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1. INTRODUCTION

This work concerns some stochastic optimal control problems with feedback inputs. We deal in the present
thesis with a new method in the mathematical literature which consists in considering an equivalent or
related deterministic optimal control problem for certain (forward or backward) Kolmogorov equations.
The information we get about the deterministic problems gives deeper insight into the stochastic ones.

In this chapter we present the background of the problems investigated in this thesis and outline the
original contribution of the author. Here is the structure of this thesis:

Chapter 2: Stochastic optimal control problems with feedback inputs via Kolmogorov equa-
tions. This chapter concerns a certain type of stochastic optimal control problems with feedback inputs
and is based on the author’s papers [1] and [3]. The results were presented in two talks (see [C1], [C2])
given at International Conferences.

Firstly we show that there is a deep relationship between the stochastic problem and a deterministic
optimal control problem for a couple of (backward) Kolmogorov equations with open-loop controllers.
One proves the existence of an optimal control for the deterministic problem if the drift coefficient has a
particular form and if a certain convexity property for the cost functional holds. A maximum principle
is proved and some first order necessary optimality conditions are obtained. We give some examples and
discuss an alternative semigroup approach. We emphasize that the method can be adapted to investigate
an even more general class of stochastic optimal control problems. A few auxiliary results are presented
at the end of the chapter.

Chapter 3: Optimal control of stochastic differential equations via Fokker-Planck equa-
tions. This chapter concerns an optimal control problem with feedback (closed-loop) inputs related to a
stochastic differential equation and an associated deterministic optimal control problem with open-loop
controllers for a certain Fokker-Planck equation (forward Kolmogorov equation). This chapter is based
on the author’s papers [2] and [4]. Some of the ideas and results were presented in [C3] and [C4].

Some basic properties of the weak solutions to a stochastic differential equation and to a Fokker-Planck
equation are investigated and the relationship between the two equations is discussed. Under certain
assumptions, the equivalence between the stochastic and the deterministic optimal control problems is
proven. The superposition principle is one of the main tools in the proof of the equivalence. A maximum
principle is established using the so-called spike controls and necessary optimality conditions for the
deterministic problem are derived. One obtains a similar result in the case of time-independent controllers.
The existence of an optimal control is proven under additional hypotheses for the deterministic optimal
control problem. Some examples illustrate the applicability of the theoretical results. One discusses some
aspects concerning a problem with a control with nonlocal action. This chapter ends with some auxiliary
results.

Chapter 4: Further extensions. This short chapter suggests some possible extensions and topics
for future investigation. A special attention is paid to the control of the Fokker-Planck equation with
nonlocal term. Another extension concerns an optimal control problem of a nonlinear Fokker-Planck
equation and its relationship with a stochastic optimal control problem of the McKean-Vlasov equation.



Some of these subjects are currently under investigation in [4].

Chapter 5: Appendix. Here we recall a few notions and results that are indispensable throughout
this PhD thesis: Gronwall’s inequality, Lions’ existence theorem, Aubin’s compactness theorem, and the
theorems of Lumer-Phillips and of Trotter-Kato concerning the C0-semigroups.

The original results of the author are contained in chapters 2 and 3, while further possible extensions
are included in chapter 4.

Some of the original results have been communicated to international conferences:

C1. Ş.-L. Aniţa, Optimal control for SDEs with feedback inputs and related Kolmogorov equations,
Atelier de travail en Stochastique et EDP, Bucharest, Romania, 20 October, 2020, http://imar.
ro/CFM/2020/EDP-Stochastique-Oct2020.pdf;

C2. Ş.-L. Aniţa, Stochastic optimal control problems and related Kolmogorov equations, IWSPA 2020
- International Workshop on Stochastic Processes and Their Applications, A virtual workshop, 24
November - 9 December, 2020, http://blogs.mat.ucm.es/presa/program2020/;

C3. Ş.-L. Aniţa, Optimal control problem for McKean-Vlasov stochastic equation, The 10th Inter-
national Conference on Stochastic Analysis and its Applications (10th ICSAA), Kyoto University,
Japan, 6-10 September, 2021, https://www.math.kyoto-u.ac.jp/workshop/ICSAA2020/ICSAA2020_
program.pdf ;

C4. Ş.-L. Aniţa, An optimal control problem related to a non-linear Fokker-Planck equation, Young
Researchers Workshop - Romanian Society of Probability and Statistics, Bucharest, Romania, 19
November, 2021, https://spsr.ase.ro/wp-content/uploads/2021/10/spsr-workshop-2021-3.
pdf.

2. STOCHASTIC OPTIMAL CONTROL PROBLEMS WITH FEEDBACK
INPUTS VIA KOLMOGOROV EQUATIONS

2.1 Formulation of the problem

Consider the following stochastic optimal control problem with feedback inputs

(CPS) Minimize
u∈Mc

{
E

[∫ T

0

∫
Rd

G(Xu(t, x), u(Xu(t, x)))dν(x) dt

]
+ E

[∫
Rd

GT (Xu(T, x))dν(x)

]}
,

where Xu is the solution to dX(t) = f(X(t), u(X(t)))dt+ σ(X(t))dW (t), t ∈ [0, T ]

X(0) = x ∈ Rd.
(2.1)

Here T ∈ (0,+∞), d, n, m ∈ N∗, (Ω,F ,P) is a probability space, W : [0, T ] × Ω → Rn is a Wiener
process, and (Ft)t∈[0,T ] is the corresponding natural filtration.

Mc = {v ∈ C2
b (Rd;Rm); v(x) ∈ U0, ∀x ∈ Rd}

is the set of controllers, and U0 is a bounded convex and closed subset of Rm with 0m ∈ U0.

http://imar.ro/CFM/2020/EDP-Stochastique-Oct2020.pdf
http://imar.ro/CFM/2020/EDP-Stochastique-Oct2020.pdf
http://blogs.mat.ucm.es/presa/program2020/
https://www.math.kyoto-u.ac.jp/workshop/ICSAA2020/ICSAA2020_program.pdf
https://www.math.kyoto-u.ac.jp/workshop/ICSAA2020/ICSAA2020_program.pdf
https://spsr.ase.ro/wp-content/uploads/2021/10/spsr-workshop-2021-3.pdf
https://spsr.ase.ro/wp-content/uploads/2021/10/spsr-workshop-2021-3.pdf


2. Stochastic optimal control problems with feedback inputs via Kolmogorov equations

(H2.1) ν is a finite measure on Rd with a density ρ which satisfies

ρ ∈ C1
b (Rd), ρ(x) > 0, ∀x ∈ Rd, ∇ρ

ρ ∈ Cb(R
d;Rd).

The functions f : Rd × Rm → Rd, σ : Rd → Rd·n, G : Rd × Rm → R, GT : Rd → R,
f(x, u) = (f1(x, u) f2(x, u) ... fd(x, u))T , σ(x) = (σil(x))i=1,2,...,d, l=1,2,...,n,
q(x) = (qij(x))i=1,2,...,d, j=1,2,...,d = σ(x)σ(x)T , ∀x ∈ Rd, u ∈ Rm,
satisfy

(H2.2) f |Rd×Ũ0
is bounded and Lipschitz continuous on Rd× Ũ0, where Ũ0 is an open neighborhood of U0;

(H2.3) σ ∈ C1
b (Rd;Rd·n) and there exists a constant γ > 0 such that

qij(x)yiyj = σ(x)σ(x)T y · y ≥ γ|y|2d, ∀x, y ∈ Rd;

(H2.4) G|Rd×Ũ0
∈ Cb(Rd × Ũ0) and GT ∈ Cb(Rd).

