
1. DIFFERENTIAL FORMS AND INTEGRATION 1

1 Differential forms and integration

1.1 Smooth manifolds

The concept of an n-dimensional manifold is a simple extension of the calculus
of several variables. It is a space constructed from open subsets of Rn by
patching them together in a smooth way.

Let M be a topological space. We say that M has a countable base if there
exists a collection (Ui)i∈N of open subsets of M so that any open subset of M
is given by the union of open subsets from the collection (Ui)i∈N. The space
M is called Hausdorff if for any two distinct points x, y ∈M there exist open
neighborhoods Ux and Uy of x and y with empty intersection.

1.1 Definition. M is a topological manifold of dimension n ≥ 0 if M is
Hausdorff and has a countable base (Ui)i∈N so that for any i ≥ 1, Ui is home-
omorphic to an open subset of Rn.

It can be shown that any topological manifold M is paracompact – see e.g.
[By]. It means that any open covering (Ui)i∈I of M has a locally finite refine-
ment, i.e. an open covering (Vj)j∈J of M with the following two properties:
(i) for any j ∈ J there exists i ∈ I with Vj ⊆ Ui (refinement); (ii) for any
x ∈ M there exists a neighborhood W of x which intersects only a finite
number of sets in (Vj)j∈J (locally finite).

A chart of an n-dimensional topological manifold is a pair (U,ϕ) consisting
of an open subset U ⊆ M and a homeomorphism ϕ : U → U ′ onto an open
subset U ′ ⊆ Rn.

We say that ϕ−1 : U ′ → U is a local parametrization of X. By a slight abuse
of notation, in the sequel, we will sometimes refer to a local parametrization
of M as a chart as well. An atlas A of a topological manifold is a collection
of charts (Ui, ϕi)i∈I so that (Ui)i∈I is an open covering of M . One says that
A is a smooth atlas if for any i, j ∈ I the transition map

ϕji := ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

is a C∞-diffeomorphism between open subsets of Rn. Assume that A1 and
A2 are two smooth atlases of M . We say that A1 and A2 are equivalent if
A1∪A2 is a smooth atlas of M . One easily checks that this is an equivalence
relation on the set of smooth atlases of M . An equivalence class of smooth
atlases of M is called a smooth structure of M .
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1.2 Definition. A smooth manifold (of dimension n) is a pair (M,A) con-
sisting of a topological manifold M (of dimension n) and a smooth structure
A of M .

In the sequel we simply write M for a smooth manifold instead of (M,A).

Assume that f : M1 → M2 is a continuous map between two smooth man-
ifolds M1 and M2. One says that f is smooth (or C∞) at x ∈ M1 if there
exist charts ϕi : Ui → U ′i of Mi (i = 1, 2) with x ∈ U1 and f(x) ∈ U2 so that
the following map between open subsets of Euclidean spaces,

ϕ2 ◦ f ◦ ϕ−1
1 : ϕ1(f−1(U2) ∩ U1)→ U ′2

is smooth at ϕ1(x). The map f is said to be smooth (or C∞) if f is
smooth at any point of M1. It is a diffeomorphism (or more precisely, a
C∞-diffeomorphism) if f is a homeomorphism and both, f and f−1, are
smooth maps.

A maximal atlas Amax associated with a given smooth structure of M is
defined as the set of all possible charts,

Amax: = {ϕ : U → U ′
U ⊆M open ;U ′ ⊆ Rn open ;ϕ diffeomorphism }.

From now on, a chart ϕ : U → U ′ of a smooth manifold will be a chart in the
maximal atlas. If not stated otherwise, U will be assumed to be contractible.

A very useful tool in the study of smooth manifolds is the notion of a partition
of unity of M . It is a collection (ηi)i∈I of smooth functions ηi : M → R≥0

so that for each x ∈M there exists an open neighborhood Ux ⊆M with the
property that Ux∩supp(ηi) 6= ∅ only for finitely many i ∈ I and

∑
i∈I ηi(x) =

1. Here supp(ηi) denotes the support of ηi, i.e. the closure (in M) of the set
of all points in M where ηi does not vanish.

A partition of unity (ηi)i∈I is said to be subordinate to the (open) covering
(Uj)j∈J of M if for each i ∈ I there exists j ∈ J so that supp(ηi) ⊆ Uj.
Mostly we will use partitions of unity (ηi)i∈I subordinate to an open covering
(Uj)j∈J of M with J = I and supp(ηi) ⊆ Ui ∀i ∈ I. The following result on
the existence of partitions of unity is well known – see e.g. [By], [Wa].
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1.3 Theorem. Assume that M is a smooth manifold and (Uj)j∈J is an open
covering of M . Then there exists a countable partition of unity (ηi)i∈N subor-
dinate to the cover (Uj)j∈J with supp(ηi) compact for any i in N. If M is com-
pact then there exists a partition of unity (ηj)j∈J with supp(ηj) ⊆ Uj ∀j ∈ J
so that all except finitely many of the (ηj)j∈J vanish identically.

Next we discuss the notion of a smooth submanifold. Let M be a smooth
n-dimensional manifold. One says that N ⊆ M is a smooth submanifold of
M (of dimension k) if for any x ∈ N , there exists a chart ϕ : U → U ′ ⊆ Rn of
M such that x ∈ U and ϕ(U∩N) = U ′∩(Rk×{0}n−k). (Then, in a canonical
way, N is a smooth k-dimensional manifold.) A smooth map f : M1 → M2

between smooth manifolds M1 and M2 is a smooth embedding if f(M1) is a
smooth submanifold of M , and f : M1 → f(M1) is a diffeomorphism. The
following well-known result says in particular that any smooth manifold can
be viewed as a smooth submanifold of an Euclidean space.

We remark that Whitney’s embedding theorem improves on the above theo-
rem. It states that there exists a smooth embedding f where the codimension
k of the embedding satisfies k ≤ n+ 1.

Given a smooth n-dimensional manifold M , the tangent space TxM of M at
a point x ∈ M is used to study smooth maps on M near x. Let us recall
its definition. Consider a chart ϕ : U → U ′ with x ∈ U . We say that two
smooth curves γi : t 7→ γi(t) ∈M (i = 1, 2) with −1 < t < 1 passing through
x at t = 0, are equivalent, γ1 ∼ γ2, if (ϕ◦γ1)′(0) = (ϕ◦γ2)′(0) where ′ denotes
the derivative with respect to t. (As γi(t) ∈ U and hence ϕ ◦ γi(t) is defined
for |t| sufficiently small, so is (ϕ ◦ γi)′(0).) One easily verifies that ∼ is an
equivalence relation and that this relation does not depend on the choice of
the chart. The tangent space TxM of M at x is then defined as the set of
equivalence classes [γ] of smooth curves γ : (−1, 1) → M with γ(0) = x. In
a natural way, TxM has the structure of an n-dimensional R-vector space: It
is defined in such a way that the map

TxM → Rn, [γ] 7→ (ϕ ◦ γ)′(0)

is a linear isomorphism.

(One easily checks that the vector space structure is well-defined, i.e. does
not depend on the choice of the chart.) Assume that f : M → N is a smooth
map between two smooth manifolds M1 and M2. Then it induces for any
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x ∈ M a linear map dxf : TxM1 → Tf(x)M2, [γ] 7→ [f ◦ γ], referred to as
tangent map or differential of f at x. Given charts ϕ1 : U1 → U ′1 ⊆ Rn1

of M1 around x and ϕ2 : U2 → U ′2 ⊆ Rn2 of M2 around f(x), dxf , when
expressed in local coordinates, is the linear map Rn1 → Rn2 given by the
n2 × n1 matrix (∂xi(ϕ2 ◦ f ◦ ϕ−1

1 )j)ji where 1 ≤ j ≤ n2 and 1 ≤ i ≤ n1 and
where ∂xi(ϕ2 ◦ f ◦ϕ−1

1 )j denotes the partial derivative of the j’th component
(ϕ2◦f ◦ϕ−1

1 )j of ϕ2◦f ◦ϕ−1
1 with respect to xi at ϕ1(x). Often it is convenient

to choose in TxM the following basis associated to a chart ϕ : U → U ′ of M
around x. Denote by e1, . . . , en the standard basis of Rn. Then(

∂

∂xi

)
x

:= (dϕ(x)ϕ
−1)(ei) 1 ≤ i ≤ n

is a basis of TxM for any x ∈ U . Often we will drop the subscript x and
simply write ∂

∂xi
.

By T ∗xM we denote the dual of TxM . It is called the cotangent space of M
at x. Using the dual pairing between TxM and T ∗xM , the basis ( ∂

∂xi
)1≤i≤n

defines a basis of T ∗xM , dual to ( ∂
∂xi

)1≤i≤n which we denote by (dxi)1≤i≤n.

