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LECTURES ON WITTEN HELFFER SJÖSTRAND THEORY

D. Burghelea (Ohio State University)

Abstract.

Witten- Helffer-Sjöstrand theory is a considerable addition to the De Rham-

Hodge theory for Riemannian manifolds and can serve as a general tool to prove

results about comparison of numerical invariants associated to compact manifolds
analytically, i.e. by using a Riemannian metric, or combinatorially, i.e by using a

triangulation. In this presentation a triangulation, or a partition of a smooth man-
ifold in cells, will be viewed in a more analytic spirit, being provided by the stable

manifolds of the gradient of a nice Morse function. WHS theory was recently used

both for providing new proofs for known but difficult results in topology, as well as
new results and a positive solution for an important conjecture about L2−torsion,

cf [BFKM]. This presentation is a short version of a one quarter course I have given

during the spring of 1997 at OSU.
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2 WITTEN HELFFER SJÖSTRAND THEORY

0. Introduction.

Witten Helffer Sjöstrand theory, or abbreviated, WHS -theory, is a substantial
addition to the De Rham -Hodge theory cf [DR] and a powerful tool for comparing
numerical invariants associated to compact manifolds analytically (i.e by using a
Riemannian metric,) and combinatorially (i.e by using a triangulation), cf[BZ1],
[BZ2], [BFKM], [BFK1], [BFK2]. It states in a precise way the relationship between
the De Rham complex of a manifold and the cochain complex provided by a smooth
triangulation when described with the help of a Riemannian metric and of a Morse
function. While there are other results which relate these two complexes, WHS-
theory provides a connection between these two complexes with scalar producs and
permits to relate some of the spectral properities of the Riemannian Laplacians
given by the metric and the combinatorial Laplacians given by the triangulation.

The intuition behind the WHS -theory is provided by physics and consists in
regarding a compact smooth manifold equipped with a Riemannian metric and a
Morse function as an interacting system of harmonic oscillators. This intuition
was first noticed and exploited by E. Witten, cf[Wi], in order to provide a short
”physicist’s proof ” of Morse inequalities, a rather simple but very useful result in
topology.

Helffer and Sjöstrand have completed Witten’s picture with their results on
Schrödinger operators and have considerably strengthened Witten’s mathemati-
cal statements, cf [HS2]. The work of Helffer and Sjöstrand on the Witten theory
can be substantially simplified by using simple observations familiar to topologists,
cf [BZ2] and [BFKM]. As presented in [HS], their work, although very appeal-
ing, is not very accessible to topologists because of a large amount of estimates
and preliminary results about Schrödinger operators. It turns out that not all of
them are necessary and the Witten Helffer Sjöstrand work, at least as needed by
topologists, can be presented and explained in a selfcontained manner and on a rea-
sonable number of pages, cf. section 5, [BFKM]. This survey is a presentation of the
WHS-theory with these simplifications, hopefully accessible to a graduate student
in geometry and topology and in a way appropriate to topological applications.

The mathematics behind the WHS-theory is almost entirely based on the fol-
lowing two facts: the existence of a gap in the spectrum of the Witten Laplacians
detected by elementary mini-max characterization of the spectrum of selfadjoint
positive operators and simple estimates involving the equations of the harmonic
oscillator. The Witten Laplacians in the neighborhood of critical points in “admis-
sible coordinates” are given by such equations.

Witten’s ideas presented below were used by Witten to provide a new proof of
Morse type inequalities and holomorphic Morse inequalities. WHS-theory was also
used to provide a new proof of the equality of analytic and Reidemeister torsion and
the L2-version of WHS-theory to provide a new proof of the equality of Novikov-
Shubin invariants defined analytically and combinatorially,cf [BFKM].

The L2−version of WHS theory turned out to be not only important but so far an
unavoidable ingredient in the proof of the equality of L2 -analytic and Reidemeister
torsion and of generalizations of this result, cf [BFKM].
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1.Triangulations from an analytic point of view.