For any u ∈Mc we have that G(·, u(·)), GT ∈ Cb(Rd) and that the functions ϕu1 , ϕ
u
2 : [0, T ]×Rd −→ R,

ϕu1 (t, x) = E[G(Xu(t, x), u(Xu(t, x)))], ϕu2 (t, x) = E[GT (Xu(t, x))], (t, x) ∈ [0, T ]× Rd, (2.2)

are the unique weak solutions (for definition see [1]) to
∂ϕ1

∂t
(t, x) = f(x, u(x)) · ∇ϕ1(t, x) +

1

2
qij(x)

∂2ϕ1

∂xi∂xj
(t, x), x ∈ Rd, t ∈ (0, T )

ϕ1(0, x) = G(x, u(x)) = ϕu01(x), x ∈ Rd,

(2.3)

and 
∂ϕ2

∂t
(t, x) = f(x, u(x)) · ∇ϕ2(t, x) +

1

2
qij(x)

∂2ϕ2

∂xi∂xj
(t, x), x ∈ Rd, t ∈ (0, T )

ϕ2(0, x) = GT (x) = ϕ02(x), x ∈ Rd,

(2.4)

respectively. It is obvious that for any u ∈Mc we have that

E

[∫ T

0

∫
Rd

G(Xu(t, x), u(Xu(t, x)))dν(x) dt

]
+ E

[∫
Rd

GT (Xu(T, x))dν(x)

]

=

∫ T

0

∫
Rd

ϕu1 (t, x)dν(x) dt+

∫
Rd

ϕu2 (T, x)dν(x),

and that (CPS) is equivalent to the following deterministic optimal control problem with open-loop
controllers

(CPD) Minimize
u∈Mc

{∫ T

0

∫
Rd

ϕu1 (t, x)dν(x) dt+

∫
Rd

ϕu2 (T, x)dν(x)

}
.

It is convenient to consider a larger set of controllers

M = {v ∈ L∞(Rd;Rm); v(x) ∈ U0 a.e. x ∈ Rd},

and the deterministic optimal control problem

(CP) Minimize
u∈M

{∫ T

0

∫
Rd

ϕu1 (t, x)dν(x) dt+

∫
Rd

ϕu2 (T, x)dν(x)

}
,

where ϕu1 and ϕu2 are the weak solutions to (2.3) and (2.4), respectively.
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2. Stochastic optimal control problems with feedback inputs via Kolmogorov equations

2.2 Relationship between the stochastic and the deterministic optimal
control problems

Consider the following real vector spaces: H = L2(Rd; ν) = {ψ ∈ L2
loc(Rd);

√
ρψ ∈ L2(Rd)},

V = W 1,2(Rd; ν) =

{
ψ ∈W 1,2

loc (Rd); ψ,
∂ψ

∂xi
∈ L2(Rd; ν), i = 1, 2, ..., d

}
.

By (H2.1) it follows that V = {ψ ∈W 1,2
loc (Rd);√ρψ ∈W 1,2(Rd)}.

Notice that (H, 〈·, ·〉H) and (V, 〈·, ·〉V ) are real Hilbert spaces, where

〈ϕ,ψ〉H =

∫
Rd

ϕψ dν(x) =

∫
Rd

ϕψρ dx,

〈ϕ,ψ〉V =

∫
Rd

[ϕψ +∇ϕ · ∇ψ] dν(x) =

∫
Rd

[ϕψ +∇ϕ · ∇ψ]ρ dx

are their scalar products. We identify the dual of H (i.e. H∗) with H and denote by V ∗ the dual of V
with the pairing denoted by 〈·, ·〉V,V ∗ or 〈·, ·〉V ∗,V . Moreover, 〈ϕ,ψ〉V,V ∗ = 〈ϕ,ψ〉H , for any ϕ ∈ V, ψ ∈ H.
This yields V ⊂ H ⊂ V ∗ with continuous and dense embeddings.

Note that there exist two positive constants m0,M0 such that

m0‖ϕ‖V ≤ ‖ϕ
√
ρ‖W 1,2(Rd) ≤M0‖ϕ‖V , ∀ϕ ∈ V.

Let us now investigate the following Cauchy problem
dφ

dt
(t) = A0φ(t) + g(t), t ∈ (0, T )

φ(0) = φ0,

(2.5)

where A0 ∈ L(V, V ∗) is given by 〈A0v1, v2〉V ∗,V = −a0(v1, v2), ∀v1, v2 ∈ V and
a0 : V × V −→ R is bilinear and bounded and g ∈ L2(0, T ;V ∗).

By Lions’ existence theorem we get that if φ0 ∈ H and a0 satisfies in addition that

∃α0 > 0, β0 ≥ 0 : a0(v, v) ≥ α0‖v‖2V − β0‖v‖2H , ∀v ∈ V, (2.6)

then (2.5) has a unique weak solution (for definition see [1]).
Let A∗0 be the formal adjoint of A0, i.e. A∗0 ∈ L(V, V ∗) is given by

〈A0v1, v2〉V ∗,V = 〈v1,A∗0v2〉V,V ∗ , ∀v1, v2 ∈ V,

and consider the following Cauchy problem
dp

dt
(t) = −A∗0p(t) + g(t), t ∈ (0, T )

p(T ) = pT .

(2.7)

Consider now the following stochastic differential equation dX(t) = F 0(X(t))dt+ σ(X(t))dW (t), t ∈ [0, T ]

X(0) = x ∈ Rd
(2.8)
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2. Stochastic optimal control problems with feedback inputs via Kolmogorov equations

and the following related Kolmogorov equation
∂φ

∂t
(t, x) = F 0(x) · ∇φ(t, x) +

1

2
qij(x)

∂2φ

∂xi∂xj
(t, x), x ∈ Rd, t ∈ (0, T )

φ(0, x) = L0(x) = φ0(x), x ∈ Rd.
(2.9)

If F 0 ∈ L∞(Rd;Rd), L0 ∈ L∞(Rd), then (2.9) has a unique weak solution.

Theorem 2.2.1. ([3]) If F 0 : Rd −→ Rd is bounded and Lipschitz continuous, then there exists a unique
solution X to (2.8). Moreover, if L0 ∈ Cb(Rd), then for any t ∈ [0, T ]:

φ(t, x) = E[L0(X(t, x))] a.e. x ∈ Rd, (2.10)

where φ is the unique weak solution to (2.9).

Let us turn back to the stochastic optimal control problem (CPS) and the related deterministic optimal
control problem (CP ). For any u ∈M we define the functions fu : Rd −→ Rd and au : V × V −→ R, by

fu(x) = f(x, u(x)), x ∈ Rd, au(ϕ,ψ) = −
∫
Rd

fu · ∇ϕψρ dx+
1

2

∫
Rd

∂ϕ

∂xj

∂

∂xi
(qijψρ) dx, ∀ϕ,ψ ∈ V.

