
LINEAR ALGEBRA
(summary)

Let A : V → V be a linear endomorphism of complex vector spaces (=vector space over the field C) of
dimension n. With respect to a base {e1, e2 · · · en} A can be viewed as an n× n matrix A = ||ai,k||, i, k =
1, 2, · · · , n with complex coefficients ai,k ∈ C.

• TrA and detA are the two basic invariants (up to conjugation).

• The set SpecA := {λ ∈ C | det(A − λI) = 0}consists of the eigenvalues of A and ]SpecA = n,
when counting the eigenvalues with their multiplicity.
The subspace Hλ := {v ∈ V | A(v) = λv} = ker(A− λI) defines the eigenspace of λ.
PA(λ) := det(A− λI), denotes the characteristic polynomial of degree A which is of degree n.

• Note that TrA =
∑
λi, detA =

∏
λi and denote det′A =

∏
λi 6=0 λi.

• Γ denotes a simple closed curve in the complex plane, counter-clockwise oriented, containing SpecA
and Γλ a simple closed curve containing only one eigenvalue λ ∈ SpecA.

For f : U → C a holomorphic function on a 1-connected domain U, a domain containing the set SpecA
and the curve Γ resp. Γλ define

f(A) := 1/2πi

∫
Γ
f(z)(z −A)−1dz.

in particullar one has

Id := 1/2πi

∫
Γ
(z −A)−1dz

A := 1/2πi

∫
Γ
z(z −A)−1dz

and
EAλ := 1/2πi

∫
Γλ

(z −A)−1dz

the projection on Hλ.
Note that for each z ∈ U \ SpecA, the linear map (z −A) is invertible, hence the formulae above make

sense.
Based on Cauchy theorem the results are independent on the Γ resp. Γλ.

For a complex vector space V a Hermitian scalar product is a complex valued function on two variables
(, ) : V × V → C, linear in the first variable, conjugate linear in the second which satisfies the following:
(x, y) = (y, x) (x, x) = ||x|| ≥ 0and||x|| = 0 implies x = 0.

Let A : V1 → V2 be a linear map between two complex vector spaces of dimension n1 resp. n2,
equipped with Hermitian scalar products (, )1 and (, )2. Define

||A|| := sup
||u||1=1

||A(u)||2.

Denote by A∗ : V2 → V1 the unique linear map defined by

(A(x), y)2 = (x,A∗y)1, x ∈ V1, y ∈ V2.
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If e1
1, e

1
2, · · · e1

n1
and e2

1, e
2
2, · · · e2

n2
are orthonormal bases in V1 and V2 and A is represented by the matrix

with components ai,j , 1 ≤ i ≤ n2, 1 ≤ j ≤ n1, then A∗ is represented by the matrix with entries bi,j , 1 ≤
i ≤ n1, 1 ≤ j ≤ n2 with bi,j = aj,i.

Suppose V1 = V2 = V.

1. The linear map A : V → V is selfadjoint = hermitian symmetric if A = A∗ i.e. ai,j = aj,i.

Note that A∗ ·A, A ·A∗, A+A∗ are all selfadjoint with the first two nonnegative definite (1.

2. The linear map U : V → V is unitary or bijective isometry iff U∗ · U = Id.

One can prove:

Proposition 0.1
Let A : V → V be a selfadjoint map.

1. A : V → V has all eigenvalues real and eigenspaces mutually orthogonal.

2. There exists unitary linear maps U s.t. A = U ·D ·U∗ with D =


λ1, 0, · · · , 0
0, λ2, · · · , 0
· · ·
0, 0, · · · , λn

 with λi real

numbers; in particular if the linear transformation A is selfadjoint and positive definite then A has a

square root given by U ·D′ · U∗ with D′ =


λ

1/2
1 , 0, · · · , 0

0, λ
1/2
2 , · · · , 0

· · ·
0, 0, · · · , λ

1/2
n

 .
3. ( ”Gap in the spectrum” lemma) If A : V → V is selfadjoint, V1, V2 two subspaces of V with
V = V1 ⊕ V2 which satisfy ||A(x)|| ≤ a||x|| for x ∈ V1 and ||A(y) ≥ b||y|| for y ∈ V2 with a < b,
then SpecA ∩ (a, b) = ∅.