1.2 Differential forms

Let V be a (real or complex) vector space of dimension n and denote by V ∗

the dual of V . By Λk(V ∗) with k ≥ 0 we denote the set of all multilinear,
anti-symmetric functions ω(v1, . . . , vk) of k variables vj ∈ V with values in
another vector space; it means that ω is linear in each of its arguments and
that for any 1 ≤ i < j ≤ k

ω(v1, . . . , vi, . . . , vj, . . . , vk) = −ω(v1, . . . , vj, . . . , vi, . . . , vk).

If not specified otherwise we will assume that ω takes complex values. Notice
that Λk(V ∗) is a linear space. Further Λk(V ∗) = {0} for any k ≥ n + 1 and
Λ1(V ∗) = V ∗. The space Λ0(V ∗) is set to be C. Let e1, . . . , en be a basis
in V . Then an element ω ∈ Λk(V ∗) is completely determined by the values
ω(ei1 , . . . , eik) where i1 < i2 < . . . < ik. In fact, one uses multilinearity to
express for v1, . . . , vk ∈ V arbitrary, ω(v1, . . . , vk) in terms of ω(ei1 , . . . , eik)
with i1, . . . , ik being arbitrary numbers between 1 and n. Because of the anti-
symmetric property of ω, ω(ei1 , . . . , eik) = 0 if two of the numbers among
i1, . . . , ik coincide and one can always permute ei1 , . . . , eik so that i1, . . . , ik
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appear in increasing order; that would result in multiplying ω by the sign of
the permutation.

Let 1 ≤ i1 < i2 < . . . < ik ≤ n. By e∗i1 ∧ . . .∧ e
∗
ik

we denote the element from
Λk(V ∗) such that

e∗i1 ∧ . . . ∧ e
∗
ik

(ei1 , . . . , eik) = 1

and
e∗i1 ∧ . . . ∧ e

∗
ik

(ej1 , . . . , ejk) = 0

if {i1, . . . , ik} 6= {j1, . . . , jk}. Then the elements e∗i1 ∧ . . .∧ e
∗
ik

form a basis in
Λk(V ∗). In particular, {e∗i } is the basis in V ∗ that is dual to {ei}. To make
notations simpler, we sometimes will use multi-index notations I = {i1 <
. . . < ik}. Then e∗I = e∗i1 ∧ . . . ∧ e

∗
ik

. The dimension of Λk(V ∗) equals the

number of multi-indices I = {i1 < . . . < ik} which is equal to
(
n
k

)
. Every

element ω ∈ Λk(V ∗) can be decomposed into the sum

ω =
∑
|I|=k

ωIe
∗
I =

∑
i1<...<ik

ωi1...ike
∗
i1
∧ . . . ∧ e∗ik .

The exterior product ω1 ∧ ω2 of ω1 ∈ Λk(V ∗) with ω2 ∈ Λ`(V ∗) is defined as
the multilinear map (V ∗)k+` → C such that ω1 ∧ ω2(v1, . . . , vk+`) is given by

1

k!`!

∑
σ∈Sk+`

(−1)sgnσω1(vσ(1), . . . , vσ(k)) · ω2(vσ(k+1), . . . , vσ(k+`)).

Here Sk+` is the symmetric group of k+` elements and sgnσ denotes the sign
of the permutation σ ∈ Sk+`. One checks easily that ω1∧ω2 is antisymmetric,
i.e. ω1 ∧ ω2 ∈ Λk+`(V ∗).

To illustrate the notion of the exterior product let us consider the following
example. Assume that n ≥ 2 and let ω1 = e∗1 ∈ Λ1(V ∗) = V ∗ and ω2 = e∗2 ∈
Λ1(V ∗). Then

(ω1 ∧ ω2)(e1, e2) = ω1(e1)ω2(e2)− ω1(e2)ω2(e1)

= ω1(e1)ω2(e2) = 1,

and, for any other pair of vectors, ei and ej, such that {i, j} 6= {1, 2} one has

(ω1 ∧ ω2)(ei, ej) = 0.
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It follows that ω1∧ω2 = e∗1∧ e∗2. More generally, one checks that the element
e∗i1 ∧ . . . ∧ e

∗
ik
∈ Λk(V ∗) introduced above is indeed the exterior product of

the linear forms e∗i1 , . . . , e
∗
ik

, thus justifying the notation.

1.4 Remark. The following properties of the exterior product can be verified
in a straight forward way.

(i) For any elements ωi ∈ Λki(V ∗), 1 ≤ i ≤ 3, one has

(ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3).

(ii) Let ω1 ∈ Λk(V ∗) and ω2 ∈ Λ`(V ∗). Then

ω1 ∧ ω2 = (−1)k`ω2 ∧ ω1. (1.1)

Let M be a smooth manifold of dimension n. For every point x ∈ M,TxM
is the tangent space to M at x, and T ∗xM = (TxM)∗ is the cotangent space.
A differential k-form on M is a function on M , the value of which at a point
x ∈ M is an element of Λk(T ∗xM). Let U be a coordinate neighborhood in
M , and let x1, . . . , xn be local coordinates. At any point x ∈ U , the vectors
∂/∂x1, . . . , ∂/∂xn form a basis in TxM ; the dual basis in T ∗xM is denoted by
dx1, . . . , dxn. Then, on U , a differential k-form ω can be written as∑

|I|=k

ωI(x)dxI =
∑

1≤i1<...<ik≤n

ωi1...ik(x)dxi1 ∧ . . . ∧ dxik . (1.2)

If for any coordinate neighborhood U of M , all the coefficients ωI(x) are
smooth functions of x then the differential form ω is called smooth. If not
stated otherwise, we assume differential forms to be smooth, and the word
“smooth” will be usually suppressed. Sometimes, we will be dealing with
differential forms that are not smooth; then, we will specify explicitly, to
which particular function space the coefficients ωI(x) belong.

If y1, . . . , yn is another set of coordinates in U then the form (1.2) can be
represented as

ω(x) =
n∑

j1,...,jk=1

∑
1≤i1<...<ik≤n

ωi1...ik(x)
∂xi1
∂yj1

· · · ∂xik
∂yjk

dyj1 ∧ . . . ∧ dyjk . (1.3)
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In the representation (1.3), the indices j1, . . . , jk are arbitrary; they are not
necessarily in increasing order. Notice that dyj1 ∧ . . .∧ dyjk = 0 if two of the
indices j1, . . . , jk coincide, and, if all of them are different, then one can put
them in increasing order by a permutation and dyj1 ∧ . . .∧ dyjk is multiplied
by the sign of the permutation.

1.5 Example. Let ω = f(x)dx1 ∧ . . . ∧ dxn. Then

ω(x) = f(x)
∑
σ∈Sn

(−1)sgnσ
∂x1

∂yσ(1)

· · · ∂xn
∂yσ(n)

dy1 ∧ . . . ∧ dyn

= f(x) · det

(
∂x

∂y

)
dy1 ∧ . . . ∧ dyn.

The space of all (smooth) differential forms on M of degree k (k ≥ 0) will
be denoted by Ωk(M). Note that Ωk(M) is a vector space and Ωk(M) = {0}
for k ≥ n+ 1.

An important operation is taking the differential of a form. The operator d
maps Ωk(M) into Ωk+1(M), and if a form ω is given in local coordinates by
(1.2) then

dω =
n∑
j=1

∑
|I|=k

∂xj(ωI(x))dxj ∧ dxI (1.4)

where ∂xj = ∂
∂xj

. On an open subset U ′ ⊆ Rn, for any 1 ≤ j ≤ n, one can

define the two operations

∂

∂xj
: Ωk(U ′)→ Ωk(U ′) and Λj : Ωk(U ′)→ Ωk+1(U ′)

by

∂xjω =
∑
|I|=k

∂xj(ωI(x))dxI

and
Λjω = dxj ∧ ω.

Notice that both ∂
∂xj

and Λj depend on the choice of coordinates. Formula

(1.4) can be rewritten as

d =
n∑
j=1

Λj
◦
∂

∂xj
. (1.5)
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To see that (1.4) defines a well defined operator Ωk(M)→ Ωk+1(M) we have
to see how

∑n
j=1 Λj ◦ ∂

∂xj
changes under a coordinate transformation

ϕ : V ′ → U ′, (y1, . . . , yn) 7→ (x1, . . . , xn) = ϕ(y1, . . . , yn)

between open subsets V ′ and U ′ of Rn. Let ω ∈ Ωk(U ′). To simplify our
exposition assume that ω is of the form ω = ωI(x)dxI with I = {1 ≤ i1 <
. . . < ik ≤ n}. Then

ϕ∗

((
n∑
i=1

Λi ◦
∂

∂xi

)
ω

)
(y) =

n∑
i=1

(∂xiωI)(ϕ(y))ϕ∗(dxi ∧ dxI)(y).