Let ϕu1 the weak solution to (2.3), i.e. the weak solution to (2.9) corresponding to F 0 := fu, L0 :=
G(·, u(·)), and ϕu2 the weak solution to (2.4), i.e. the weak solution to (2.9) corresponding to F 0 := fu,
L0 := GT . It is obvious that for any u ∈ Mc we have that F 0 := fu (and so a0 := au), L0 := G(·, u(·)),
and L0 := GT satisfy the hypotheses in Theorem 2.2.1. Hence (2.1) has a unique solution Xu and

E

[∫ T

0

∫
Rd

G(Xu(t, x), u(Xu(t, x)))dν(x) dt

]
+ E

[∫
Rd

GT (Xu(T, x))dν(x)

]

=

∫ T

0

∫
Rd

ϕu1 (t, x)dν(x) dt+

∫
Rd

ϕu2 (T, x)dν(x).

It means that (CPS) is equivalent to (CPD).

Lemma 2.2.2. ([1]) For any v ∈M, there exists {vk}k∈N∗ ⊂Mc such that

vk −→ v in Hm.

This means that Mc is a dense subset of M with respect to the distance of Hm.

By Lemma 2.2.2 we have that for any u ∈ M there exists a sequence {uk}k∈N∗ ⊂ Mc such that
uk −→ u in Hm. As in the proof of Theorem 2.2.1 it follows that ϕuk

1 −→ ϕu1 , ϕ
uk
2 −→ ϕu2 , in C([0, T ];H).

It follows that

inf
u∈M

{∫ T

0

∫
Rd

ϕu1 (t, x)dν(x) dt+

∫
Rd

ϕu2 (T, x)dν(x)

}

= inf
u∈Mc

{∫ T

0

∫
Rd

ϕu1 (t, x)dν(x) dt+

∫
Rd

ϕu2 (T, x)dν(x)

}
= m∗.

We state now a result that will prove useful in what follows.

Lemma 2.2.3. ([3]) For any u ∈ M and for any h ∈ L∞(Rd) such that h(x) ≥ 0 a.e. x ∈ Rd, the
following problem

∂ϕ

∂t
(t, x) = fu(x) · ∇ϕ(t, x) +

1

2
qij(x)

∂2ϕ

∂xi∂xj
(t, x), x ∈ Rd, t ∈ (0, T )

ϕ(0, x) = h(x), x ∈ Rd
(2.11)

5



2. Stochastic optimal control problems with feedback inputs via Kolmogorov equations

has a unique weak solution ϕ, and ϕ(t, x) ≥ 0 a.e. x ∈ Rd, for any t ∈ [0, T ].

2.3 Existence of an optimal control for the deterministic problem

The existence of an optimal control for problem (CP ) will be proved under the additional assumption
that f(x, u) = f0(x) + f1(x)u, where f0 : Rd −→ Rd and f1 : Rd −→ Rd·m are Lipschitz continuous and
bounded functions.

Assume that alongside hypotheses (H2.1)− (H2.4) we have

(H2.5) For any x ∈ Rd, the mapping u 7→ G(x, u) is convex on U0 and G|Rd×Ũ0
∈ C0,1

b (Rd × Ũ0).

Theorem 2.3.1. ([1, 3]) There exists at least one optimal control u∗ for problem (CP ).

2.4 The maximum principle for the deterministic optimal control problem

For any u ∈M we consider the linear and continuous operator Au : V −→ V ∗,

Auϕ = fu · ∇ϕ+
1

2
qij

∂2ϕ

∂xi∂xj
.

The formal adjoint of this operator, A∗u : V → V ∗ is given by

A∗uψ = −1

ρ
∇ · (fuψρ) +

1

2ρ
· ∂2

∂xi∂xj
(qijψρ), ∀ψ ∈ V.

Assume that u∗ is an optimal control for problem (CP ). Let p∗1 be the unique weak solution (for
definition see [1]) to the following backward equation

dp1

dt
(t) = −A∗u∗p1(t) + 1, t ∈ (0, T )

p1(T ) = 0,

(2.12)

i.e. p∗1 is the weak solution to
∂p1

∂t
(t, x) =

1

ρ(x)
∇ · (fu

∗
(x)p1(t, x)ρ(x))− 1

2ρ(x)
· ∂2

∂xi∂xj
(qij(x)p1(t, x)ρ(x)) + 1, x ∈ Rd, t ∈ (0, T )

p1(T, x) = 0, x ∈ Rd,

and let p∗2 be the unique weak solution to the next backward equation
dp2

dt
(t) = −A∗u∗p2(t), t ∈ (0, T )

p2(T ) = −1,

(2.13)

i.e. p∗2 is the weak solution to
∂p2

∂t
(t, x) =

1

ρ(x)
∇ · (fu

∗
(x)p2(t, x)ρ(x))− 1

2ρ(x)
· ∂2

∂xi∂xj
(qij(x)p2(t, x)ρ(x)), x ∈ Rd, t ∈ (0, T )

p2(T, x) = −1, x ∈ Rd.

6



2. Stochastic optimal control problems with feedback inputs via Kolmogorov equations

Theorem 2.4.1. (The maximum principle) ([3]) If G is independent of u and if u∗ is an optimal
control for problem (CP ), then for almost any x ∈ Rd:

f(x, u∗(x)) ·
∫ T

0

[
p∗1(t, x)∇ϕu

∗

1 (t, x) + p∗2(t, x)∇ϕu
∗

2 (t, x)
]
dt

= max
u0∈U0

{
f(x, u0) ·

∫ T

0

[
p∗1(t, x)∇ϕu

∗

1 (t, x) + p∗2(t, x)∇ϕu
∗

2 (t, x)
]
dt

}
.

Remark 2.4.1. ([3]) If G does not depend on u and if in addition we have that f |Rd×Ũ0
∈ C0,1

b (Rd ×
Ũ0;Rd), then if u∗ is an optimal control for problem (CP ) we get that:

(Duf
u∗

)T (x)

∫ T

0

[
p∗1(t, x)∇ϕu

∗

1 (t, x) + p∗2(t, x)∇ϕu
∗

2 (t, x)
]
dt ∈ NU0

(u∗(x)) ⊂ Rm,

a.e. x ∈ Rd. We have denoted by Duf =

(
∂fi
∂ul

)
i=1,2,...,d,l=1,2,...,m

and (Duf)T its transpose.

Assume now again that G depends both on x and u and that alongside (H2.1)− (H2.4) we have that

(H2.2*) f |Rd×Ũ0
∈ C0,1

b (Rd × Ũ0;Rd);

(H2.4*) G|Rd×Ũ0
∈ C0,1

b (Rd × Ũ0).

Theorem 2.4.2. (First order necessary optimality conditions) ([3]) If u∗ is an optimal control
for problem (CP ), then for a.e. x ∈ Rd:

p∗1(0, x)∇uG(x, u∗(x)) + (Duf
u∗

)T (x)

∫ T

0

[p∗1(t, x)∇ϕu
∗

1 (t, x) + p∗2(t, x)∇ϕu
∗

2 (t, x)]dt ∈ NU0(u∗(x)).

Remark 2.4.2. ([3]) In the particular case when U0 = B(0m;µ) (where µ is a positive constant) we
may conclude via Theorem 2.4.2 that for a.e. x ∈ Rd:

u∗(x) ∈ µ sign{p∗1(0, x)∇uG(x, u∗(x)) + (Duf
u∗

)T (x)

∫ T

0

[p∗1(t, x)∇ϕu
∗

1 (t, x) + p∗2(t, x)∇ϕu
∗

2 (t, x)]dt}.