Let Mn be a compact closed smooth manifold of dimension n. A generalized
triangulation is provided by a pair (h, g), h : M → R a smooth function, g a
Riemannian metric so that :

C1. For any critical point x of h there exists a coordinate chart in the neighbor-
hood of x so that in these coordinates h is quadratic and g is Euclidean.

Precisely, for any x critical point of h, (x ∈ Cr(h)), there exists a coordinate
chart ϕ : (U, x) → (Dǫ, 0), U an open neighborhood of x in M, Dǫ an open disc of
radius ǫ in Rn, ϕ a diffeomorphism with ϕ(x) = 0, so that :

(i) : h · ϕ−1(x1, x2, · · · , xn) = c− 1/2(x2
1 + · · ·x2

k) + 1/2(x2
k+1 + · · ·x2

n)

(ii) : (ϕ−1)∗(g) is given by gij(x1, x2, · · · , xn) = δij

Coordinates so that (i) and (ii) hold are called admissible.

It follows that any critical points has a well defined index, the number k of
the negative squares in the expression (i), which is independent of the choice of a
coordinate system with respect to which h has the form (i).

C2. h is self indexing, i.e. for any critical point x ∈ Cr(h) h(x) = index x.

Consider the vector field −gradg(h) and for any y ∈ M, denote by γy(t),−∞ <
t < ∞, the unique trajectory of −gradg(h) which satisfies the condition γy(0) = y.
For x ∈ Cr(h) denote by W−

x resp. W+
x the sets

W±
x = {y ∈ M | lim

t→±∞
γy(t) = x}.

In view of (i), (ii) and of the theorem of existence, unicity and smooth dependence
on the initial condition for the solutions of ordinary differential equations, W−

x resp.
W+

x is a smooth submanifold diffeomorphic to Rk resp. to Rn−k, with k =indexx.
This can be verified easily based on the fact that:

ϕ(W−
x ∩ Ux) = {(x1, x2, · · · , xn) ∈ D(ǫ)|xk+1 = xk+2 = · · · = xn = 0},

and
ϕ(W+

x ∩ Ux) = {(x1, x2, · · · , xn) ∈ D(ǫ)|x1 = x2 = · · · = xk = 0}.

Since M is compact and C1 holds, the set Cr(h) is finite and since M is closed
(i.e. compact and without boundary), M =

⋃

x∈Cr(h)W
−
x . As already observed

each W−
x is a smooth submanifold diffeomorphic to Rk, k =index x, i.e. an open

cell.

C3. The vector field −gradgh satisfies the Morse-Smale condition if for any
x, y ∈ Cr(h), W−

x and W+
y are transversal.

C3 implies that M(x, y) := W−
x ∩W+

y is a smooth manifold of dimension equal to
Index x− Index y. M(x, y) is equipped with the action µ : R×M(x, y) → M(x, y),
defined by µ(t, z) = γz(t).

If Index x ≤ Index y, and x 6= y, in view of the transversality requested by the
Morse Smale condition, M(x, y) = ∅.
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If x 6= y and M(x, y) 6= ∅, the action µ is free and we denote the quotient

M(x, y)/R by M̃(x, y); M̃(x, y) is a smooth manifold of dimension Index x −
Index y−1, diffeomorphic to the submanifoldM(x, y)∩h−1(c), for any real number c

in the open interval (Index x, Index y). The elements of M̃(x, y) are the trajectories
from “x to y” and such an element will be denoted by γ.

If x = y, then W−
x ∩W+

x = x.

