Prel	imin	aries

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

On the Generalized Derivation Induced by Two Projections

Dan Popovici

Department of Mathematics, University of the West from Timişoara B-dul Vasile Parvan 4, 300223 Timişoara, Romania

E-mail: popovici@math.uvt.ro

International Conference on Operator Theory (June 29 - July 4, 2010, Timişoara, Romania)

Prelim	inaries

Outline

- Publication
- Motivation
- The Generalized Derivation
- 2 Norm Equalities and Inequalities
 - A Generalized Akhiezer-Glazman Equality
 - A Generalized Kato Inequality
- The Invertibility of PX-XQ
 - Necessary and/or Sufficient Conditions
 - The Kato Condition
- Operators with Closed Ranges
 - An Example
 - Invertibility and Operators with Dense Ranges
 - Direct Sums of Closed Subspaces

Preliminaries ●○○○○○	Norm Equalities and Inequalities	The Invertibility of PX-XQ	Operators with Closed Ranges
Publication			
Publication	1		

Authors: D.P. AND ZOLTÁN SEBESTYÉN

Article: On the Generalized Derivation Induced by Two Projections

- Journal: Integral Equations and Operator Theory
- Number (Year): 65 (2009)

Pages: 285-304

Preliminaries	
000000	

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

Motivation

The Theorem of Akhiezer and Glazman

Notation

 £(*H*, *K*) denotes the Banach space of all bounded linear
 operators between complex Hilbert spaces *H* and *K*.

•
$$\mathcal{L}(\mathscr{H}) := \mathcal{L}(\mathscr{H}, \mathscr{H}).$$

• ker *T*, respectively ran *T* denote the kernel, respectively the range of $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$.

Let *P* and *Q* be orthogonal projections on \mathcal{H} .

Theorem (N.I. Akhiezer - I.M. Glazman, 1993)

$$\|P - Q\| = \max\{\|(1 - P)Q\|, \|P(1 - Q)\|\}.$$

The Theore	m of Buckholtz		
Motivation			
Preliminaries	Norm Equalities and Inequalities	The Invertibility of PX-XQ	Operators with Closed Ranges

Let \mathscr{L} and \mathscr{R} be closed subspaces in \mathscr{H} . We denote by P, respectively Q the orthogonal projections with ranges \mathscr{L} , respectively \mathscr{R} .

Theorem (D. Buckholtz, 2000)

The following conditions are equivalent:

(a)
$$\mathscr{H} = \mathscr{L} + \mathscr{R}$$
.

- (b) There exists a bounded idempotent with range L and kernel R.
- (c) P Q is invertible.
- (d) $\|P+Q-1\| < 1$.
- (e) $\|PQ\|$, $\|(1-P)(1-Q)\| < 1$.

Preliminaries	Norm Equalities and Inequalities	The Invertibility of PX-XQ	Operators with Clos

ed Ranges

Motivation

Other Related Results

Extensions and Generalizations

We extend and/or generalize results by:

- N.I. Akhiezer and I.M. Glazman
- D. Buckholtz
- S. Maeda
- Z. Boulmaarouf, M. Fernandez Miranda and J.-Ph. Labrouse
- T. Kato
- Y. Kato
- J.J. Koliha and V. Rakočević

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

Motivation

Possibility of Applications

Applications

These problems have been discusses in connection to various applications in:

- perturbation theory for linear operators
- probability theory
- Fredholm theory
- complex geometry
- statistics
- wavelet theory
- invariant subspace theory

Definition			
The Generalized Der	ivation		
Preliminaries ○○○○●	Norm Equalities and Inequalities	The Invertibility of PX-XQ	Operators with Closed Ranges

Let $P \in \mathcal{L}(\mathscr{H})$ and $Q \in \mathcal{L}(\mathscr{K})$ be orthogonal projections.

Definition

The generalized derivation induced by P and Q is defined as

$$\mathcal{L}(\mathscr{K},\mathscr{H})
i X \mapsto \delta_{\mathcal{P},\mathcal{Q}}(X) := \mathcal{P}X - X\mathcal{Q} \in \mathcal{L}(\mathscr{K},\mathscr{H}).$$

Simple Formulas

•
$$[\delta_{P,Q}(X)]^* = -\delta_{Q,P}(X^*)$$

•
$$\delta_{P,Q}(X) = -\delta_{1-P,1-Q}(X)$$

•
$$|\delta_{P,1-Q}(X)|^2 + |\delta_{P,Q}(X)|^2 = |\delta_{0,Q}(X)|^2 + |\delta_{0,1-Q}(X)|^2$$

• $|\delta_{P,Q}(X)|^2 = |P\delta_{P,Q}(X)|^2 + |\delta_{P,Q}(X)Q|^2$

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

A Generalized Akhiezer-Glazman Equality

A Generalized Akhiezer-Glazman Equality

Let $\{T_i\}_{i=1}^n$ be a finite family of bounded linear operators between \mathscr{H} and \mathscr{K} .

