran} Q, \operatorname{ran}\left[(1-Q) X^{*}\right]=\operatorname{ker} Q \text { and } \\
& \qquad\|P X+X Q-X\|<\min \left\{\inf _{\substack{k \in \operatorname{tran}, \\
\text { Uk\|\|=1}}}\|X k\| \underset{\substack{k \in \operatorname{ker}(1) \\
\|k\| \|=1}}{ }\|X k\|\right\}
\end{aligned}
$$

then $P X-X Q$ is left invertible.

Necessary and Sufficient Conditions 1

Theorem

The following conditions are equivalent:
(a) $P X-X Q$ is left invertible.
(b) $\operatorname{ran}\left[Q X^{*}(1-P)\right]=\operatorname{ran} Q$ and $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$.
(c) $\operatorname{ran}\left[|(1-P) X Q|^{2}\right]=\operatorname{ran} Q$ and $\operatorname{ran}\left[|P X(1-Q)|^{2}\right]=\operatorname{ker} Q$.
(d) $\left\|Q\left[\|X\|^{2}-X^{*}(1-P) X\right]^{1 / 2}\right\|<\|X\|$ and $\left\|(1-Q)\left(\|X\|^{2}-X^{*} P X\right)^{1 / 2}\right\|<\|X\|$.
(e) $|(1-P) X Q|^{2}$ is invertible in $Q \mathcal{L}(\mathscr{K}) Q$ and $|P X(1-Q)|^{2}$ is invertible in $(1-Q) \mathcal{L}(\mathscr{K})(1-Q)$.
(f) $\|X\|^{2}(1-Q)+|(1-P) X Q|^{2}$ and $\|X\|^{2} Q+|P X(1-Q)|^{2}$ are invertible.
(g) $\|X\|^{2}(1-Q)+Q X^{*}(1-P) X$ and $\|X\|^{2} Q+(1-Q) X^{*} P X$ are invertible.

Necessary and Sufficient Conditions 2

Remarks

- We can exchange the roles of P with Q and of X with X^{*} in the previous propositions and theorem to obtain necessary and/or sufficient conditions for the right invertibility, respectively invertibility of $P X-X Q$.
- In the special case $\mathscr{K}=\mathscr{H}$ and $X=1_{\mathscr{H}}$:
- $(b) \Leftrightarrow(d) \Leftrightarrow(e)$ S. Maeda, 1977
- $(a) \Leftrightarrow(d)$ D. Buckholtz, 2000
- (a) $\Leftrightarrow(f) \Leftrightarrow(g)$ J.J. Koliha and V. Rakočević, 2002 (in the setting of rings).

The Kato Condition

The Kato Condition

Theorem (Y. Kato, 1976)

If $\|P+Q-1\|<1$ (equivalently, $P-Q$ is invertible) then

$$
\|P+Q-1\|=\|P Q\|=\|(1-P)(1-Q)\|
$$

Theorem

If $P X-X Q$ is left invertible and $\operatorname{ran} P$ is invariant under $X|P X-X Q|^{-1} X^{*}$ then

$$
\|P X+X Q-X\|=\|P X Q\|=\|(1-P) X(1-Q)\| .
$$

Remark

If $P X-X Q$ is invertible then $Q X^{*} P$ and $(1-P) X(1-Q)$ are unitarily equivalent.

$P X-X Q$ invertible and ran X not closed

If $P X-X Q$ is invertible then operators $P X(1-Q),(1-P) X Q$, $P X,(1-P) X, X Q$ and $X(1-Q)$ have closed ranges. However, the invertibility of $P X-X Q$ does not imply that X has closed range:

Example

Let P and Q be two orthogonal projections $\mathcal{L}(\mathscr{H}) \backslash\{0,1\}$ such that $\|P-Q\|,\|P+Q-1\|<1, U$ a unitary operator on ker P onto ker Q (B. Sz.-Nagy, 1942) and Z a bounded linear operator on ker P which does not have closed range. We define

$$
X:=Q+\frac{1}{2\|Y\|\left\|(P Q-Q P)^{-1}\right\|} Y
$$

where, for $h \in \mathscr{H}, Y h:=U Z(h-P h)$. Then $P X-X P$ is invertible and X does not have closed range.

Invertibility and Operators with Dense Ranges

Invertibility and Operators with Dense Ranges

Proposition

The following conditions are equivalent:
(a) $P X-X Q$ has closed range.
(b) $P X(1-Q)$ and $(1-P) X Q$ have closed ranges.

Theorem

The following conditions are equivalent:
(a) $P X-X Q$ is invertible.
(b) $\operatorname{ran}[P X(1-Q)]=\operatorname{ran} P, \operatorname{ran}[(1-P) X Q]=\operatorname{ker} P$, $\overline{\operatorname{ran}\left[Q X^{*}(1-P)\right]}=\operatorname{ran} Q$ and $\overline{\operatorname{ran}\left[(1-Q) X^{*} P\right]}=\operatorname{ker} Q$.
(c) $\overline{\operatorname{ran}[P X(1-Q)]}=\operatorname{ran} P, \overline{\operatorname{ran}[(1-P) X Q]}=\operatorname{ker} P$, $\operatorname{ran}\left[Q X^{*}(1-P)\right]=\operatorname{ran} Q$ and $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$.