From the definition of the exterior product one sees that ϕ∗(dxi ∧ dxI) =
ϕ∗(dxi) ∧ ϕ∗(dxI). Moreover, it is easy to see that

ϕ∗(dxi)(y) =
n∑
k=1

(∂ykϕi)(y)dyk.

Hence we get

ϕ∗

((
n∑
i=1

Λi ◦
∂

∂xi

)
ω

)
(y)

=
n∑
k=1

∂yk(ϕ
∗ωI)(y)(dyk ∧ ϕ∗dxI)(y)

=
n∑
k=1

(
Λ̃k ◦

∂

∂yk

)
(ϕ∗ω)(y).

This shows that the operator d, defined in local coordinates by
∑n

i=1 Λi ◦ ∂
∂xi

is a well defined operator from Ωk(M) into Ωk+1(M). In the sequel, we will
often suppress the sign for composing operators in (1.5) and simply write

d =
n∑
j=1

Λj
∂

∂xj
.
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1.6 Remark. One can define the differential d in an invariant way, without
using coordinates. Let X1, . . . , Xk+1 be vector fields on M . It is a good
exercise to show that

dω(X1, . . . , Xk+1) =
k+1∑
`=1

(−1)`−1X`

(
ω(X1, . . . , X̂`, . . . , Xk+1)

)
+

∑
1≤`<i≤k+1

(−1)i+`ω([X`, Xi], X1, . . . , X̂`, . . . , X̂i, . . . , Xk+1).

(1.6)

Here X̂` means that the argument X` is missing and [X`, Xi] is the commuta-
tor of the vector fields X` and Xi. Formula (1.6) can be taken as a definition
of d.

In the following proposition we formulate important properties of the differ-
ential.

1.7 Proposition. (i) d◦d = 0.

(ii) Let ω1 ∈ Ωk(M), ω2 = Ω`(M). Then

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2.

This identity is referred to as Leibniz rule.

Proof. To prove both statements, we use local coordinates. First,

d◦d =
n∑
j=1

n∑
k=1

Λj
∂

∂xj
◦Λk

∂

∂xk

=
n∑

j,k=1

ΛjΛk
∂2

∂xj∂xk

=
∑

1≤j<k≤n

(ΛjΛk + ΛkΛj)
∂2

∂xj∂xk
+

n∑
j=1

Λ2
j

∂2

∂x2
j

.

Notice that Λ2
jω = dxj ∧ dxj ∧ ω = 0 and

(ΛjΛk + ΛkΛj)ω = dxj ∧ dxk ∧ ω + dxk ∧ dxj ∧ ω = 0
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for any form ω. Therefore, Λ2
j = 0 and ΛjΛk + ΛkΛj = 0, so d ◦ d = 0.

Secondly,

d(ω1 ∧ ω2) =
n∑
j=1

dxj ∧ ∂xj(ω1 ∧ ω2)

=
n∑
j=1

dxj ∧
(
∂xjω1 ∧ ω2 + ω1 ∧ ∂xjω2

)
=

(
n∑
j=1

dxj ∧ ∂xjω1

)
∧ ω2 + (−1)kω1 ∧

(
n∑
j=1

dxj ∧ ∂xjω2

)
= dω1 ∧ ω2 + (−1)kωk ∧ dω2.

�

Let N and M be manifolds, and let F : N →M be a smooth mapping. For
a point x ∈ N , the differential dxF of F at x is a linear map from TxN to
TF (x)M . Suppose that ω ∈ Ωk(M). Then, the pull-back F ∗ω ∈ Ωk(N) by F
is defined by the formula

(F ∗ω)(X1, . . . , Xk) = ω (dxF (X1), . . . , dxF (Xk)) (1.7)

for X1, . . . , Xk ∈ TxN .

It easily follows from the formula (1.6) that

d(F ∗ω) = F ∗(dω). (1.8)

1.3 Integration

First, we define the integral of a differential form over an Euclidean domain.
Let V be a connected bounded domain in Rn, and let ω be a smooth n-form
in V . This means that ω is the restriction to V of a smooth n-form that is
defined in a neighborhood of V . We denote by (x1, . . . , xn) the coordinates
in Rn. With respect to these coordinates, the form ω can be written as
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ω = f(x)dx1 ∧ . . . ∧ dxn where f : Rn → C is a smooth function. Then, the
integral of ω is defined as ∫

V

ω =

∫
V

f(x)dx. (1.9)

Suppose that (y1, . . . , yn) is another coordinate system in V . It is induced
by a diffeomorphism ϕ : V ′ → V where V ′ is also a domain in Rn; the
coordinates in V ′ are denoted by (y1, . . . , yn). The form ω can be represented
in the coordinate system y – see (1.3); one can treat the resulting form as a
form on V ′. This form is denoted by ϕ∗ω, and it is called the pull-back of ω
with respect to ϕ. We have seen in Example 1.5 that

ϕ∗ω = f(ϕ(y))det(dyϕ)dy1 ∧ . . . ∧ dyn. (1.10)

Then ∫
V ′
ϕ∗ω =

∫
V ′
f(ϕ(y))det(dyϕ)dy1 . . . dyn

=

∫
V

f(x)det
(
dϕ−1(x)ϕ

)det(dxϕ
−1)
dx1 . . . dxn.

(1.11)

Notice that
det(dϕ−1(x)ϕ) · det(dxϕ

−1) = 1,

so
det(dϕ−1(x)ϕ)

det dxϕ
−1
 = sgn det(dyϕ)

where y = ϕ−1(x). The determinant det(dyϕ) is of constant sign: it is
a continuous, non-vanishing function on a connected domain. We call a
diffeomorphism ϕ positive (sgn ϕ = 1) if sgn det(dyϕ) = 1, and we call it
negative (sgn ϕ = −1) if sgn det(dyϕ) = −1. Now, we can re-write (1.11) as∫

V ′
ϕ∗ω = sgn ϕ

∫
V

ω. (1.12)

Formula (1.12) shows that the definition of the integral of a differential form
is invariant under coordinate changes only up to a sign; it is invariant under
positive coordinate changes.

We now turn to the definition of the integral of a differential form over a man-
ifold. To make our exposition simpler, we assume the manifolds considered to
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be compact; one can easily make generalizations to the case of non-compact
manifolds. First we need to introduce the notion of a manifold with boundary.
Let M be a compact manifold with boundary. It means that one can cover
M by a finite number of coordinate charts Uj, j = 1, . . . , J . Each chart is the
image of a diffeomorphism ϕj : U ′j → Uj where here U ′j is an open bounded
(contractible) subset of R≥0 × Rn−1 = {x = (x1, . . . , xn) ∈ Rn : x1 ≥ 0}.
In addition, for any two different charts Uj and U`, such that Uj ∩ U` is
non-empty, the transition map

ϕ−1
` ◦ ϕj : ϕ−1

j (Uj ∩ U`)→ ϕ−1
` (Uj ∩ U`)

is a diffeomorphism. M is called orientable if one can find an atlas con-
sisting of coordinate charts ϕj : U ′j → Uj of the type above such that all

transition maps ϕ−1
` ◦ ϕj are positive. Not all manifolds are orientable. The

Möbius strip, the Klein bottle, and even-dimensional real projective spaces
are examples of non-orientable manifolds.

Let M be an orientable manifold. We say that an atlas is consistent if all the
transition maps ϕ−1

` ◦ ϕj are positive. Let {ϕj} and {ϕ̃`} be two consistent
atlases. Then the maps ϕ̃−1

` ◦ϕj are either all positive or all negative. In the
first case, we call these two atlases equivalent. For an orientable manifold,
there are two equivalence classes of consistent atlases. The choice of one of
them is called an orientation of M . An orientable manifold, together with
an orientation, is called an oriented manifold. For an oriented manifold, an
atlas is compatible with orientations if it belongs to the equivalence class of
the given orientation.

Let M be an oriented compact manifold of dimension n, and let {ϕj : U ′j →
Uj} (1 ≤ j ≤ J) be an atlas compatible with the orientation. Let {ηj} be a
partition of unity subordinated to the covering {Uj} of M . This means that
ηj are smooth functions with 0 ≤ ηj(x) ≤ 1, such that supp ηj ⊂ Uj and∑

j ηj(x) = 1. For a form ω ∈ Ωn(M), one defines∫
M

ω =
∑
j

∫
U ′j

ϕ∗j(ηjω). (1.13)

We have to check that
∫
M
ω is independent of the choice of {ϕj} and {ηj}.