Lemma 2.4.3. ([3]) For any u ∈M, the weak solution p to
dp

dt
(t) = −A∗up(t) + 1, t ∈ (0, T )

p(T ) = 0

(2.14)

satisfies p(0, x) < 0 a.e. x ∈ Rd.

Corollary 2.4.1. ([3]) If u∗ is an optimal control for problem (CP ), then by Theorem 2.4.2 and Lemma
2.4.3 we get that

u∗(x) ∈ (∇uG(x, ·) +NU0
(·))−1(F (x)) a.e. x ∈ Rd,

where F (x) = − 1

p∗1(0, x)
(Duf

u∗
)T (x)

∫ T

0

[
p∗1(t, x)∇ϕu

∗

1 (t, x) + p∗2(t, x)∇ϕu
∗

2 (t, x)
]
dt.
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2. Stochastic optimal control problems with feedback inputs via Kolmogorov equations

2.5 Examples and comments

Comment 2.5.1. ([3]) If one assumes that

∫
Rd

ρ(x)dx = 1, then we may view ν as the distribution of

Xu(0) and E [G(Xu(t, x), u(Xu(t, x)))] and E [GT (Xu(T, x))] as conditional expectations.

Example 2.5.1. ([3]) An important particular case is when f(x, u) = f0(x) + f1(x)u, with f0 ∈
C1
b (Rd;Rd), f1 ∈ C1

b (Rd;Rd·m), G(x, u) = 1
2 |u|

2
m and U0 = B(0m;µ), µ > 0. By Theorem 2.4.2 we obtain

that

p∗1(0, x)u∗(x) + f1(x)T
∫ T

0

[
p∗1(t, x)∇ϕu

∗

1 (t, x) + p∗2(t, x)∇ϕu
∗

2 (t, x)
]
dt ∈ NU0

(u∗(x))

a.e. x ∈ Rd. Since p∗1(0, x) < 0 a.e. x ∈ Rd (see Lemma 2.4.3) we may conclude that

u∗(x) = P
B(0m;µ)

(F̃ (x)) a.e. x ∈ Rd,

where F̃ (x) = − 1

p∗1(0, x)
f1(x)T

∫ T

0

[
p∗1(t, x)∇ϕu

∗

1 (t, x) + p∗2(t, x)∇ϕu
∗

2 (t, x)
]
dt.

Example 2.5.2. ([3]) The case when m = d and f(x, u) = 1K0(x)u is the limit case for f(x, u) =
f0(x) + f1(x)u, when f0 ≡ 0d, f1 = 1K0Id. Here K0 is a closed and convex subset of Rd with 0d ∈ K0.
This case corresponds to the situation when the control acts only for x ∈ K0. Function f does not
fit hypothesis (H2.2). However, the problem can be “approximated” by (CPS) if we take f0 ≡ 0d and
f1 = 1K0,εId, where 1K0,ε is a “mollified” version of 1K0

(ε > 0 is a small constant).
Remark 2.5.1. After a careful examination of Theorem 2.4.2, one obtains that, for any u, v ∈
L∞(Rd;Rm) such that u ∈M and u+ εv ∈M for any ε > 0 sufficiently small, the directional derivative
of I at u, for direction v is

dI(u)(v) = −

〈
pu1 (0)∇uGu + (Duf)T

∫ T

0

[pu1 (t)∇ϕu1 (t) + pu2 (t)∇ϕu2 (t)]dt, v

〉
H

,

where pu1 , pu2 are the weak solutions to (2.12) and (2.13), respectively, corresponding to u∗ := u.
Based on this remark we propose a conceptual gradient type algorithm (see also [21], [22]) for problem

(CP ). The control u will be iteratively updated (improved).

An alternative approach

An alternative approach based on C0-semigroups can be used to prove that problems (CPS) and
(CPD) are equivalent and that the relationship between (CPS) and (CP ) holds if we view ϕu1 and ϕu2 as
the mild solutions to (2.3) and (2.4), respectively.

2.6 Note on the considered approach

Remark 2.6.1. ([3]) An example of stochastic optimal control problem where expectations/conditional
expectations are subject to some weighting J and JT , respectively, is the following one
(CP1

S)

Minimize
u∈Mc

{∫ T

0

J

(∫
Rd

E[G(Xu(t, x), u(Xu(t, x)))]dν(x)

)
dt+ JT

(∫
Rd

E[GT (Xu(T, x))]dν(x)

)}

8



(here J, JT ∈ C(Rd)). This problem is equivalent to the following deterministic one

(CP1
D) Minimize

u∈Mc

{∫ T

0

J

(∫
Rd

ϕu1 (t, x)dν(x)

)
dt+ JT

(∫
Rd

ϕu2 (T, x)dν(x)

)}
,

and is deeply related to

(CP1) Minimize
u∈M

{∫ T

0

J

(∫
Rd

ϕu1 (t, x)dν(x)

)
dt+ JT

(∫
Rd

ϕu2 (T, x)dν(x)

)}
.

Under appropriate hypotheses on J and JT , problem (CP 1) can be treated in an analogous manner to
problem (CP ).

The approach in this chapter can be extended to more general stochastic optimal control problems
where the study cannot be reduced to a single Kolmogorov equation, as seen in Remark 2.6.1. Other
such cases can be found in financial problems where the cost functional depends also on the variance of
GT (Xu(T )) (as a measure of the cost associated to the risk).

2.7 Auxiliary results

Lemma 2.7.1. ([1]) C∞0 (Rd) is a dense subset of V .

Lemma 2.7.2. ([1]) If α ∈ V , then qij
∂2α

∂xi∂xj
∈ V ∗. Moreover, there exists a constant M̃ ≥ 0 such

that ∥∥∥∥qij ∂2α

∂xi∂xj

∥∥∥∥
V ∗
≤ M̃‖α‖V , ∀α ∈ V.

3. OPTIMAL CONTROL OF STOCHASTIC DIFFERENTIAL
EQUATIONS VIA FOKKER-PLANCK EQUATIONS

3.1 Formulation of the problem

Consider the following stochastic differential equation with feedback input dX(t) = f (t,X(t), u(t,X(t))) dt+ σ(t,X(t))dW (t), t ∈ [0, T ],

X(0) = X0.
(3.1)

Here T ∈ (0,+∞), d, n, m ∈ N∗, W : [0, T ] × Ω → Rn is a Brownian motion on a filtered probability
space (Ω,F ,P, (Ft)t∈[0,T ]) with complete filtration, and X0 is an Rd-valued random variable which is
independent of (W (t))t∈[0,T ], and such that E[|X0|2d] < +∞. Moreover, we assume that X0 admits a
probability density ρ0.

Here u(t,X) is a feedback controller (input) which belongs to the set of controllers

U = {v : [0, T ]× Rd −→ Rm; v is a Borel function, v(t, x) ∈ U0 a.e. (t, x) ∈ [0, T ]× Rd},



3. Optimal control of stochastic differential equations via Fokker-Planck equations

where U0 is a closed and bounded subset of Rm with 0m ∈ U0. Notice that u(t, x) = 0m means that there
is no input (action/control) at (t, x).