The condition C3 implies that the partition of M into open cells is actually a
smooth cell complex. To formulate this fact precisely we recall that an
n−dimensional manifoldX with corners is a paracompact Hausdorff space equipped
with a maximal smooth atlas with charts ϕ : U → ϕ(U) ⊆ Rn

+ with Rn
+ =

{(x1, x2, · · ·xn)|xi ≥ 0}. The collection of points of X which correspond (by some
and then by any chart) to points in Rn with exactly k coordinates equal to zero
is a well defined subset of X and it will be denoted by Xk. It has a structure of a
smooth (n − k)−dimensional manifold. ∂X = X1 ∪X2 ∪ · · ·Xn is a closed subset
which is a topological manifold and (X, ∂X) is a topological manifold with bound-
ary ∂X. A compact smooth manifold with corners, X, with interior diffeomorphic
to the Euclidean space, will be called a compact smooth cell.

For any string of critical points x = y0, y1, · · · , yk with

index y0 > index y1 >, · · · , > index yk,

consider the smooth manifold of dimension index y0 − k,

M̃(y0, y1)× · · · M̃(yk−1, yk)×W−
yk
,

and the smooth map

iy0,y1,··· ,yk
: M̃(y0, y1)× · · · × M̃(yk−1, yk)×W−

yk
→ M,

defined by iy0,y1,··· ,yk
(γ1, · · · , γk, y) := iyk

(y), for γi ∈ M̃(yi−1, yi) and y ∈ W−
yk
,

with ix : W−
x → M the inclusion of W−

x in M.

Theorem1.1. Let τ = (h, g) be a generalized triangulation. For any critical point

x ∈ Cr(h) the smooth manifold W−
x has a canonical compactification Ŵ−

x to a
compact manifold with corners and the inclusion ix has a smooth extension
îx : Ŵ−

x → M so that :

(a): (Ŵ−
x )k =

⋃

(x,y1,··· ,yk)
M̃(x, y1)× · · · × M̃(yk−1, yk)×W−

yk
,

(b): the restriction of îx to M̃(x, y1)× · · · × M̃(yk−1, yk)×W−
yk

is given by
ix=y0,y1··· ,yk

.

This theorem was probably well known to experts before it was formulated by
Floer in the framework of ∞−dimensional Morse theory cf. [F]. In fact, a weaker
version of this theorem, e.g. Proposition 2 in [L], suffices to conclude that the linear
maps Intq’s defined in section 2 provide a morphism of cochain complexes. This is
the only fact one needs in order to formulate the WHS-theory. However, Theorem
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1.1 is a statement worth to be known. As formulated Theorem 1.1 is proven in
[AB].

The name of generalized triangulation for τ = (h, g) is justified by the fact that
any simplicial smooth triangulation can be obtained as a generalized triangulation,
cf [Po]. We also point out that given a selfindexing Morse function h and a Rie-
mannian metric g, one can perform arbitrary small C0− perturbations to g, so that
the pair consisting of h and the perturbed metric is a generalized triangulation, cf
[Sm].

Given a generalized triangulation τ = (h, g), and for any critical point x ∈ Cr(h)
an orientation Ox of W−

x , one can associate a cochain complex of vector spaces over
the field K or real or complex numbers, (C∗(M, τ), ∂∗). The diferential ∂∗ depends
on the choosen orientationsOx. To describe this complex we introduce the incidence
numbers

Iq : Cr(h)q × Cr(h)q−1 → Z

defined as follows:
If M̃(x, y) = ∅, we put Iq(x, y) = 0.

If M̃(x, y) 6= ∅, for any γ ∈ M̃(x, y), the set γ ×W−
y appears as an open set of the

boundary ∂Ŵ−
x and the orientation Ox induces an orientation on it. If this is the

same as the orientation Oy, we set ǫ(γ) = +1, otherwise we set ǫ(γ) = −1. Define
Iq(x, y) by

Iq(x, y) =
∑

γ∈M̃(x,y)

ǫ(γ).

In the case M is an oriented manifold, the orientation of M and the orienta-
tion Ox on W−

x induce an orientation O+
x on the stable manifold W+

x . For any
c ∈ (index y, index x), h−1(c) carries a canonical orientation induced from the ori-
entation ofM. One can check that Iq(x, y) is the intersection number ofW−

x ∩h−1(c)
with W+

y ∩ h−1(c) inside h−1(c) and is also the incidence number of the open cells

W−
x and W−

y in the CW− complex structure provided by τ.