Let {ϕ̃` : Ũ ′` → Ũ`} (1 ≤ ` ≤ L) be another atlas compatible with the
orientation of M , and let {η̃`(x)} be a partition of unity subordinated to Ũ`.
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First, ∑
j

∫
U ′j

ϕ∗j(ηjω) =
∑
j

∑
`

∫
U ′j

ϕ∗j(ηj η̃`ω).

The form ηj η̃`ω is supported in Uj ∩ Ũ`, so∫
U ′j

ϕ∗j(ηj η̃`ω) =

∫
ϕ−1
j (Uj∩Ũ`)

ϕ∗j(ηj η̃`ω).

The map ϕ−1
j ◦ ϕ̃` is a positive diffeomorphism ϕ̃−1

` (Uj ∩ Ũ`)→ ϕ−1
j (Uj ∩ Ũ`),

and
(ϕ−1

j ◦ ϕ̃`)∗(ϕ∗j(ηj η̃`ω)) = ϕ̃∗`(ηj η̃`ω),

so, by (1.12), ∫
ϕ−1
j (Uj∩Ũ`)

ϕ∗j(ηj η̃`ω) =

∫
ϕ̃−1
` (Uj∩Ũ`)

ϕ̃∗`(ηj η̃`ω).

Finally, ∑
j

∫
U ′j

ϕ∗j(ηjω) =
∑
j,`

∫
U ′j

ϕ∗j(ηj η̃`ω)

=
∑
j,`

∫
Ũ ′`

ϕ̃∗`(ηj η̃`ω)

=
∑
`

∫
Ũ ′`

ϕ̃∗`(η̃`ω).

One of the basic theorems of the calculus of differential forms is Stokes’s
theorem. Stokes’s theorem is the version of the Fundamental Theorem of
calculus of real valued functions in one variable in the calculus of differen-
tial forms, and as special cases it contains Green’s theorem, the Divergence
theorem and the classical Stokes’s theorem from vector calculus.

To formulate Stokes’s theorem we first have to define the orientation of the
boundary induced by the orientation of an orientable manifold with bound-
ary. Let M be an oriented manifold with boundary. Let {ϕj : U ′j → Uj}, 1 ≤
j ≤ J , be an atlas compatible with the orientation of M . Each domain U ′j
is an open set in R≥0 × Rn−1 = {x = (x1, . . . , xn) : x1 ≥ 0}. Suppose that a
domain U ′j has non-empty intersection with {0}×Rn−1 = {x ∈ R≥0×Rn−1 :
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x1 = 0}. We denote by B′j the intersection of U ′j and {0} × Rn−1. Let ψj
be the restriction of ϕj to B′j. Then ψj : B′j → Bj where Bj = Uj ∩ ∂M is
an open subset of the boundary ∂M of M . Let p ∈ ∂M , and let Uj and U`
be two coordinate neighborhoods in M that contain p. The Jacobi matrix of
the diffeomorphism ϕ−1

` ◦ ϕj at the point p′ = ϕ−1
j (p) is of the form

c 0 . . . 0
∗
... (ψ−1

`
◦ψj)

∗(p′)
∗


where c > 0. Therefore,

sgn det(dp′(ψ
−1
`
◦ψj)) = sgn det(dp′(ϕ

−1
`
◦ϕj)) = 1.

We conclude that {ψj : B′j → Bj} is a consistent atlas of ∂M . In particular,
∂M is an orientable manifold. The orientation of ∂M induced by the orien-
tation of M is the orientation opposite to the orientation of the equivalence
class of the atlas {ψj}1≤j≤J . Though this definition may not look natural
at first glance, it turns out to be convenient as it leads to a positive sign in
Stokes’s theorem.

Now, we are in a position to formulate Stokes’s theorem.

1.8 Theorem. (Stokes’s theorem) Let M be an oriented manifold of dimen-
sion n with boundary. Suppose that the boundary ∂M of M is taken with the
induced orientation. Then, for any ω = Ωn−1(M),∫

M

dω =

∫
∂M

ω. (1.14)

1.9 Remark. In fact, the expression
∫
∂M

ω is a shorthand notation. To be
more precise, let ι : ∂M →M be the inclusion. Then we simply write

∫
∂M

ω
instead of

∫
∂M

ι∗ω.

Proof. The case where dimM = 1 is more elementary and left to the
reader. So let us assume that dimM ≥ 2. Let {ϕj : U ′j → Uj} (1 ≤ j ≤ J)
be an atlas of M compatible with the orientation of M , and let {ξj(x)} be a
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partition of unity subordinated to {Uj}. Then the integral of dω =
∑

j d(ξjω)
is computed using (1.8) as follows∫

M

dω =
∑
j

∫
U ′j

ϕ∗j (d(ξjω)) =
∑
j

∫
U ′j

d
(
ϕ∗j(ξjω)

)
.

Let

ηj = ϕ∗j(ξjω) =
n∑
p=1

ap(x)dx1 ∧ . . . ∧ d̂xp ∧ . . . ∧ dxn,

where ap(x) is a smooth function with compact support in U ′j. Then

dηj =

(
n∑
p=1

(−1)p−1∂ap(x)

∂xp

)
dx1 ∧ . . . ∧ dxn.

In the case when U ′j ∩ ({0} × Rn−1) = ∅,∫
U ′j

dηj =
n∑
p=1

(−1)p−1

∫
U ′j

∂ap(x)

∂xp
dx1 . . . dxn = 0

by Fubini’s theorem and the Fundamental Theorem of Calculus. If B′j :=
U ′j ∩ ({0} × Rn−1) 6= ∅ then, arguing in the same way, one has for 2 ≤
p ≤ n,

∫
U ′j

∂ap
∂xp

dx1 . . . dxn = 0 where as for p = 1,
∫
U ′j

∂a1
∂x1
dx1 . . . dxn =

−
∫
B′j
a1(x)dx2 . . . dxn. Hence∫

U ′j

dηj = −
∫
B′j

a1(x)dx2 . . . dxn.

The intersection B′j is the image of Bj = Uj ∩ ∂M under the mapping ψ−1
j =

ϕ−1
j |Bj . Notice that the restriction of ηj to B′j is a1(x)dx2 ∧ . . . ∧ dxn (see

Remark 1.9), and ∫
B′j

ηj = −
∫
B′j

a1(x)dx2 . . . dxn.

Here, the “-” sign comes from our choice of the orientation of the boundary.
Hence

∫
U ′j
dηj =

∫
B′j
ηj and∫

M

dω =
∑
j

∫
U ′j

dηj =
∑
j

∫
B′j

ηj =
∑
j

∫
B′j

ψ∗j (ξjω).

The restrictions of the functions ξj(x) to ∂M form a partition of unity on
∂M subordinated to the covering {Bj} and formula (1.14) follows. �
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1.4 De Rham complex and its cohomology

Let M be a closed manifold. In section 1.2 we defined the spaces Ωk(M) of
differential forms of degree k on M and the operator w 7→ dω, mapping a
differential form ω on M to the differential dω of this form. We denote the
restriction of d to Ωk(M) by dk instead of again d,

dk : Ωk(M)→ Ωk+1(M),

to indicate the degree of a differential form to which the operator d is applied.
The first statement of Proposition 1.7 is that

dk ◦ dk−1 = 0. (1.15)

It means that the spaces Ωk(M) form a complex

0→ Ω0(M)
d0 // Ω1(M)

d1 // . . .
dn−1 // Ωn(M)→ 0

where we have used that Ωk(M) = 0 for any k ≥ n + 1. This complex is
referred to as the de Rham complex of differential forms on M (with values
in C). A differential form ω ∈ Ωk(M) is called closed if dkω = 0. It is called
exact if ω = dk−1η for some η ∈ Ωk−1(M). Let us denote the vector space
of closed differential forms of degree k by Zk(M) = Zk

dR(M) and the vector
space of exact differential forms of degree k by Bk(M) = Bk

dR(M). Then
(1.15) says that

Bk(M) ⊆ Zk(M).

The quotient space Zk(M)/Bk(M) is called the space of the k-th de Rham
cohomologies of the manifold M , and it is denoted by Hk(M) = Hk

dR(M).
(The subscript dR is often suppressed.) Note that Hk(M) is a vector space
and, as Ωk(M) = {0} ∀k ≥ n + 1 it follows that Hk(M) = {0} ∀k ≥ n + 1.
The de Rham cohomologies has a clear analytic meaning. Suppose that a
form ω ∈ Ωk(M) is given, and one wants to solve the equation

dk−1η = ω (1.16)

for η. If one writes both η and ω in local coordinates, then (1.16) becomes
a linear system of first order differential equations for the coefficients of η.
This system is not always solvable. In view of (1.15) the condition

dkω = 0 (1.17)
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is a necessary condition for the solvability of (1.16). Moreover, Poincaré’s
Lemma (see [MT, Theorem 3.15]) says that (1.17) is sufficient for the local
solvability of (1.16). However, there might be additional obstructions for the
global solvability of (1.16). The space Hk

dR(M) is the space of these global
obstructions. More precisely, given a closed k-form ω, the equation (1.16)
has a solution η ∈ Ωk−1(M) iff [ω] = 0 where [ω] denotes the class in Hk(M),
with representative ω.