Lemma

If
$$T_i^*T_j = 0_{\mathscr{H}}$$
 and $T_iT_i^* = 0_{\mathscr{H}}$ for every $i \neq j$ then

$$\left|\sum_{i=1}^{n} T_{i}\right\| = \max_{i=1}^{n} \|T_{i}\|.$$

Let $P \in \mathcal{L}(\mathcal{H}), \ Q \in \mathcal{L}(\mathcal{H})$ be two orthogonal projections and $X \in \mathcal{L}(\mathcal{H}, \mathcal{H})$.

Theorem

$$||PX - XQ|| = \max\{||(1 - P)XQ||, ||PX(1 - Q)||\}.$$

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

A Generalized Akhiezer-Glazman Equality

Remarks and Consequences 1

Remarks

٠

$$\|PX - XQ\| \le \|X\|.$$

• If $X \in \mathcal{L}(\mathcal{H})$ is selfadjoint and Q = 1 - P then

$$||PX - XP|| = ||(1 - P)XP||;$$

in particular,

$$||PQ - QP|| = ||(1 - P)QP|| = ||(1 - Q)PQ||,$$

where *P* and *Q* are two orthogonal projections on \mathcal{H} (S. Maeda, 1990).

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

A Generalized Akhiezer-Glazman Equality

Remarks and Consequences 2

Remarks

٠

||PX - 2PXQ + XQ|| = ||PX - XQ||;

in particular, if $\mathscr{H} = \mathscr{H}$, $X = 1_{\mathscr{H}}$ and PQ = QP then P = Q or ||P - Q|| = 1 (S. Maeda, 1976).

• Let $V \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ be a partial isometry, $P = V^*V, \ Q = VV^*$ and let $X \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. Then

$$\|PX - XQ\| \le \max\{\|PX - XV\|, \|VX - XQ\|\};\$$

in particular, when $\mathscr{K} = \mathscr{H}$ and $X = 1_{\mathscr{H}}$ we actually have that

$$\|P - Q\| \le \|P - V\| = \|V - Q\|$$

(S. Maeda, 1990).

Preliminaries	Norm Equalities and Inequalities
	000000

The Invertibility of PX-XQ

Operators with Closed Ranges

A Generalized Akhiezer-Glazman Equality

Remarks and Consequences 3

Remarks

• Let *M* be an idempotent and *P* an orthogonal projection, both acting on the Hilbert space *H*. Then

$$\|MP - PM\| \le rac{\|M\| + \sqrt{\|M\|^2 - 1}}{2};$$

in particular, if *M* is an orthogonal projection *Q* then $||PQ - QP|| \le \frac{1}{2}$ (S. Maeda, 1990).

Let *M* ∈ *L*(*ℋ*) be an idempotent and *P* ∈ *L*(*ℋ*) the range projection of *M*. In the special case *Q* = 1 − *P* and *X* = *M***M* we deduce that ||*M* − *P*|| = ||*M* − *M**|| (Z. Boulmaarouf, M. Fernandez Miranda and J.-Ph. Labrouse, 1997).

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

A Generalized Kato Inequality

A Generalized Kato Inequality

Let

- $M \in \mathcal{L}(\mathscr{H})$ and $N \in \mathcal{L}(\mathscr{K})$ be two idempotents,
- P and Q the range projections of M and, respectively, N,
- $X \in \mathcal{L}(\mathcal{K}, \mathcal{H}).$

Theorem

 $||PX - XQ|| \le \max\{||MX - XN||, ||M^*X - XN^*||\}.$

Pre	limina	arie	

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

A Generalized Kato Inequality

Remarks and Consequences

Remarks

For the case *H* = *H* and *X* = 1_{*H*} we obtain the following inequality of T. Kato (1995):

$$\|\boldsymbol{P}-\boldsymbol{Q}\|\leq \|\boldsymbol{M}-\boldsymbol{N}\|.$$

For the case ℋ = ℋ and P = Q, if M is an idempotent on ℋ, P is the range projection of M and X ∈ L(ℋ) then

 $||PX - XP|| \le \max\{||MX - XM||, ||M^*X - XM^*||\};$

in particular, if X is selfadjoint then

$$\|PX - XP\| \le \|MX - XM\|.$$

The Invertibility of PX-XQ

Operators with Closed Ranges

Necessary and/or Sufficient Conditions

A Generalized Maeda Characterization

Let *P* be a selfadjoint projection on \mathscr{H} and $A \in \mathcal{L}(\mathscr{K}, \mathscr{H}) \setminus \{0\}$.