Unless stated otherwise, we assume throughout this chapter that the functions
f : [0, T ] × Rd × Rm −→ Rd, σ : [0, T ] × Rd −→ Rd·n, q : [0, T ] × Rd −→ Rd·d have the following
forms

f(t, x, u) = (f1(t, x, u) f2(t, x, u) ... fd(t, x, u))T , σ(t, x) = (σil(t, x))i=1,2,...,d, l=1,2,...,n,
q(t, x) = σ(t, x)σ(t, x)T = (qij(t, x))i,j=1,2,...,d (qij(t, x) = σil(t, x)σjl(t, x)),

for any t ∈ [0, T ], x ∈ Rd, u ∈ Rm and satisfy

(H3.1) f |[0,T ]×Rd×U0
is a bounded Borel function;

(H3.2) σ ∈ C1
b ([0, T ]× Rd;Rd·n), and there exists a constant γ > 0 such that

σ(t, x)σ(t, x)T y · y = qij(t, x)yiyj ≥ γ|y|2d, ∀(t, x, y) ∈ [0, T ]× Rd × Rd.

As concerns ρ0 we assume for the sake of clarity of presentation that

(H3.3) ρ0 ∈ C0(Rd), ρ0(x) ≥ 0, ∀x ∈ Rd, and

∫
Rd

ρ0(x)dx = 1.

We note that for any u ∈ U , the following Fokker-Planck equation
∂ρ

∂t
(t, x) = −∇ · (fu(t, x)ρ(t, x)) +

1

2

∂2

∂xi∂xj
(qij(t, x)ρ(t, x)), t ∈ (0, T ), x ∈ Rd,

ρ(0, x) = ρ0(x), x ∈ Rd,
(3.2)

has a unique weak solution (to be defined in the next section) ρu(t, x), which is a density function, i.e.

∀t ∈ [0, T ]: ρu(t, x) ≥ 0, a.e. x ∈ Rd,
∫
Rd

ρu(t, x)dx = 1 (see the next section).

Here and throughout this chapter one denotes fu(t, x) = f(t, x, u(t, x)).
Under the above assumptions, we will deduce from the superposition principle that for any u ∈ U

there exists a (unique in law/distribution) weak solution to (3.1) such that its density exists and is in
fact ρu(t), for any t ∈ [0, T ]. We denote one of these solutions by Xu.

Assume that G : [0, T ]× Rd × Rm −→ R and GT : Rd −→ R satisfy

(H3.4) G is continuous with respect to (t, x, u) ∈ [0, T ] × Rd × U0 and there exists G0 ∈ C([0, T ] × Rd) ∩
L2((0, T )× Rd) such that |G(t, x, u)| ≤ G0(t, x), ∀(t, x, u) ∈ [0, T ]× Rd × U0;

(H3.5) GT ∈ C(Rd) ∩ L2(Rd).
For any u ∈ U one denotes Gu(t, x) = G(t, x, u(t, x)), and we get that

E

[∫ T

0

Gu(t,Xu(t))dt

]
+ E[GT (Xu(T ))] =

∫ T

0

∫
Rd

Gu(t, x)ρu(t, x)dx dt+

∫
Rd

GT (x)ρu(T, x)dx.

This equality does not depend on the choice of Xu. Hence, we get that the stochastic optimal control
problem with feedback inputs

(PS) Minimize
u∈U

{
E

[∫ T

0

G(t,Xu(t), u(t,Xu(t)))dt

]
+ E [GT (Xu(T ))]

}
is equivalent to the following deterministic optimal control problem with open-loop controllers

(P) Minimize
u∈U

{∫ T

0

∫
Rd

Gu(t, x)ρu(t, x)dx dt+

∫
Rd

GT (x)ρu(T, x)dx

}
.

10



3. Optimal control of stochastic differential equations via Fokker-Planck equations

3.2 Weak solution to the Fokker-Planck equation. Relationship between the
stochastic optimal control problem and a deterministic optimal control

problem for a Fokker-Planck equation

Consider the following real Hilbert spaces: V = H1(Rd) and H = L2(Rd). We identify the dual of H
with H and denote by V ∗ = H−1(Rd) the dual of V , with the pairing 〈·, ·〉V,V ∗ (or 〈·, ·〉V ∗,V ). Moreover,
for any ϕ ∈ V , ψ ∈ H we have 〈ϕ,ψ〉V,V ∗ = 〈ϕ,ψ〉H (where 〈·, ·〉H is the usual scalar product on H).

Note that the following embeddings V ⊂ H ⊂ V ∗ are continuous and dense.
Let F : [0, T ]×Rd −→ Rd be a bounded Borel function. Let us discuss now the relationship between

the (probabilistically) weak solutions to the following stochastic differential equation (for definition see
[20])

dX(t) = F (t,X(t))dt+ σ(t,X(t))dW (t), t ∈ [0, T ], (3.3)

the probability measure-valued solutions to the following Fokker-Planck equation (for definition see [20])

∂

∂t
µ(t) = L∗tµ(t), t ∈ [0, T ], (3.4)

where Lt(x) = F (t, x) · ∇+
1

2
qij(t, x)

∂2

∂xi∂xj
and L∗t is its formal adjoint, and the weak solution to the

following problem (for definition see [2])
∂ρ

∂t
(t, x) = −∇ · (F (t, x)ρ(t, x)) +

1

2

∂2

∂xi∂xj
(qij(t, x)ρ(t, x)), t ∈ (0, T ), x ∈ Rd,

ρ(0, x) = ρ0(x), x ∈ Rd.
(3.5)

Theorem 3.2.1. ([2]) If ρ0 ∈ H, there exists a unique weak solution ρ to (3.5).
If in addition ρ0(x) ≥ 0 a.e. x ∈ Rd, then for any t ∈ [0, T ], ρ(t, x) ≥ 0 a.e. x ∈ Rd.

Theorem 3.2.2. ([2]) If ρ0 satisfies (H3.3), then for any t ∈ [0, T ], ρ(t, ·) is a probability density
function, i.e.

ρ(t, x) ≥ 0, a.e. x ∈ Rd,
∫
Rd

ρ(t, x)dx = 1.

Moreover, ρ ∈ C([0, T ];L1(Rd)).

Remark 3.2.2. Since ρ ∈ C([0, T ];L1(Rd)), it follows that for any ψ ∈ Cb(Rd), the mapping t 7→∫
Rd

ψ(x)ρ(t, x)dx is continuous on [0, T ], i.e. if we consider ν : [0, T ] −→ P(Rd) given by

ν(t)(A) =

∫
A

ρ(t, x)dx, for any Borel set A ⊂ Rd,

then ν ∈ C([0, T ];P(Rd)).

If (X(t))t∈[0,T ] is a weak solution to (3.3), then by Itô’s formula we get that (L(X(t)))t∈[0,T ] is a
probability measure-valued solution to (3.4).

The properties of ρ imply that (ν(t))t∈[0,T ] (as defined in Remark 3.2.2) is a probability measure-
valued solution to (3.4) and satisfies that ν(0) = L(X0). Applying the superposition principle we may
conclude that there exists a weak solution (X̃(t))t∈[0,T ] to (3.3) such that L(X̃(t)) = ν(t), ∀t ∈ [0, T ].

We turn now to the relationship with the weak solution to (3.5). By Remark 3.2.2 we have that
(ν(t))t∈[0,T ] is a probability measure-valued solution to (3.4) satisfying that ν(0) = L(X0). It follows

11
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that there exists a weak solution (X(t))t∈[0,T ] to (3.3) with L(X(0)) = L(X0), satisfying additionally
L(X(t)) = ν(t),∀t ∈ [0, T ].