Let us illustrate the nature of global obstructions for the solvability of (1.17)
with the following example. Let M be the two-dimensional torus, T2 =
R2/(2πZ)2. In the sequel we will identify differential forms on T2 with dif-
ferential forms on R2 with 2π-doubly periodic coefficients. Consider the
differential 1-form

ω = f(x, y)dx+ g(x, y)dy ∈ Ω1(R2),

where f and g are smooth 2π-periodic functions in both variables x and y.
Suppose that one wants to find a smooth 2π-doubly periodic function h(x, y)
such that ω = dh. It means that one wants to solve the system of equations

∂h

∂x
= f,

∂h

∂y
= g. (1.18)

One has
dω =

(
∂g
∂x
− ∂f

∂y

)
dx ∧ dy,

so dω = 0 means
∂g

∂x
=
∂f

∂y
. (1.19)

The last condition is clearly necessary for the solvability of (1.18). However,
to be able to find periodic solutions of (1.18), one needs, in addition, to
require that both f and g have zero average over the torus (or, equivalently,
in the representation of these functions as Fourier series, the constant term
must vanish). The two averages

f0 =
1

4π2

∫ 2π

0

∫ 2π

0

f(x, y)dxdy and g0 =
1

4π2

∫ 2π

0

∫ 2π

0

f(x, y)dxdy

are the only global obstructions to the solvability of (1.18) on the torus T2.
The space H1

dR(T2) is two-dimensional.
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The exterior product of differential forms induces a product

· : Hk(M)×H`(M)→ Hk+`(M)

defined as follows. Let α ∈ Hk(M) and β ∈ H`(M). Take forms ωα ∈ Zk(M)
and ωβ ∈ Z`(M) that represent the classes α and β. Note that ωα ∧ ωβ is
closed as d(ωα ∧ ωβ) = dωα ∧ ωβ + (−1)kωα ∧ dωβ and both ωα and ωβ are
closed. Hence ωα∧ωβ ∈ Zk+`(M). The cohomology class of ωα∧ωβ does not
depend on the choice of ωα and ωβ. Indeed, let ω′α ∈ Zk(M) and ω′β ∈ Z`(M)
be other forms representing the same classes α and β, respectively. Then

ω′α = ωα + dηα and ω′β = ωβ + dηβ

where ηα ∈ Ωk−1(M) and ηβ ∈ Ω`−1(M). Using that ωα and ωβ are closed
one has

ω′α ∧ ω′β − ωα ∧ ωβ = dηα ∧ ωβ + ωα ∧ dηβ + dηα ∧ dηβ
= d(ηα ∧ ωβ + (−1)kωα ∧ ηβ + ηα ∧ dηβ) ∈ Bk+`(M).

This means that the cohomology class of ω′α ∧ ω′β − ωα ∧ ωβ is zero. By
definition, α · β is the cohomology class of ωα ∧ ωβ. In this way the total
space of cohomologies H•(M) = ⊕nk=0H

k(M) becomes a commutative graded
algebra. By (1.1) the commutativity property reads

α · β = (−1)k`β · α ∀α ∈ Hk(M), ∀β ∈ H`(M).

It descends from the similar property of the exterior product (1.1).

There are many cohomology theories. It turns out that for (closed) smooth
manifolds the corresponding cohomology spaces coincide. As an example
which will be reconsidered in Chapter 5, we discuss briefly the simplicial
cohomology.

First let us briefly review the concept of a smooth triangulation of a closed
manifold. 1 By σk we denote the standard k-dimensional simplex in Rk+1,

σk = {(x1, . . . , xk+1) ∈ Rk+1 : xi ≥ 0 ∀i; x1 + . . .+ xk+1 = 1}.

Its interior is
◦
σk = {x ∈ σk : xi > 0 ∀i}.

1In section ?? we will consider a special class of smooth triangulations
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The simplex σk lies in the hyperplane

Pk = {x = (x1, . . . , xk+1) ∈ Rk+1 : x1 + . . .+ xk+1 = 1},

which is the boundary of the half-space

Hk+1 = {x ∈ Rk+1 : x1 + . . .+ xk+1 ≤ 1}.

Note that Hk+1 has a natural orientation, coming from the standard orienta-
tion from Rk+1. Remark that the orientation of an affine subspace of Rk+1 can
also be characterized by a (equivalence class of) basis of the corresponding
linear subspace. In this way the standard basis of Rk+1 represents the stan-
dard orientation of Rk+1. As orientation on Pk = ∂Hk+1 (and hence on σk) we
choose the one represented by the basis e2−e1, . . . , ek+1−e1 (or, equivalently,
for 2 ≤ i ≤ k + 1, by the basis ei − e1, . . . , ei − ei−1, ei+1 − ei, . . . , ek+1 − ei).
This orientation of σk is referred to as the canonical one. The boundary of
σk consists of k + 1 many simplices σk−1

j with 1 ≤ j ≤ k + 1. Here

σk−1
j = {x ∈ σk : xj = 0}.

The simplex σk−1
j is the standard simplex in the space Rk if one identifies Rk

with the image in Rk+1 of the embedding

ιk,j : Rk → Rk+1

defined by
ιk,j(y1, . . . , yk) = (y1, . . . , yj−1, 0, yj, . . . , yk).

The standard simplex σk−1 is endowed with the canonical orientation, and
the mapping

ιk,j : σk−1 → σk−1
j

then induces an orientation on σk−1
j . For 2 ≤ j ≤ k + 1, this orientation is

represented by the basis e2−e1, . . . , ej−1−e1, ej+1−e1, . . . , ek+1−e1 whereas
for j = 1, it is represented by e3 − e2, . . . , ek+1 − e2. On the other hand,
σk−1
j is a part of the boundary of σk, and hence, according to section 1.3,

has an orientation induced from σk. One can verify in straightforward way
that for 2 ≤ j ≤ k + 1 the orientation of σk−1

j is represented by the basis
Bkj = {e2 − e1, . . . , ej−1 − e1, ej+1 − e1, . . . , εkj(ek+1 − e2)}, where εkj = ±1
is chosen in such a way that −(ej − e1), Bkj represents the standard basis
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of σk. Hence εkj = (−1)j+1. In the case j = 1, the orientation of σk−1
1 is

represented by e3 − e2, . . . , ek+1 − e2. This means that the two orientations
coincide if j is an odd number, and they are opposite to each other if j is
even. As a result, for any 1 ≤ k ≤ n, the oriented boundary ∂σk of σk can be
written as the union of (k + 1) many oriented (k − 1)-dimensional standard
simplices. We define

∂σk :=
k+1∑
j=1

(−1)j+1σk−1
j . (1.20)

For 2 ≤ k ≤ n and i 6= j, we set σk−2
ij = {x ∈ σk : xi = xj = 0}. It follows

from (1.20) that

∂(∂σk) =
k+1∑
j=1

j−1∑
i=1

(−1)i+jσk−2
ij +

k+1∑
j=1

k+1∑
i=j+1

(−1)i+j−1σk−2
ij

=
∑
i<j

(−1)i+jσk−2
ij −

∑
i>j

(−1)i+jσk−2
ij

= 0

(1.21)

because σk−2
ij = σk−2

ji .

Let ϕ be a homeomorphism of σk into a k-dimensional submanifold of a
manifold M which is smooth. Then the image ϕ(σk) is called a smooth

k-simplex in M ; the image ϕ(
◦
σk) is a smooth open k-simplex in M . The

homeomorphism ϕ defines not only a smooth k-simplex as a set; it also
induces an orientation on ϕ(σk). An oriented simplex is a simplex, together
with its orientation. A (finite) smooth triangulation of a manifold M is a
representation of M as a disjoint union

M =
n⊔
k=0

pk⊔
a=1

◦
σka, (1.22)

where
◦
σka is a smooth open k-simplex in M , such that the (geometric) bound-

ary of each
◦
σka is the union of smooth open simplexes of smaller dimensions.

It is known that every closed manifold admits a smooth triangulation – see
[Ca] , [Wh], [Whit]. A triangulation will be called oriented if every simplex
σka is endowed with an orientation (these orientations need not be compatible
with each other).
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Let (1.22) be an oriented smooth triangulation of M . For any 0 ≤ k ≤ n, a
k-chain in M (with coefficients in C) is a formal linear combination

c =

pk∑
a=1

caσ
k
a , ca ∈ C.