Lemma

The following conditions are equivalent:

(a)
$$\operatorname{ran}(PA) = \operatorname{ran} P$$
.

(b)
$$\operatorname{ran}(PAA^*P) = \operatorname{ran} P$$
.

(c)
$$\|P(\|A\|^2 - AA^*)^{1/2}\| < \|A\|.$$

(d)
$$PAA^*P$$
 is invertible in $P\mathcal{L}(\mathcal{H})P$.

(e)
$$||A||^2(1-P) + PAA^*P$$
 is invertible.

(f)
$$||A||^2(1-P) + PAA^*$$
 is invertible.

Remark

For the case when A is a selfadjoint projection the equivalence $(a) \Leftrightarrow (c)$ is due to S. Maeda, 1977.

Preliminaries	Norm Equalities and Inequalities	The Invertibility of PX-XQ	Opera
		00000	

Operators with Closed Ranges

Necessary and/or Sufficient Conditions

Injectivity

Proposition

The following conditions are equivalent:

(a) PX - XQ is one-to-one.

(b) $\overline{\operatorname{ran}\left[(1-Q)X^*P\right]} = \ker Q \text{ and } \overline{\operatorname{ran}\left[QX^*(1-P)\right]} = \operatorname{ran} Q.$

(c) $\|(PX + XQ - X)k\|^2 < \|XQk\|^2 + \|X(1 - Q)k\|^2$ for every $k \in \mathcal{K}, \ k \neq 0.$

Remarks

- In the special case when *H* = *H* and *X* = 1_{*H*} the equivalence (*a*) ⇔ (*b*) is due to Z. Takeda and T. Turumaru, 1952, while (*a*) ⇔ (*c*) to S. Maeda, 1977.
- We can exchange the roles of P with Q and of X with X* to obtain necessary and sufficient conditions to ensure that PX – XQ has dense range.

The Invertibility of PX-XQ

Operators with Closed Ranges

Necessary and/or Sufficient Conditions

A Necessary and a Sufficient Condition for Invertibility

Proposition

If PX - XQ is left invertible then ran $(QX^*) = \operatorname{ran} Q$, ran $[(1 - Q)X^*] = \ker Q$ and

$$|PX + XQ - X\| < \max\{\|XQ\|, \|X(1 - Q)\|\}$$

Proposition

If ran
$$(QX^*)$$
 = ran Q , ran $[(1 - Q)X^*]$ = ker Q and

$$\|PX + XQ - X\| < \min\left\{\inf_{\substack{k \in \operatorname{ran} Q \\ \|k\| = 1}} \|Xk\|, \inf_{\substack{k \in \ker Q \\ \|k\| = 1}} \|Xk\|\right\}$$

then PX - XQ is left invertible.

The Invertibility of PX-XQ

Operators with Closed Ranges

Necessary and/or Sufficient Conditions

Necessary and Sufficient Conditions 1

Theorem

The following conditions are equivalent:

(a) PX - XQ is left invertible.

(b) $\operatorname{ran}[QX^*(1-P)] = \operatorname{ran} Q \text{ and } \operatorname{ran}[(1-Q)X^*P] = \ker Q.$

(c) ran $[|(1 - P)XQ|^2] = \operatorname{ran} Q$ and ran $[|PX(1 - Q)|^2] = \ker Q$. (d) $||Q[||X||^2 - X^*(1 - P)X]^{1/2}|| < ||X||$ and $||(1 - Q)(||X||^2 - X^*PX)^{1/2}|| < ||X||$.

(e)
$$|(1 - P)XQ|^2$$
 is invertible in $Q\mathcal{L}(\mathcal{K})Q$ and $|PX(1 - Q)|^2$ is invertible in $(1 - Q)\mathcal{L}(\mathcal{K})(1 - Q)$.