If we assume in addition that F is uniformly Lipschitz continuous with respect to the variable x
and since ρ ∈ L2((0, T ) × Rd), then we get via theorem 1.3 in [28] that any probability measure-valued
solution (µ(t))t∈[0,T ] to (3.4) with µ(0) = ν(0) (has density ρ0) satisfies µ(t) = ν(t),∀t ∈ [0, T ] (this is a
weak uniqueness result for (3.4) with initial value L(X0)). Consequently, any weak solution to (3.3) with
initial law/distribution L(X0) satisfies that its law is equal to ν(t),∀t ∈ [0, T ].

If, moreover, we assume in addition that F is continuous and uniformly Lipschitz continuous with
respect to the variable x, then (3.3) has a unique strong solution (X(t))t∈[0,T ], satisfying X(0) = X0

(here we consider the filtration Ft generated by X0 and W (s), s ∈ [0, t]), which is also a weak solution
to (3.3), and that in addition L(X(t)) = ν(t), ∀t ∈ [0, T ] (X(t) has ρ(t) as a probability density).

Let us turn back to the relationship between (3.1) and (3.2), and between (PS) and (P ). Notice that
for any u ∈ U , F := fu is a bounded Borel function. Problem (3.2) has a unique weak solution ρu.

If for an arbitrary u ∈ U we denote by Xu any of the weak solutions to the SDE in (3.1) such that

for any t ∈ [0, T ], L(Xu(t)) = νu(t), where νu : [0, T ] −→ P(Rd) is given by νu(t)(A) =

∫
A

ρu(t, x)dx,

for any Borel set A ⊂ Rd (i.e. ρu(t) is a probability density for νu(t)), then

E

[∫ T

0

Gu(t,Xu(t))dt

]
+ E[GT (Xu(T ))] = I(u),

and we conclude that (PS) and (P ) are equivalent.
If f |[0,T ]×Rd×U0

is bounded, continuous and uniformly Lipschitz continuous with respect to (x, u), then

for any u ∈ Uc = U ∩C0,1
b ([0, T ]×Rd;Rm), F := fu is continuous and bounded, and Lipschitz continuous

with respect to x. It is obvious that (3.1) has a unique strong solution (here we consider the filtration Ft
generated by X0 and W (s), s ∈ [0, t]), that we may denote Xu. Indeed, it is also a weak solution to the
SDE in (3.1) and satisfies that ρu(t) is a probability density for L(Xu(t)) for any t ∈ [0, T ].

We get that for any u ∈ Uc: E

[∫ T

0

Gu(t,Xu(t))dt

]
+ E[GT (Xu(T ))] = I(u) and that

inf
u∈Uc

{
E

[∫ T

0

G(t,Xu(t), u(t,Xu(t)))dt

]
+ E [GT (Xu(T ))]

}
= inf
u∈Uc

I(u).

Notice that here Xu is actually the unique strong solution to (3.1).
Finally, if U0 is also convex, then by Lemma 3.7.2 (in section 3.7) we get that Uc is a dense subset of U

(with the topology of L2
loc([0, T ]×Rd;Rm)). On the other hand, if additionally f |[0,T ]×Rd×U0

is bounded,
continuous and uniformly Lipschitz continuous with respect to (x, u), then we have shown that

inf
u∈Uc

I(u) = inf
u∈U

I(u).

3.3 The maximum principle for the deterministic control problem

Assume in this section that f satisfies the stronger hypothesis

(H3.1’) f |[0,T ]×Rd×U0
is a bounded and continuous function,

and that ρ0 satisfies the weaker hypothesis

12
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(H3.3’) ρ0 ∈ L2(Rd), ρ0(x) ≥ 0 a.e. x ∈ Rd,
∫
Rd

ρ0(x)dx = 1.

For any u ∈ U and t ∈ [0, T ] we define the linear operator Au(t) : V −→ V ∗,

Au(t)ϕ = −∇ · (fu(t, ·)ϕ) +
1

2

∂2

∂xi∂xj
(qij(t, ·)ϕ), ∀ϕ ∈ V.

It follows in a standard way that Au(t) ∈ L(V, V ∗) and ‖Au(·)‖L(V,V ∗) ∈ L∞(0, T ).

Let Au(t)∗ ∈ L(V ;V ∗) be its formal adjoint, given by Au(t)∗ψ = fu(t, ·) · ∇ψ +
1

2
qij(t, ·)

∂2ψ

∂xi∂xj
.

Assume that u∗ is an optimal control for problem (P ). Let p be the unique weak solution (as defined
below) to 

dp

dt
(t) = −Au

∗
(t)∗p(t) +G(t, ·, u∗(t, ·)), t ∈ (0, T ),

p(T ) = −GT ,
(3.6)

This is a Cauchy problem in V ∗ and (3.6) might be equivalently written as
∂p

∂t
= −fu

∗
· ∇p− 1

2
qij

∂2p

∂xi∂xj
+Gu

∗
, t ∈ (0, T ), x ∈ Rd,

p(T, x) = −GT (x), x ∈ Rd.

(3.7)

Theorem 3.3.1. (The maximum principle) ([2]) If u∗ is an optimal control for problem (P ), then

ρu
∗
(t, x)[f(t, x, u∗(t, x)) · ∇p(t, x)−G(t, x, u∗(t, x))] = max

u0∈U0

ρu
∗
(t, x)[f(t, x, u0) · ∇p(t, x)−G(t, x, u0)],

a.e. (t, x) ∈ (0, T )× Rd.

Remark 3.3.1. ([2]) Actually, the maximum principle says that for almost any (t, x) ∈ (0, T )× Rd we
have that

u∗(t, x) = arg max{ρu
∗
(t, x)[f(t, x, u0) · ∇p(t, x)−G(t, x, u0)]; u0 ∈ U0}.

If in addition we have that U0 is convex and f |[0,T ]×Rd×U0
∈ C0,0,1

b ([0, T ]×Rd×U0;Rd), G|[0,T ]×Rd×U0
∈

C0,0,1
b ([0, T ]× Rd × U0), then

ρu
∗
(t, x)((Duf(t, x, u∗(t, x)))T∇p(t, x)−∇uG(t, x, u∗(t, x))) ∈ NU0

(u∗(t, x)),

a.e. (t, x) ∈ (0, T )× Rd, where Duf =

(
∂fi
∂ul

)
i=1,2,...,d, l=1,2,...,m

and (Duf)T is its transpose.

The time-independent case

If f , σ, G and G0 are time-independent, then it is natural to consider the next stochastic optimal
control problem with feedback inputs

(P0
S) Minimize

u∈M

{
E

[∫ T

0

G(Xu(t), u(Xu(t)))dt

]
+ E [GT (Xu(T ))]

}
,

13
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and the following deterministic optimal control problem with open-loop controllers

(P0) Minimize
u∈M

{∫ T

0

∫
Rd

G(x, u(x))ρu(t, x)dx dt+

∫
Rd

GT (x)ρu(T, x)dx

}
,

where M = {v : Rd −→ Rm; v is a Borel function, v(x) ∈ U0, a.e. x ∈ Rd}.
Theorem 3.3.3. ([2]) If u∗ ∈M is an optimal control for problem (P 0), then

f(x, u∗(x)) ·
∫ T

0

∇p(t, x)ρu
∗
(t, x)dt−G(x, u∗(x))

∫ T

0

ρu
∗
(t, x)dt

= max
u0∈U0

[
f(x, u0) ·

∫ T

0

∇p(t, x)ρu
∗
(t, x)dt−G(x, u0)

∫ T

0

ρu
∗
(t, x)dt

]
,

a.e. x ∈ Rd, where p is the unique weak solution to (3.7).