For any 0 ≤ k ≤ n, the set of all k-chains form a linear space that is denoted
by Ck(M). The definition of the boundary operator for the standard k-
simplex is used to define the boundary operator for σka . For any 1 ≤ k ≤ n
we extend it by linearity to all of Ck(M),

∂k : Ck(M)→ Ck−1(M).

Property (1.21) implies that for any 2 ≤ k ≤ n

∂k−1 ◦ ∂k = 0. (1.23)

A cochain on M is a linear functional on Ck(M). For any 0 ≤ k ≤ n, the
space of cochains is denoted by Ck(M). The transpose of ∂k is the operator
denoted by (1 ≤ k ≤ n)

δk−1 : Ck−1(M)→ Ck(M)

and is called the coboundary operator. By duality, for any 1 ≤ k ≤ n

δk ◦ δk−1 = 0. (1.24)

In this way one obtains the cochain complex

0→ C0(M)
δ0→ C1(M)→ . . .

δn→ Cn(M)→ 0.

A cocycle is a cochain with zero coboundary; the space of k-cocycles is de-
noted by Zk(M). A k-coboundary is a cochain that lies in the range of δk−1;
the space of k-coboundaries is denoted by Bk(M). Identity (1.24) is saying
that

Bk(M) ⊂ Zk(M).

The space of k-th simplicial cohomologies of M is defined as

Hk(M) = Zk(M)/Bk(M).
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A differential form ω ∈ Ωk(M) defines a k-cochain
∫
ω by the formula

〈 ∫
ω,

pk∑
a=1

caσ
k
a

〉
=

pk∑
a=1

ca

∫
σka

ω (1.25)

where
∫
σka
ω is defined as the integral over σk of the pullback of ω to the

standard k-simplex σk – see section 1.3. Suppose that dω = 0. Then, by
the definition of δk+1 and (1.25), one has for any element

∑p
a=1 caσ

k+1
a in

Ck+1(M)

〈
δk

∫
ω,

pk+1∑
a=1

caσ
k+1
a

〉
=
〈 ∫

ω,

pk+1∑
a=1

ca∂σ
k+1
a

〉
=

pk∑
a=1

ca

∫
∂σk+1
a

ω.

Hence by Stokes’s theorem

〈
δk

∫
ω,

p∑
a=1

caσ
k+1
a

〉
=

pk∑
a=1

ca

∫
σk+1
a

dω = 0.

Therefore, we have proved that for any ω ∈ Zk
dR(M),∫

ω ∈ Zk(M). (1.26)

Similarly, if ω = dη, η ∈ Ωk−1(M) then, arguing as above, we get

〈 ∫
ω,

pk∑
a=1

caσ
k
a

〉
=

pk∑
a=1

ca

∫
σka

ω =

pk∑
a=1

ca

∫
σka

dη

=
∑
a

ca

∫
∂σka

η =
〈 ∫

η, ∂

(
pk∑
a=1

caσ
k
a

)〉
=
〈
δ

∫
η,

pk∑
a=1

caσ
k
a

〉
.

Hence we have shown that for ω ∈ Bk
dR(M), one has

∫
ω ∈ Bk(M). Combined

with (1.26) it then follows that the integration of smooth forms over smooth
simplices induces for any 0 ≤ k ≤ n a map∫ k

: Hk
dR(M)→ Hk(M).



1. DIFFERENTIAL FORMS AND INTEGRATION 23

De Rham’s Theorem (see e.g. [Wa]) says that the maps
∫ k

are isomorphisms.
As a consequence, the spaces of de Rham cohomologies are finite dimensional
and the spaces Hk(M) are independent of the choice of triangulation.

We saw that the exterior product of differential forms induces the structure of
a graded commutative algebra on H•dR(M). The isomorphism induced by the

integration map
∫ k

between Hk
dR(M) and Hk(M) pushes this structure over

to H•(M). One can define a product on H•(M) in a purely combinatorial
way; then

∫ •
becomes an isomorphism of algebras.

1.5 Hodge decomposition

In this section we review the classical Hodge theory. A detailed exposition
can be found e.g. in [Wa].

Let M be a closed manifold of dimension n. We endow M with a Riemannian
metric g. It means that at any point x ∈M, g(x) is a scalar product (·, ·) on
TxM depending smoothly on x. Given local coordinates x1, . . . , xn, let

gij(x) :=
(

∂
∂xi
, ∂
∂xj

)
(1 ≤ i, j ≤ n).

Then the functions gij(x) are smooth, and the matrix (gij(x)) is positive
definite. Using (·, ·) to identify TxM with its dual T ∗xM , the scalar product
on TxM induces a scalar product on the cotangent space T ∗xM ; in local
coordinates,

(dxi, dxj) = gij(x)

where the matrix (gij(x)) is the inverse of the matrix (gij(x)). This scalar
product extends to the scalar product on the tensor powers (T ∗xM)⊗k by the
formula

(ξ1 ⊗ . . .⊗ ξk, η1 ⊗ . . .⊗ ηk) =
1

k!
(ξ1, η1) · · · (ξk, ηk)

for arbitrary ξi, ηi ∈ T ∗xM (1 ≤ i ≤ k). The normalization factor 1/k! in
the above formula is introduced to make formulas below simpler. The space
Λk
x(M) is a subspace of (T ∗xM)⊗k consisting of antisymmetric tensors. In

particular, the element dxi1 ∧ . . . ∧ dxik ∈ Λk
x(U

′), defined on anopen subset
U ′ ⊆ Rn is given by

∑
σ∈Sk(−1)sgnσdxiσ(1) ⊗ . . . ⊗ dxiσ(k) . The metric g
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induces a scalar product in each Λk
x(M) which we also denote by (·, ·). In

local coordinates, it is given by the formula

(dxi1 ∧ . . . ∧ dxik , dxj1 ∧ . . . ∧ dxjk)

=
∑
σ∈Sk

(−1)sgnσgi1jσ(1)(x) · · · gikjσ(k)(x) (1.27)

where Sk is the symmetric group of k elements. In addition, a Riemannian
metric (gij(x)) induces a measure volg on M . In local coordinates it is defined
by

dvolg =
√

det(gij(x)) dx1 . . . dxn.

It is easy to check that neither the scalar product (1.27) nor the measure volg
depend on the choice of local coordinates.

The scalar product on the fibers Λk
xM of the bundle Λk(M), together with

the measure volg, give rise to a scalar product on the space of differential
forms Ωk(M), referred to as the L2-inner product

(ω1, ω2) =

∫
M

(ω1(x), ω2(x))dvolg. (1.28)

The norm corresponding to the L2-inner product is called the L2-norm of a
k-form ω and denoted by ‖ω‖, ‖ω‖ = (ω, ω)1/2. The completion of Ωk(M)
with respect to the scalar product (·, ·) is the Hilbert space of L2-forms;
we denote it by Lk2(M). The operator dk, defined initially on the space
Ωk(M) of smooth forms is a closable operator, if viewed as an (unbounded)
operator from Lk2(M) to Lk+1

2 (M); its closure will be also denoted by dk. Let
d∗k : Lk+1

2 (M)→ Lk2(M) be the adjoint to dk. This is an unbounded operator
with the domain

{ω ∈ Lk+1
2 (M) : ∃c > 0 such that |(dkη, ω)| ≤ c‖η‖ ∀η ∈ Ωk(M)}.

Here ‖η‖ is the L2-norm introduced above of the k-form η .

Let us find an expression for d∗k in local coordinates. We will use notations
from section 1.2. Recall that in local coordinates,

d =
n∑
j=1

Λj
∂

∂xj
=

n∑
j=1

∂

∂xj
Λj (1.29)
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hence

d∗ =
n∑
j=1

(
∂

∂xj

)∗
Λ∗j =

n∑
j=1

Λ∗j

(
∂

∂xj

)∗
. (1.30)

We view Λj and ∂
∂xj

as a linear operator Ωk(U) → Ωk+1(U) and Ωk(U) →
Ωk(U) respectively where U is a coordinate chart of M . We start with ana-
lyzing Λ∗j . The operator Λj is a linear operator Λk(U)→ Λk+1(U), so Λ∗j is a
linear operator Λk+1(U)→ Λk(U). Take local coordinates near x0 ∈M such
that gab(x0) = δab. Then for any 1 ≤ ` ≤ n the tensors dxi1 ∧ . . . ∧ dxi` form
an orthonormal basis in Λ`

x0
(U) with respect to the scalar product given by

(1.27). An element ω ∈ Λk+1
x0

(U) can be represented as

ω = ω0 + dxj ∧ ω1

where ω0 ∈ Λk+1
x0

(U) and ω1 ∈ Λk
x0

(U) do not contain dxj. Clearly, for
η ∈ Λk

x0
(U),

(η,Λ∗jω) = (dxj ∧ η, ω) =

{
(η, ω1) if η does not contain dxj.