Proof: Item 1. A(x) = λx implies λ||x||2 = (A(x), x) = (x,Ax) = (x, λx) = λ||x||2, hence λ = λ,
hence λ ∈ R. If x ∈ Hλ, y ∈ Hµ one has A(x) = λx and A(y) = µy and then λ(x, y) = (Ax, y) =
(x,Ay) = µ(x, y). In view of selfadjointess of A, which implies µ = µ, one has (λ − µ)(x, y) = 0. If
λ 6= µ then (x, y) = 0. q.e.d.

Item 2 follows by induction on dimension of V once one observes that if A is selfadjoint with v ∈ V
eigenvector corresponding to the eigenvalue λ then A leaves invariant the orthogonal complement of v.

Item 3. Suppose SpectA 3 λ ∈ (a, b) hence theexista v = v1 + v2 with A(v) = λv. We want to show
this is impossible. Indeed A(v) = λv1 + λv2. which implies

(A(v1), v1) + (A(v2), v1) = λ||v1||2 + λ(v2, v1) (1)

and
(A(v1), v2) +A(v2), v2) = λ||v2||2 + λ(v1, v2). (2)

In view of selfadjointness (1) is equivalent to

(A(v1), v1)− λ||v1||2 = −(A(v1), v2) + λ(v1, v2) (3)
1A selfadjoint is called nonnegative definite if all eigenvalues of A are nonnegative real numbers
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which because the left side is real so is rhe right side, hence

(A(v1), v1)− λ||v1||2 = −(A(v1), v2) + λ(v1, v2) (4)

Equality (2) is equivalent to

(A(v2), v2)− λ||v2||2 = −(A(v1), v2) + λ(v1, v2). (5)

One concludes that (A(v1), v1)− λ||v1||2 = (A(v2), v2)− λ||v2||2, clearly impossible, since the left side is
strictly negative and the right side is strictly positive by hypothesis.

For A selfadjoint and f : R → R one also consider the self adjoint linear map f(A) := UD′U∗ with
the diagonal matrix D′ having the entries f(λ1), f(λ2), · · · , f(λn) when A = UDU∗, is as in Proposition
0.1 item 2. Note that when f is a restriction of holomorphic map and A is selfadjoint then this definition is
consistent with the definitiion of f(A) from the begining of these remarks.

A very Important result

Theorem 0.2 (Relliich- Kato)
Suppose A(z) = A0 +

∑
i≥1Aiz

i is a convergent power series whose coefficients Ai are selfad-
joint matrices with complex coefficients (i.e. the matrix A(z) has entries ai,j(z) =

∑
k≥0 a

k
i,jz

k conver-

gent power series with the properties that akj,i = aki,j
2. Then there exists the convergent power series

λ1(z), · · · , λn(z), λi(z) ∈ C and v1(z), · · · , vn(z), vi(z) ∈ V such that A(z)(vi(z)) = λi(z)vi(z) and
λi(t) ∈ R and vi(t) = 1 for z = t, t ∈ R. 3

In particular if A(z) = A0 + A1z + · · ·Anzn with Ai selfadjoint matrices, there exists the set of
holomorphic maps λ1(z), · · ·λn(z), λi(z) ∈ C and v1(z), · · · vn(z), vi(z) ∈ V holomorphic in some
small small neighborhood U of R ⊂ U ⊂ C with A(z)(vi(z)) = λi(z)vi(z), z ∈ U and with λi(t) ∈ R
||vi(t)|| = 1 for z = t ∈ R, exhausting the eigenvalues of A(z) for z ∈ U.