(f) $||X||^2(1-Q) + |(1-P)XQ|^2$ and $||X||^2Q + |PX(1-Q)|^2$ are invertible.

(g) $||X||^2(1-Q) + QX^*(1-P)X$ and $||X||^2Q + (1-Q)X^*PX$ are invertible.

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

Necessary and/or Sufficient Conditions

Necessary and Sufficient Conditions 2

Remarks

- We can exchange the roles of P with Q and of X with X* in the previous propositions and theorem to obtain necessary and/or sufficient conditions for the right invertibility, respectively invertibility of PX – XQ.
- In the special case $\mathcal{K} = \mathcal{H}$ and $X = 1_{\mathcal{H}}$:
 - $(b) \Leftrightarrow (d) \Leftrightarrow (e)$ S. Maeda, 1977
 - $(a) \Leftrightarrow (d)$ D. Buckholtz, 2000
 - (a) ⇔ (f) ⇔ (g) J.J. Koliha and V. Rakočević, 2002 (in the setting of rings).

Preliminaries	Norm Equalities and Inequalities	The Invertibility of PX-XQ	Operators with Closed Ranges	
The Kato Condition				
The Kato C	ondition			

Theorem (Y. Kato, 1976)

If ||P + Q - 1|| < 1 (equivalently, P - Q is invertible) then

$$|P+Q-1|| = ||PQ|| = ||(1-P)(1-Q)||.$$

Theorem

If PX - XQ is left invertible and ran P is invariant under $X|PX - XQ|^{-1}X^*$ then

$$\|PX + XQ - X\| = \|PXQ\| = \|(1 - P)X(1 - Q)\|.$$

Remark

If PX - XQ is invertible then QX^*P and (1 - P)X(1 - Q) are unitarily equivalent.

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

An Example

PX - XQ invertible and ran X not closed

If PX - XQ is invertible then operators PX(1 - Q), (1 - P)XQ, PX, (1 - P)X, XQ and X(1 - Q) have closed ranges. However, the invertibility of PX - XQ does not imply that X has closed range:

Example

Let *P* and *Q* be two orthogonal projections $\mathcal{L}(\mathscr{H}) \setminus \{0, 1\}$ such that ||P - Q||, ||P + Q - 1|| < 1, *U* a unitary operator on ker *P* onto ker *Q* (B. Sz.-Nagy, 1942) and *Z* a bounded linear operator on ker *P* which does not have closed range. We define

$$X := Q + \frac{1}{2 \|Y\| \|(PQ - QP)^{-1}\|} Y,$$

where, for $h \in \mathcal{H}$, Yh := UZ(h - Ph). Then PX - XP is invertible and X does not have closed range.

The Invertibility of PX-XQ

Operators with Closed Ranges

Invertibility and Operators with Dense Ranges

Invertibility and Operators with Dense Ranges

Proposition

The following conditions are equivalent:

(a) PX - XQ has closed range.

(b) PX(1-Q) and (1-P)XQ have closed ranges.

Theorem

The following conditions are equivalent:

(a) PX - XQ is invertible.

(b) $\frac{\operatorname{ran}\left[PX(1-Q)\right]}{\operatorname{ran}\left[QX^*(1-P)\right]} = \operatorname{ran} P, \operatorname{ran}\left[\left(\frac{1-P}{XQ}\right) = \ker P, \operatorname{ran}\left[QX^*(1-P)\right] = \operatorname{ran} Q \text{ and } \operatorname{ran}\left[\left(1-Q\right)X^*P\right] = \ker Q.$

(c) $\overline{\operatorname{ran}[PX(1-Q)]} = \operatorname{ran} P$, $\overline{\operatorname{ran}[(1-P)XQ]} = \ker P$, $\operatorname{ran}[QX^*(1-P)] = \operatorname{ran} Q$ and $\operatorname{ran}[(1-Q)X^*P] = \ker Q$.

Preliminaries	Norm Equalities and Inequalities	The Invertibility of PX-XQ	Operators with Closed Ranges ○○●○○○○		
Direct Sums of Closed Subspaces					
Lemma					

Lemma

(i) If *PX* has closed range and the sum ker(PX) + ker Q is closed and direct then $ran[(1 - Q)X^*P] = ker Q$. The converse is, in general, false.