Remark 3.3.2. ([2]) If in addition U0 is convex and f |Rd×U0
∈ C0,1

b (Rd×U0;Rd), G|Rd×U0
∈ C0,1

b (Rd×
U0), then for a.e. x ∈ Rd:

(Duf(x, u∗(x)))T
∫ T

0

∇p(t, x)ρu
∗
(t, x)dt−∇uG(x, u∗(x))

∫ T

0

ρu
∗
(t, x)dt ∈ NU0(u∗(x)).

3.4 Existence of an optimal control for the deterministic control problem

Assume in this section that U0 is also convex and that

f(t, x, u) = f0(t, x) + f1(t, x)u, ∀(t, x, u) ∈ [0, T ]× Rd × Rm,

where f0 : [0, T ] × Rd −→ Rd, f1 : [0, T ] × Rd −→ Rd·m are continuous and bounded. We also assume
that besides (H3.4) and (H3.5), G and GT satisfy that the mapping from U0 to R given by

u 7−→ G(t, x, u) is convex , ∀(t, x) ∈ [0, T ]× Rd,

G(t, x, u) ≥ α1, ∀(t, x, u) ∈ [0, T ]× Rd × U0, GT ∈ H1(Rd), GT (x) ≥ α2, ∀x ∈ Rd.

Here α1, α2 are real constants.

Theorem 3.4.1. ([2]) There exists at least one optimal control for (P ).

Remark 3.4.1. ([2]) Assume now that f(x, u) = f0(x) + f1(x)u, ∀(x, u) ∈ Rd × Rm,
where f0 : Rd −→ Rd, f1 : Rd −→ Rd·m are continuous and bounded, and σ, G and G0 are inde-
pendent of t. It follows in a similar manner that there exists at least one optimal control for problem
(P 0) (defined in section 3.3).

3.5 Examples

This section contains several examples; we recall one of them.

Example 3.5.1. ([2]) Assume that U0 = B(0m; r) (r ∈ (0,+∞)), f(t, x, u) = f1(t, x)u, where
f1 : [0, T ]× Rd −→ Rd·m is continuous and bounded, f1(t, x) = 0d·m,∀t ∈ [0, T ], |x|d ≥ R (R ∈ (0,+∞)),

14
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G(t, x, u) = 1
2G1(t, x)|u|2m, where G1 ∈ C([0, T ] × Rd), G1(t, x) = 0,∀t ∈ [0, T ], |x|d ≥ R,G1(t, x) >

0,∀(t, x) ∈ (0, T )×B(0d;R). We obtain that

u∗(t, x) = P
B(0m;r)

(
f1(t, x)T∇p(t, x)

G1(t, x)

)
,

a.e. in {(t, x) ∈ (0, T ) × B(0d;R); ρu
∗
(t, x) > 0}, where P

B(0m;r)
is the projection on B(0m, r) and p is

the weak solution to (3.7).

3.6 An optimal control problem with inputs with nonlocal action

Assume that the drift coefficient f is equal to u (i.e. f(t, x, u) = u) and that the control u does not
explicitly depend on time. Hence, (3.1) becomes dX(t) = u(X(t))dt+ σ(t,X(t))dW (t), t ∈ [0, T ],

X(0) = X0.

Function ρ, the weak solution to (3.2) may be viewed as the probabilistic density of a population.
Let ζ(x) be the density at x ∈ Rd of a second population (or of another entity) which produces a

stimulus to the first population. For the sake of clarity, assume that the second population is time-
independent, imobile, located in B(0d;R0) (R0 > 0), and that it repels the individuals of the first
population which are at a distance less than R (here R is a positive constant). It means that ζ is an
input (control) with nonlocal action. This action is expressed mathematically in terms of the so-caled
“generalized gradient” (nonlocal gradient) with kernel GR. Actually,

u(x) = −∇
(∫

Rd

GR(x− y)ζ(y)dy

)
(u = −∇(GR ∗ ζ)) describes the nonlocal action (effect) of the second population towards the individuals
of the first population at x ∈ Rd. We assume that function GR is nonnegative, sufficiently smooth and
its support is a subset of B(0d;R).
The term −∇ · (u(x)ρ(t, x)) = ∇ · (∇(GR ∗ ζ)(x)ρ(t, x)) in (3.2) describes a so-called cross-dispersion (see
[12], [13]).

An appropriate set of controllers is

M0 = {ζ : Rd −→ R; ζ is a Borel function, 0 ≤ ζ(x) ≤ M̃0 a.e. x ∈ Rd, ζ(x) = 0 a.e. |x|d > R0}.

Here M̃0 is a positive constant, and we assume that GR ∈ C2
0 (Rd), GR(x) > 0 if |x|d < R and GR(x) = 0

if |x|d ≥ R. The corresponding set of actions produced by the controllers ζ is

U0 =
{
u; u(x) = −∇(GR ∗ ζ)(x), ∀x ∈ Rd, ζ ∈M0

}
.

Consider the following deterministic optimal control problem related to the controls ζ ∈M0:

(P0
nl) Minimize

ζ∈M0

{∫ T

0

∫
Rd

G(x, ζ(x))ρζ(t, x)dx dt+

∫
Rd

GT (x)ρζ(T, x)dx

}
.

We use either the notation ρu or ρζ (where u(x) = −∇
(∫

Rd

GR(x− y)ζ(y)dy

)
).
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Assume that G ∈ C(Rd × [0, M̃0]) and there exists G0 ∈ C(Rd) ∩ L2(Rd) such that

|G(x, ζ)| ≤ G0(x), ∀(x, ζ) ∈ Rd × [0, M̃0].

Moreover, we also assume that

ζ 7−→ G(x, ζ) is convex , ∀x ∈ Rd,

G(x, ζ) ≥ α1, ∀(x, ζ) ∈ Rd × [0, M̃0], GT (x) ≥ α2, ∀x ∈ Rd.

Here α1, α2 are real constants.
The deterministic optimal control problem is obviously equivalent to the following one

(P0
Snl) Minimize

ζ∈M0

{
E

[∫ T

0

G(Xζ(t), ζ(Xζ(t)))dt

]
+ E

[
GT (Xζ(T ))

]}
,

where we use either the notation Xu or Xζ (where u(x) = −∇
(∫

Rd

GR(x− y)ζ(y)dy

)
).

Theorem 3.6.1. There exists at least one optimal control ζ∗ for problem (P 0
nl).

Assume that in addition G ∈ C0,1
b (Rd × [0, M̃0]).