Lemma

Lemma

(i) If $P X$ has closed range and the sum $\operatorname{ker}(P X)+\operatorname{ker} Q$ is closed and direct then $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$. The converse is, in general, false.
(ii) The following conditions are equivalent:
(a) $X(1-Q)$ has closed range, the sum $\operatorname{ker}(P X)+\operatorname{ker} Q$ is direct and the sum ran $P+\operatorname{ker}\left[(1-Q) X^{*}\right]$ is closed;
(b) $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$.
(iii) If $P X$ and $X(1-Q)$ have closed ranges then $\operatorname{ker}(P X)+\operatorname{ker} Q$ is closed if and only if $\operatorname{ran} P+\operatorname{ker}\left[(1-Q) X^{*}\right]$ is closed.
(iv) If the sums $\operatorname{ker}(P X)+\operatorname{ker} Q$ and $\operatorname{ran} P+\operatorname{ker}\left[(1-Q) X^{*}\right]$ are direct then $\operatorname{ran}[P X(1-Q)]=\operatorname{ran} P$ if and only if $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$.

Direct Sums of Closed Subspaces

Sufficient Conditions for Invertibility

The Condition ($P, Q, X)_{1}$

$P X$ has closed range and the sum $\operatorname{ker}(P X)+\operatorname{ker} Q$ is closed and direct.

Theorem

Each of the following conditions
(i) $(P, Q, X)_{1}$ and $(1-P, 1-Q, X)_{1}$.
(ii) $(P, Q, X)_{1}$ and $\operatorname{ran}\left[Q X^{*}(1-P)\right]=\operatorname{ran} Q$.
(iii) $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$ and $(1-P, 1-Q, X)_{1}$. implies that $P X-X Q$ is left invertible.

Necessary and Sufficient Conditions for Invertibility 1

The Condition ($P, Q, X)_{2}$

$X(1-Q)$ has closed range, the sum $\operatorname{ker}(P X)+\operatorname{ker} Q$ is direct and the sum $\operatorname{ran} P+\operatorname{ker}\left[(1-Q) X^{*}\right]$ is closed.

Theorem

The following conditions are equivalent:
(a) $P X-X Q$ is invertible;
(b) $(P, Q, X)_{2}$ and $(1-P, 1-Q, X)_{2}$;
(c) $(P, Q, X)_{2}$ and $\operatorname{ran}\left[Q X^{*}(1-P)\right]=\operatorname{ran} Q$;
(d) $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$ and $(1-P, 1-Q, X)_{2}$.

Necessary and Sufficient Conditions for Invertibility 2

Theorem

The following conditions are equivalent:
(a) $P X-X Q$ is invertible.
(b) $\operatorname{ran}[P X(1-Q)]=\operatorname{ran} P, \overline{\operatorname{ran}[(1-P) X Q]}=\operatorname{ker} P$, $\operatorname{ran}\left[Q X^{*}(1-P)\right]=\operatorname{ran} Q$ and $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$.
(c) $\overline{\operatorname{ran}[P X(1-Q)]}=\operatorname{ran} P, \operatorname{ran}[(1-P) X Q]=\operatorname{ker} P$, $\overline{\operatorname{ran}\left[Q X^{*}(1-P)\right]}=\operatorname{ran} Q$ and $\operatorname{ran}\left[(1-Q) X^{*} P\right]=\operatorname{ker} Q$.

A Final Example

If $P X-X Q$ is invertible then the sums $\operatorname{ker}(P X)+\operatorname{ker} Q$, $\operatorname{ker}[(1-P) X]+\operatorname{ran} Q, \operatorname{ker} P+\operatorname{ker}\left(Q X^{*}\right)$ and $\operatorname{ran} P+\operatorname{ker}\left[(1-Q) X^{*}\right]$ are closed and direct. The converse is, in general, false:

Example

Let T be any operator on a Hilbert space \mathscr{H}_{0} which is one-to-one, selfadjoint, but not invertible. Let $\mathscr{H}:=\mathscr{H}_{0} \oplus \mathscr{H}_{0}$ and X be the operator defined on \mathscr{H} by $X\left(h_{0}, h_{1}\right):=\left(T h_{1}, T h_{0}\right),\left(h_{0}, h_{1}\right) \in \mathscr{H}$. If P is the orthogonal projection onto the first component of \mathscr{H} then $P X-X P$ is one-to-one, but not invertible. The sums $\operatorname{ker}(P X)+\operatorname{ker} P$, $\operatorname{ker}[(1-P) X]+\operatorname{ran} P, \operatorname{ker} P+\operatorname{ker}\left(P X^{*}\right)$ and $\operatorname{ran} P+\operatorname{ker}\left[(1-P) X^{*}\right]$ reduce to the orthogonal decomposition $\operatorname{ker} P \oplus \operatorname{ran} P=\mathscr{H}$; hence they are closed and direct.