Proof:
Sketch of proof (following Rellich)
The proof will be accomplished in four steps:
Step 1 : One writes the solution of the characteristic polynomial (equated to zero) as a Puiseux series,

λ(z) = λ+
∑

n0≤k bkz
k/h, h a positive integer,

Step 2 : One establishes that n0 ≥ 1,
Step 3 : Using the fact thatA(z) is selfadjoint for z ∈ R real on concludes inductively that bk = 0 unless

h divides k which makes λ(z) a convergent power series.
Step 4: One shows the following: Let γi,k(z), i = 1, · · ·n are convergent power series in the neigh-

borhood of z = 0 and suppose that det(γi,k(z)) = 0. Then there exists power series c1(z), · · · cn(z),
convergent in the neighborhood of z = 0 such that

∑n
k=1 γi,k(z)ck(z) = 0, i = 1, · · · , n and for real z,∑n

k=1 |ck(z)|2 = 1.
The result can be easily derived from these steps.

The above steps follow the arguments in Rellich’ lecture notes on ”Perturbation Theory of Eigenvalue
Problems, F Rellich, New York University, Institut of Mathematical Sciences. Pages 36-45. These pages

2A(z) is selfadjoint only for z ∈ R
3Without the selfadjoint hypothesis the statement fails. Consider A(z) =

[
0 1
−1 0

]
+

[
0 1
0 0

]
z. One can not write λ1(z) and

λ2(z) as two power series in z.
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attached in the course directory as ” Relleichbook.doc. The entire text of this book can be found on IN-
TERNET. An Alternative proof can recovered from Kato ’s book, T.Kato, Perturbation theory for Linear
operators Springer =Verlag, second edition

Puiseux series

A Puiseux series is a formal Laurent power series in the variable T 1/n denoted by Tn with coefficients
in the field K of the form f =

∑
k0≤k<∞ ckT

k/n for n fixed. The set of these powe series is denoted
by K((Tn)). The union

⋃
nK((Tn)) is refered to as the set of all Puiseux power series. If we denote

by Tn = T 1/n and for any m|n one considers Tm → (Tn)n/m which induces an injective map from
K((Tm))→ K((Tn)) The direct limit is equal to

⋃
n>0K((Tn)) which is in an obvious way a field. When

K is the field of complex numbers the element in f ∈ K((Tn)) is said to have the radius of convergence
ε > 0 if for any z ∈ C with |zn| < ε the series obtained by replacing Tn by z is convergent. complex
number with zn in absolute value smaller than ε provide, when replacing by replacing Tn by z, a convergent
series. The series is convergent if it has a positive radius of convergence.

It is a result which can be very well attributed to Newton but certainly present in the work to Puiseux, that
both the field of all Puiseux as well as the subfield of convergent Puiseux series with complex coefficients
is algebraically closed. Hence any equation zn + a1z

n−1 + a2z
n−2 + · · ·+ an with ai Puiseux series resp.

convergent Puiseux series has exactly n (possibly with multiplicity) solutions each Puiseux resp. convergent
Puiseux series. An power series in z is recognized among the Puiseux series with complex coefficients as
having all ck with k not divisilble by n equal to 0.

Wikipedia may be a good reference or most of the books in algebraic geometry like
Shafarevici, Igor Rostislavovici (1994) Basic Algebraic Geometry Springer Verlag or
Walker, R, J (1978) Algebraic curves Springer Verlag)

Spectral density function

For A : V1 → V2 linear map between two vector spaces equipped norms || ||1 and || ||2 define the
spectral density function by the formula

FA(λ) := sup{dimL | ||fL|| ≤ λ}.

This is a step function continuous to the left. If the norms come from a scalar product one has

FA(λ) = F (A∗·A)1/2(λ)

and the jump values are exactly the eigenvalues of (A∗ ·A)1/2.
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