CALCULUS ON A CLOSED ORIENTED RIEMANNIAN MANIFOLD

(what you should know- a summary)

For M oriented smooth manifold a Riemannian metric g defines a (M)-linear operators $*:^q \Omega^r(M) \to \Omega^{n-r}(M)$ with the property

$$*^{n-r} \cdot *^r = (-1)^{r(n-r)} Id$$

and such that

$$(\omega,\omega'):=\int\omega\wedge *^r,\omega',$$

 $\omega, \omega' \in \Omega^r(M)$ is a scalar product.

Denote by :

1.

$$d_r^* := (-1)^{nr+1} *^{n-r} \cdot d_{n-r-1} \cdot *^{r+1} : \Omega^{r+1}(M) \to \Omega^r(M)$$

the formal adjoint of $d_r: \Omega^r(M) \to \Omega^{r+1}(M)$ (i.e. $(d_r\omega, \omega')(=(\omega, d_r^*\omega'), \omega \in \Omega^r(M), \omega' \in \Omega^{r+1}(M))$,

2.

$$\Delta_r := d_r^* \cdot d_r + d_{r-1} \cdot d_{r-1}^*,$$
$$d_r \cdot \Delta_r = \Delta_{r+1} \cdot d_r$$
$$d_r^* \cdot \Delta_r = \Delta_{r-1} \cdot d_r^*$$

3. Define

$$(\omega, \omega')_k := ((1 + \Delta_r)^{k/2} \omega, (1 + \Delta_r)^{k/2} \omega')$$

4.

$$\Omega^r_{-} := \operatorname{img} d^*_r,$$

$$\Omega^r_{+} := \operatorname{img} d_{r-1},$$

$$\Delta^+_r := d_{r-1} \cdot d^*_{r-1} : \Omega^r_{+} \to \Omega^r_{+},$$

$$\Delta^-_r := d^*_r \cdot d_r : \Omega^r_{-} \to \Omega^r_{-},$$

5.

$$\mathcal{H}^r := \ker d_r \cap \ker d_{r-1}^* = \ker \Delta_r.$$

Suppose (M, g) closed (i.e. compact) Riemannian manifold.

For a closed smooth manifold $M \Omega^r(M)$ can be equipped with the C_r -norms based on all derivatives up to order $\leq r$ and w.r. to all these norms it becomes a Frechet space A Riemannian metric induces in addition the norms generated by the scalar products $(\cdot, \cdot)_s$ (with $(\cdot, \cdot)_0 = (\cdot, \cdot)$). With respect of the collection of all C_r - norms is a Frechet space and with respect to the scalar products $(\cdot, \cdot)_s$ lead to Hilbert spaces $H_s(\Omega^r(M))$. with $H_0(\Omega^r(M))$ denote usually by $L_2^r(M)$, all having $\omega^r(M)$ as a dense subspace.

All operators d_r, d_r^* resp. Δ_r are continuous with respect to the Frechet topology but w.r to the topology induced from L_2^s for a specific s but only from H_s to $H_{s'} s' < s$ resp. s' < s - 1.

With respect to L_2^s norms, on the Hilbert space $H_s(\Omega^r(M))$ the completion of $\Omega^r(M)$ w.r. to the scalar product, the operator Δ_r extends to a unique densely defined closed operator Δ_r which is self adjoint with spectrum a discrete countable collection of real numbers.

deRham - Hodge theorem

- 1. $H_{DM}^r := \ker d_r / \operatorname{imgd}_{r-1} \simeq H^r(M; \mathbb{R})$ with $H^r(M; \mathbb{R})$ the singular cohomology.
- 2. $\Omega^r_+(M) := \mathrm{i} mgd_{r-1} \subset \Omega^r(M),$
 - $\Omega^r_-(M):=\mathrm{i} mgd^*_{r-1}\subset \Omega^r(M)$

 $\mathcal{H}^r(M) := \ker d_r \cap \ker \delta_r^*$ are closed subspaces w.r. to the Frechet topology, mutually orthogonal w.r. to all scalar products $(\cdot, \cdot)_s$ and satisfy

 $\Omega^r(M) = \Omega^r_+(M) \oplus \Omega^r_-(M) \oplus \mathcal{H}^r(M)$ with $d_r : \Omega^r_- \to \Omega^r_+$ bijective.

3.
$$\mathcal{H}^r(M) = \ker \Delta_r = H^r_{DM}(M) = H^r(M:\mathbb{R}).$$

The subgroup or smooth integral forms in $\mathcal{H}^r(M)$ defines a Latice L_r isomorphic to $\mathcal{H}^r(M) : \mathbb{Z})/Tor^r$ inside the finite dimensional Hilbert space $\mathcal{H}^r(M)$, hence a volume $V_r \in \mathbb{R}_{>0}$. Here Tor^r denotes the torsion subgroup of $H_r(M : \mathbb{Z})$.

Spectral Package of (M.g) denoted by $\mathcal{A}(M,g)$

Consists from the collection of eigenvalues with multiplicity and eigen-spaces (which are all finite dimensional subspaces in $\Omega^r(M)$) of the Laplace-Betrami operators Δ_r .

One denotes the spectral package associated with Δ_r by \mathcal{A}_r which decomposes as $\mathcal{A}_r = \mathcal{A}_r^0 \sqcup \mathcal{A}_r^- \sqcup \mathcal{A}_r^+$ Note that d_r identifies \mathcal{A}_r^- to \mathcal{A}_{r+1}^+ and $*^r$ identifies \mathcal{A}_r to \mathcal{A}_{n-r} identifying \mathcal{A}_r^0 to \mathcal{A}_{n-r}^0 and permuting the parts keeping the parts \pm or permuting them depending on the parity of n and r.

Here \mathcal{A}^0 consists of the eigenvalue 0 (with its multiplicity and and its eigen-space), \mathcal{A}^- resp. \mathcal{A}^- consisting of eigenvalues of Δ^+ resp. Δ^- with their multiplicity and their eigen-spaces.