0 otherwise.

Therefore, at x0, Λ∗jω = ω1 = ιjω where ιj is the operator of interior multi-
plication by ∂/∂xj, i.e.

(ιjω)(X1, . . . , Xk) = ω

(
∂

∂xj
, X1, . . . , Xk

)
for any elements X1, . . . , Xk ∈ Tx0M . (For convenience we set ij


Λ0(U)

= 0.)

In an arbitrary coordinate system

Λ∗j =
n∑
i=1

gjiιi. (1.31)

Let us turn our attention to computing ( ∂
∂xj

)∗. Let ω and η be in Ωk(M)

with support in the coordinate neighborhood U of M . Written in coordinates
in multi-index notation, ω and η are of the form ω =

∑
|I|=k ωIdxI and

η =
∑
|J |=k ηJdxJ . Then

(∂xjω, η) =
∑

(−1)sgnσ

∫
Rn
∂xj(ωI)ηJg

i1jσ(1) · · · gikjσ(k)
√

det(gij)dx1 . . . dxn

(1.32)
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where the sum is taken over all permutations σ ∈ Sk and all k-tuples I =
{i1 < . . . < ik}, J = {j1 < . . . < jk}. When one integrates by parts in
(1.32), one gets three terms. The first one in which the components ηJ are
differentiated, equals

−(ω, ∂xjη).

The second one, in which |g| := det(gij) is differentiated, equals

−1

2
(ω, ∂xj(log |g|)η).

The third term equals

−
∑

(−1)sgnσ

∫
Rn
ωIηJg

i1jσ(1) · · · ∂xj(gipjσ(p)) · · · gikjσ(k)
√
|g| dx1 . . . dxn

where the sum extends over 1 ≤ p ≤ k, all permutations σ ∈ Sk, and all
k-tuples I = {i1 < . . . < ik}, J = {j1 < . . . < jk}. It is not difficult to show
that the latter expression is equal to

−
∑
a,b

∫
Rn

(ιaω, ιbη)∂xj(g
ab)
√
|g| dx1 . . . dxn.

Combining the computations above we get in arbitrary local coordinates(
∂

∂xj

)∗
= − ∂

∂xj
− 1

2
∂xj(log |g|)−

∑
a,b

∂xj(g
ab)ι∗aιb. (1.33)

It remains to compute ι∗a in formula (1.33) Taking the adjoint of both sides
of (1.31), one gets

Λj =
∑
`

gj`ι∗` .

Therefore,

ι∗a =
∑

ga`Λ`. (1.34)

Substituting (1.34) into (1.33), we finally obtain(
∂

∂xj

)∗
= − ∂

∂xj
− 1

2
∂xj(log |g|)−

∑
a,b,`

∂xj(g
ab)ga`Λ`ιb, (1.35)
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and hence, in local coordinates,

d∗ =−
∑
j,m

gjmιm
∂

∂xj
− 1

2

∑
j,m

gjm∂xj(log |g|)ιm

−
∑

j,a,b,`,m

gjm∂xj(g
ab)ga`ιmΛ`ιb.

(1.36)

1.10 Remark. In case the manifold M is orientable, the operator d∗k can be
defined in terms of the Hodge ∗ operator

∗k : Ωk(M)→ Ωn−k(M)

associated to a volume form. Recall that a volume form on M is a smooth
n-form ν(x) such that (ν(x), ν(x)) = 1 for any x ∈ M . Using a partition
of unity subordinate to a covering of M by open coordinate neighborhoods
and using the assumption that M is orientable one can easily show that such
a volume form always exists. For β ∈ Ωk(M), the form ∗kβ ∈ Ωn−k(M) is
defined in such a way that

(α(x), β(x))ν(x) = α(x) ∧ (∗kβ)(x) (1.37)

for every point x ∈M and for every form α ∈ Ωk(M). It follows that

(α, β) =

∫
M

α ∧ ∗kβ

where
∫
M
α ∧ ∗kβ is the integral of the n-form α ∧ ∗kβ with respect to the

orientation determined by the volume form ν. One can easily check that

∗n−k∗k = (−1)k(n−k). (1.38)

(Note that if n is odd then (−1)k(n−k) = 1 ∀0 ≤ k ≤ n.) To do that choose
local coordinates near an arbitrary point x0 ∈ M such that gij(x0) = δij.
The above identity then follows from straightforward combinatorics.

Given a form γ ∈ Ωk(M) we get by (1.38) for any α ∈ Ωk−1(M)

(α, d∗γ) = (dα, γ) =

∫
M

dα ∧ (∗kγ) = (−1)k
∫
M

α ∧ d(∗kγ)
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where for the latter identity we used Stokes’s theorem and Leibniz rule
(Proposition 1.7 (ii) ). By (1.38) we then get∫

M

α ∧ d ∗k γ = (−1)(k−1)(n−k+1)

∫
M

α ∧ ∗k−1(∗n−k+1d ∗k γ)

= (−1)(k−1)(n−k+1)(α, (∗n−k+1d∗k)γ).

Combining the two identities displayed above it follows that for any α ∈
Ωk−1(M),

(α, d∗γ) = (−1)k+(k−1)(n−k+1)(α, ∗n−k+1d ∗k γ).

As
k + (k − 1)(n− k + 1) ≡ n(k − 1) + 1 (mod 2)

we obtain the formula

d∗k = (−1)n(k−1)+1 ∗n−k+1 dn−k ∗k .

The Laplacian acting on k-forms is defined by the formula

∆k = d∗k ◦ dk + dk−1 ◦ d∗k−1. (1.39)

It is a second order differential operator; according to the formulas (1.29)
and (1.36) for dk and d∗k, respectively, its leading part, i.e. the sum of all
terms containing second derivatives, equals in arbitrary local coordinates

−
∑
m,p

gjm(ιmΛp + Λpιm)
∂2

∂xj∂xp
. (1.40)

Let us compute the operator ιmΛp + Λpιm in the expression above. If m 6= p
then a form ω ∈ Ωk(U) can be represented as

ω = ω0 + dxm ∧ ω1 + dxp ∧ ω2 + dxm ∧ dxp ∧ ω3

where the forms ω0, ω1, ω2, ω3 do not contain dxm and dxp. One has

Λpω = dxp ∧ ω0 + dxp ∧ dxm ∧ ω1,

ιmΛpω = −dxp ∧ ω1,

and

ιmω = ω1 + dxp ∧ ω3,

Λpιmω = dxp ∧ ω1.
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Therefore, in the case m 6= p, (ιmΛp + Λpιm)ω = 0 for every form ω.

If p = m then, for a form

ω = ω0 + dxp ∧ ω1,

one gets

(ιpΛp + Λpιp)ω = ιp(dxp ∧ ω0) + Λpω1 = ω0 + dxp ∧ ω1 = ω.

We conclude that

ιmΛp + Λpιm =

{
0 if p 6= m

Idk if p = m
(1.41)

where Idk is the identity operator on Ωk(U). Substituting (1.41) into (1.40)
it follows that for any 0 ≤ k ≤ n in arbitrary local coordinates the leading
part of the Laplacian ∆k equals

−
∑
j,m

gjm(x)
∂2

∂xj∂xm
(1.42)

1.11 Remark. The Laplacian acting on functions: If f(x) ∈ C∞(M) =
Ω0(M), then in local coordinates, ∆0f(x) = d∗0d0f can be computed as fol-
lows

−
∑
j,m

gjm∂xj∂xmf −
1

2

∑
j,m

gjm∂xj(log |g|)∂xmf

−
∑

j,a,b,`,m,p

gjm∂xj(g
ab)ga`ιmΛ`ιbΛp∂xpf.

(1.43)

Notice that, for a function h(x),

ιbΛph =

{
h if b = p;

0 otherwise ,

so the last term in (1.43) equals∑
j,m,a,p

gjm∂xj(g
ap)gam∂xpf =

∑
j,a,p

δja∂xj(g
ap)∂xpf

=
∑
j,p

∂xj(g
jp)∂xpf.
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As a consequence,

∆0 = −
∑
j,m

[
gjm

∂2

∂xj∂xm
+

1

2
gjm∂xj(log |g|) ∂

∂xm
+ ∂xj(g

jm)
∂

∂xm

]
= − 1√

|g|

∑
j,m

∂

∂xj

(
gjm
√
|g| ∂
∂xm

)
.