(ii) The following conditions are equivalent:

(a) X(1 - Q) has closed range, the sum ker(PX) + ker Q is direct and the sum ran P + ker[(1 - Q)X*] is closed;
 (b) x= [(1 - Q)X*P] = ker Q

(b) $ran[(1 - Q)X^*P] = ker Q.$

- (iii) If PX and X(1 Q) have closed ranges then ker(PX) + ker Q is closed if and only if ran P + ker[$(1 - Q)X^*$] is closed.
- (iv) If the sums $\ker(PX) + \ker Q$ and $\operatorname{ran} P + \ker[(1 Q)X^*]$ are direct then $\operatorname{ran} [PX(1 - Q)] = \operatorname{ran} P$ if and only if $\operatorname{ran} [(1 - Q)X^*P] = \ker Q$.

Norm Equalities and Inequalities

The Invertibility of PX-XQ

Operators with Closed Ranges

Direct Sums of Closed Subspaces

Sufficient Conditions for Invertibility

The Condition $(P, Q, X)_1$

PX has closed range and the sum ker(PX) + ker Q is closed and direct.

Theorem

Each of the following conditions

(i)
$$(P, Q, X)_1$$
 and $(1 - P, 1 - Q, X)_1$.

(ii) $(P, Q, X)_1$ and ran $[QX^*(1 - P)] = \operatorname{ran} Q$.

(iii) ran
$$[(1 - Q)X^*P] = \ker Q$$
 and $(1 - P, 1 - Q, X)_1$.

implies that PX - XQ is left invertible.

The Invertibility of PX-XQ

Operators with Closed Ranges

Direct Sums of Closed Subspaces

Necessary and Sufficient Conditions for Invertibility 1

The Condition $(P, Q, X)_2$

X(1 - Q) has closed range, the sum ker(PX) + ker Q is direct and the sum ran P + ker[$(1 - Q)X^*$] is closed.

Theorem

The following conditions are equivalent:

(a) PX - XQ is invertible;

- (b) $(P, Q, X)_2$ and $(1 P, 1 Q, X)_2$;
- (c) $(P, Q, X)_2$ and ran $[QX^*(1 P)] = \operatorname{ran} Q$;
- (d) $\operatorname{ran}[(1-Q)X^*P] = \ker Q$ and $(1-P, 1-Q, X)_2$.

The Invertibility of PX-XQ

Operators with Closed Ranges

Direct Sums of Closed Subspaces

Necessary and Sufficient Conditions for Invertibility 2

Theorem

The following conditions are equivalent:

(a) PX - XQ is invertible.

(b)
$$\operatorname{ran}[PX(1-Q)] = \operatorname{ran} P$$
, $\overline{\operatorname{ran}[(1-P)XQ]} = \ker P$,
 $\operatorname{ran}[QX^*(1-P)] = \operatorname{ran} Q$ and $\overline{\operatorname{ran}[(1-Q)X^*P]} = \ker Q$.

(c)
$$\frac{\operatorname{ran}[PX(1-Q)]}{\operatorname{ran}[QX^*(1-P)]} = \operatorname{ran} P$$
, $\operatorname{ran}[(1-P)XQ] = \ker P$,
 $\operatorname{ran}[QX^*(1-P)] = \operatorname{ran} Q$ and $\operatorname{ran}[(1-Q)X^*P] = \ker Q$.

Preliminaries	Norm Equalities and Inequalities	The Invertibility of PX-XQ	Operators with Closed Ranges ○○○○○○●
Direct Sums of Closed Subspaces			
A Final Example			

If PX - XQ is invertible then the sums $\ker(PX) + \ker Q$, $\ker[(1 - P)X] + \operatorname{ran} Q$, $\ker P + \ker(QX^*)$ and $\operatorname{ran} P + \ker[(1 - Q)X^*]$ are closed and direct. The converse is, in general, false:

Example

Let *T* be any operator on a Hilbert space \mathscr{H}_0 which is one-to-one, selfadjoint, but not invertible. Let $\mathscr{H} := \mathscr{H}_0 \oplus \mathscr{H}_0$ and *X* be the operator defined on \mathscr{H} by $X(h_0, h_1) := (Th_1, Th_0), (h_0, h_1) \in \mathscr{H}$. If *P* is the orthogonal projection onto the first component of \mathscr{H} then PX - XP is one-to-one, but not invertible. The sums ker(PX) + ker *P*, ker[(1 - P)X] + ran *P*, ker *P* + ker(PX^*) and ran *P* + ker[$(1 - P)X^*$] reduce to the orthogonal decomposition ker *P* \oplus ran *P* = \mathscr{H} ; hence they are closed and direct.