Theorem 3.6.2. If p is the weak solution to
∂p

∂t
= ∇(GR ∗ ζ∗) · ∇p−

1

2
qij

∂2p

∂xi∂xj
+G(·, ζ∗(·)), t ∈ (0, T ), x ∈ Rd,

p(T, x) = −GT (x), x ∈ Rd,

then

ζ∗(x) =



0, a.e. for

∫ T

0

∫
Rd

ρζ
∗
(t, y)∇p(t, y) · ∇GR(y − x)dy dt

+
∂G

∂ζ
(x, ζ∗(x))

∫ T

0

ρζ
∗
(t, x)dt > 0, |x|d ≤ R0

M̃0, a.e. for

∫ T

0

∫
Rd

ρζ
∗
(t, y)∇p(t, y) · ∇GR(y − x)dy dt

+
∂G

∂ζ
(x, ζ∗(x))

∫ T

0

ρζ
∗
(t, x)dt < 0, |x|d ≤ R0.

3.7 Auxiliary results

Assume here that ρ0 satisfies the weaker assumption (H3.3′) (instead of (H3.3)).

Lemma 3.7.1. ([2]) There exists a nonnegative constant M̃ such that

‖ρu‖C([0,T ];H) ≤ M̃, ∀u ∈ U .

Lemma 3.7.2. ([2]) If U0 is also convex, then for any u ∈ U , there exists a sequence {uk}k∈N∗ ⊂ Uc,
such that

uk −→ u in L2
loc([0, T ]× Rd;Rm),

i.e. the closure of Uc in L2
loc([0, T ]× Rd;Rm) is U .
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Lemma 3.7.3. ([2]) If f |[0,T ]×Rd×U0
is a continuous and bounded function and if {uk}k∈N∗ ⊂ U satisfies

uk −→ u, a.e. in [0, T ]× Rd,

then
ρuk −→ ρu in C([0, T ];H).

4. FURTHER EXTENSIONS

4.1 Extensions to Chapter 2

A special attention will be paid to applications to real world problems modeled by stochastic differential
equations (see [29] for SDEs in Physics and Engineering and [24] for Finance).

4.2 Extensions to Chapter 3

First extension. Consider the following stochastic optimal control problem with feedback inputs

(PS) Minimize
u∈U

{
E

[∫ T

0

Gu(t,Xu(t))dt

]
+ IK0

(Xu(T ))

}
,

where K0 is a nonempty closed subset of L2(Ω;Rd). Notice that this is not a particular case of problem
(PS). We consider an “approximating” problem

(P
ε

S) Minimize
u∈U

{
E

[∫ T

0

Gu(t,Xu(t))dt

]
+

1

2ε
dK0

(Xu(T ))2

}
,

where ε > 0 and dK0
(y) = inf{‖y − z‖L2(Ω;Rd); z ∈ K0}.

For K0 = {y ∈ L2(Ω;Rd); ‖y‖L2(Ω;Rd) ≥ r0} (r0 > 0) we have that

dK0
(y)2 = (min{r0, ‖y‖L2(Ω;Rd)} − r0)2.

Problem (P
ε

S) is equivalent to the following deterministic optimal control problem

(P
ε
) Minimize

u∈U

{∫ T

0

∫
Rd

Guρudx dt+
1

2ε

(
min{r0, (

∫
Rd

|x|2dρu(T, x)dx)
1
2 } − r0

)2
}
.

The methods used and developed in Chapter 3 could be adapted to investigate (P
ε

S) and (P
ε
) as well.

Second extension. Another possible continuation of the investigation in Chapter 3 concerns the de-
terministic optimal control problem (P ) with ρu being, this time, the weak solution to the following
Fokker-Planck equation with non-local term

∂ρ

∂t
(t, x) = −∇(fu(t, x)ρ(t, x)) +

1

2

∂2

∂xi∂xj
(qij(t, x)ρ(t, x))

−ζ(x)ρ(t, x) +

∫
Rd

ζ(y)ρ(t, y)κ(x, y)dy, t ∈ (0, T ), x ∈ Rd,

ρ(0, x) = ρ0(x), x ∈ Rd,

(4.1)



where ζ ∈ L∞(Rd), ζ(x) ≥ 0 a.e. x ∈ Rd, κ ∈ L∞(Rd × Rd), κ(x, y) ≥ 0 a.e. (x, y) ∈ Rd × Rd,∫
Rd

κ(x, y)dx = 1 a.e. y ∈ Rd.

The probability density function corresponding to Xu satisfies (4.1) if, instead of just a simple Brownian
noise, we consider the sum of two independent noises, a Brownian one and a Poisson type one (see [14],
[11]).

4.3 Optimal control of a McKean-Vlasov equation via nonlinear
Fokker-Planck equation

Consider the following deterministic optimal control problem

(P1) Minimize
u∈U0

∫ T

0

∫
Rd

G(t, x, u(x))ρu(t, x)dx dt+

∫
Rd

GT (x)ρu(T, x)dx,

where ρu is the “mild” solution, defined using the nonlinear semigroups, to the following nonlinear
Fokker-Planck equation

∂ρ

∂t
(t, x) = −∇ · (u(x)b(ρ(t, x))ρ(t, x)) + ∆β(ρ(t, x)), t ∈ (0, T ), x ∈ Rd

ρ(0, x) = ρ0(x), x ∈ Rd.

Under appropriate hypotheses this problem is deeply related to the following stochastic optimal control
problem (via the superposition principle)

(P1
S) Minimize

ζ∈M0
E

[∫ T

0

G(t,Xu(t), ζ(Xu(t)))dt

]
+ E[GT (Xu(T ))],

where Xu is a certain probabilistically weak solution to the following McKean-Vlasov equation
dX(t) = u(X(t))b

(
dLX(t)

dx (X(t))
)
dt+ σ

(
dLX(t)

dx (X(t))
)
dW (t), t ∈ [0, T ]

X(0) = X0.

Here σ(r) =
√

2
(
β(r)
r

) 1
2

and u = −∇(GR ∗ ζ). The controllers ζ ∈M0 have nonlocal actions u ∈ U0 (as

in section 3.6).
We intend to investigate problem (P 1) using an approach based on the nonlinear semigroups in L1(Rd).

The properties of the solutions to the nonlinear Fokker-Planck equation can be found in [6], [7], [8], [9].
In order to tackle the deterministic optimal control problem, the idea is to consider the backward Euler
approximation of the nonlinear Fokker-Planck equation and the corresponding optimal control problem.
The existence of an optimal control and the optimality conditions for this approximating problem are



easier to derive than for problem (P 1). These ideas are being developed in [4].

5. APPENDIX

We recall here a few results that were indispensable throughout this PhD thesis:
Gronwall’s inequality, Lions’ existence and uniqueness theorem, Aubin’s compactness theorem, some

results concerning dissipative operators and C0-semigroups.
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[10] L. Beznea, I. Ĉımpean, M. Röckner, A new approach to the existence of invariant measures for
Markovian semigroups, Ann. Inst. H. Poincaré Probab. Statist., 55 (2) (2019), 977–1000.
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[28] M. Röckner, X. Zhang, Weak uniqueness of Fokker–Planck equations with degenerate and bounded
coefficients, C. R. Math., 348 (7-8) (2010), 435-438.

[29] K. Sobczyk, Stochastic Differential Equations: with Applications to Physics and Engineering,
Kluwer, Dordrecht, 1991.

[30] D. Trevisan, Well-posedness of multidimensional diffusion processes with weakly differentiable coef-
ficients, Electron. J. Probab., 21 (2016), 1–41.

[31] M. Tucsnak, G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, Basel, 2009.
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