(1.44)

The principal symbol of the Laplacian ∆k is given for any ξ ∈ T ∗xM,x ∈ M
by

‖ξ‖2Idk

where in local coordinates, ‖ξ‖ = (
∑

j,m g
jm(x)ξjξm)1/2 is the norm defined

by (1.27) with ξj denoting the components of ξ with respect to the basis
dx1, . . . , dxn of T ∗xM and where Idk : Λk(M)→ Λk(M) is the identity oper-
ator. (By definition, to form the principal symbol in local coordinates one
replaces ∂/∂xj by

√
−1 ξj in the leading part of the Laplacian (1.42) – see

Appendix A for further details.) As the principal symbol is an invertible lin-
ear operator on Λk(M) when ξ 6= 0, ∆k is by definition an elliptic operator.
Moreover, ∆k is non-negative with respect to the L2-inner product (1.28)
because

(∆kω, ω) = (d∗k ◦ dkω, ω) + (dk−1 ◦ d∗k−1ω, ω)

= ‖dkω‖2 + ‖d∗k−1ω‖2 ≥ 0
(1.45)

and it is an unbounded symmetric operator on Lk2(M). It is closable and its
closure is selfadjoint and also denoted by ∆k. Let us summarize a few prop-
erties of the operator ∆k which follow from the theory of elliptic differential
operators – see Appendix A for more explanations.

(EDO1) the null space Hk(M) = Ker∆k of the operator ∆k is finite dimen-
sional, and it consists of smooth forms;

(EDO2) for every form ω ∈ Lk2(M) that is orthogonal toHk(M), the equation

∆kη = ω (1.46)

has the unique solution η in Lk2(M) which is orthogonal to Hk(M)
and there exists a constant C independent of ω such that the solution
η satisfies the estimate ‖η‖ ≤ C‖ω‖. Combined with (1.46) this leads
to

‖∆kη‖+ ‖η‖ ≤ (C + 1)‖ω‖. (1.47)
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With a slight abuse of notation, we denote by ∆−1
k the operator defined on

the orthogonal complement of Hk(M), Lk2(M) 	 Hk(M) that is the inverse
of the restriction of ∆k to this space. Inequality (1.47) means that ∆−1

k is a
bounded operator.

Let Zk
2 (M) be the kernel of the operator dk : Lk2(M) → Lk+1

2 (M), and let
Bk

2 (M) be the range of the operator dk−1 : Lk−1
2 (M) → Lk2(M). The dif-

ference between Zk(M), Bk(M) and Zk
2 (M), Bk

2 (M) is that the latter spaces
contain non-smooth forms. The subspace Zk

2 (M) ⊆ Lk2(M) is closed as it is
the kernel of a closed operator. By Z̃k

2 (M) we denote the null-space of the
operator d∗k−1 : Lk2(M) → Lk−1

2 (M), and by B̃k
2 (M) we denote the range of

the operator d∗k : Lk+1
2 (M)→ Lk2(M). The subspace Z̃k

2 (M) ⊆ Lk2(M) is also
closed.

1.12 Proposition. The following statements hold:

(i) Hk(M) = Zk
2 (M) ∩ Z̃k

2 (M);

(ii) Bk
2 (M) is orthogonal to Z̃k

2 (M) and B̃k
2 (M) is orthogonal to Zk

2 (M);

(iii) the subspaces Bk
2 (M), B̃k

2 (M) ⊂ Lk2(M) are closed;

(iv) Lk2(M) = Zk
2 (M)⊕ B̃k

2 (M) = Z̃k
2 (M)⊕Bk

2 (M).

Proof. (i) The claimed identity follows from (1.45).

(ii) Let ω = dk−1η ∈ Bk
2 (M) and α ∈ Z̃k

2 (M). Then

0 = (d∗k−1α, η) = (α, dk−1η) = (α, ω).

Similarly, let ω = d∗kη ∈ B̃k
2 (M) and α ∈ Zk

2 (M). Then

0 = (dkα, η) = (α, d∗kη) = (α, ω).

(iii) Let ωj = dk−1ηj ∈ Bk
2 (M), and suppose that ωj → ω in Lk2(M). Clearly,

one can choose ηj to be orthogonal to Zk−1
2 (M). Then ηj ∈ Z̃k−1

2 (M). Indeed,
let α ∈ Ωk−1(M) be a smooth form that is orthogonal to Zk−1

2 (M). Then,
for any smooth form β ∈ Ωk−2(M),

(d∗k−1α, β) = (α, dk−2β) = 0
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because Bk−1(M) ⊂ Zk−1(M). The space Ωk−2(M) is dense in Lk−2
2 (M),

hence d∗k−1α = 0. Because Z̃k
2 (M) is closed, we conclude that

Zk−1
2 (M)⊥ ⊂ Z̃k−1

2 (M). (1.48)

This proves that ηj ∈ Z̃k−1
2 (M) and therefore dk−2d

∗
k−2ηj = 0. According to

(EDO2) and item (ii), ωj is in the domain of ∆k−1. Therefore, we can apply
the operator d∗k−1 to both sides of the equation ωj = dk−1ηj to get

d∗k−1ωj = d∗k−1dk−1ηj = (d∗k−1dk−1 + dk−2d
∗
k−2)ηj = ∆k−1ηj.

Therefore,
ηj = ∆−1

k−1d
∗
k−1ωj.

It follows from (1.47) that the sequence ηj converges to a form η ∈ Lk−1
2 (M).

The operator dk−1 is closed, therefore, η belongs to its domain, and dk−1η =
ω.

The proof of the fact that the space B̃k
2 (M) is closed is similar.

(iv) We have already shown that B̃k
2 (M) is orthogonal to Zk

2 (M), and that
B̃k

2 (M) is closed. To prove that Lk2(M) = Zk
2 (M) ⊕ B̃k

2 (M), it is sufficient
to show that Zk

2 (M) ⊃ B̃k
2 (M)⊥. Suppose that ω ∈ B̃k

2 (M)⊥. By (i), ω is in
the domain of ∆k, hence of dk. Then, for any form η ∈ Ωk+1(M), one has

(dkω, η) = (ω, d∗kη) = 0.

The space Ωk+1(M) is dense in Lk+1
2 (M), so dkω = 0. The proof that

Lk2(M) = Z̃k
2 (M)⊕Bk

2 (M) is similar. �

The space of exact smooth k-forms, Bk(M) is dense in Bk
2 (M), and Bk(M) ⊂

Zk(M). Therefore, Bk
2 (M) ⊂ Zk

2 (M). Then, by Proposition 1.12,

Zk
2 (M)	Bk

2 (M) = Zk
2 (M) ∩Bk

2 (M)⊥

= Zk
2 (M) ∩ Z̃k

2 (M) = Hk(M),

and, therefore, by Proposition 1.12 (iv)

Lk2(M) = Zk
2 (M)⊕ B̃k

2 (M) = Bk
2 (M)⊕Hk(M)⊕ B̃k

2 (M). (1.49)

The decomposition (1.49) of the space Lk2(M) is called the Hodge decompo-
sition. Any form ω ∈ Lk2(M) can be represented as

ω = dα + γ + d∗β (1.50)
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where α ∈ Lk−1
2 (M), β ∈ Lk+1

2 (M), and γ ∈ Hk(M). The forms α and β
are defined uniquely modulo Zk−1

2 (M) and Z̃k+1
2 (M), respectively and the

form γ is defined uniquely. To define α and β in a unique way, one may
require, in addition, α ∈ Zk−1

2 (M)⊥ and β ∈ Z̃k+1
2 (M)⊥. Then d∗k−2α = 0

and dk+1β = 0. To compute α and β in terms of ω, apply the operator dk to
both sides of (1.50) to get

dω = dd∗β = (dd∗ + d∗dβ) = ∆β,

and
β = ∆−1

k+1dkω. (1.51)

Similarly,
d∗ω = d∗dα = ∆α,

and
α = ∆−1

k−1d
∗ω. (1.52)

Ellipticity of the Laplacian implies that the forms α and β are smooth if the
form ω is smooth. Therefore

Ωk(M) = Bk
dR(M)⊕Hk(M)⊕ B̃k

dR(M)

= dΩk−1(M)⊕Hk(M)⊕ d∗Ωk+1(M).
(1.53)

The decomposition (1.53) is also called the Hodge decomposition. Notice that
Zk
dR(M) = Bk

dR(M) ⊕ Hk(M), so the space Hk(M) is a realization of k-th
de Rham cohomologies. Each cohomology class contains a unique harmonic
form.

The de Rham theorem says that de Rham cohomologies are isomorphic to
simplicial cohomologies. In particular, de Rham cohomologies are finite di-
mensional. Now we see another reason, why they have finite dimension: the
space of harmonic forms is the null-space of an elliptic differential operator.
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