Denote by (C∗(M, τ), ∂∗) the cochain complex of K−vector spaces defined by

(1) Cq(M, τ) := Maps(Crq(h),K)

(2) ∂q−1 : Cq−1(M, τ) → Cq(M, τ), ∂q−1f(x) =
∑

y∈Crq−1(h)
Iq(x, y)f(y), where

x ∈ Crq(h).

Since Cq(M, τ) is equipped with a canonical base provided by the maps Ex

defined by Ex(y) = δx,y, x, y ∈ Crq(h), it carries a natural scalar product which
makes Ex, x ∈ Crq(h) orthonormal.

Proposition 1.2. For any q, ∂q · ∂q−1 = 0.

A geometric proof of this Proposition follows from Theorem 1.1 (cf [F] or [AB]),
The reader can also derive it by noticing that (C∗(M, τ), ∂∗) as defined is nothing
but the cochain complex associated to the CW−complex structure provided by τ.
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2. De Rham theory and Integration theory.

Let M be a closed smooth manifold and τ = (h, g) be a generalized triangulation.
Denote by (Ω∗(M), d∗) the De Rham complex of M. This is a cochain complex
whose component Ωr(M) is the (Frechet) space of smooth differential forms of
degree r and whose differential dr : Ωr(M) → Ωr+1(M) is given by the exterior
differential. Recall that Stokes theorem can be formulated as follows:

Theorem 2.1. Let P be a compact r−dimensional oriented smooth manifold with
corners and f : P → M be a smooth map. Denote by ∂f : P1 → M the restriction
of f to the smooth oriented manifold P1 (P1 defined as above). If ω ∈ Ωr−1(M) is
a smooth form then

∫

P1

∂f∗(ω) is convergent and

∫

P

f∗(dω) =

∫

P1

∂f∗(ω).

Consider the linear map Intq : Ωq(M) → Cq(M, τ), with
Cq(M, τ) = Maps(Cr(h)q,K), Crq(h) = {x ∈ Cr(h)|index x = q} defined by

Intq(ω)(x) =

∫

Ŵ−
x

ω,

The collection of the linear maps Intq’ s defines a morphism

Int∗ : (Ω∗(M), d∗) → (C∗(M, τ), ∂∗)

of cochain complexes.

Theorem 2.2. (De Rham) Int∗ induces an isomorphism in cohomology.

Theorem 3.2, one of the two main results of the WHS theory,whose proof will
be sketched below, is a considerable strengthening of this theorem.
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3. Witten deformation and the main results of WHS-theory.

Let M be a closed manifold and h : M → R a smooth function. For t > 0 we
consider the complex (Ω∗(M), d∗(t)) with differential dq(t) : Ωq(M) → Ωq+1(M)
given by dq(t) = e−thdeth or equivalently

dq(t)(ω) = dω + tdh ∧ ω.(3.1)

d∗(t) is the unique differential in Ω∗(M) which makes the multiplication by the
smooth function eth an isomorphism of cochain complexes

eth : (Ω∗(M), d∗(t)) → (Ω∗(M), d∗).

Recall that for any vector field X on M one defines the zero order differential
operator, ιX = ι∗X : Ω∗(M) → Ω∗−1(M), by

ιqXω(X1, X2, · · · , Xq−1) := ω(X,X1, · · · , Xq−1)(3.2)

and the first order differential operator LX = L∗
X : Ω∗(M) → Ω∗(M), the Lie

derivative in the direction X ,

by

Lq
X := dq−1 · ιqX + ιq+1

X · dq.(3.3)

They satisfy the following identities:

ιX(ω1 ∧ ω2) = ιX(ω1) ∧ ω2 + (−1)|ω1|ω1 ∧ ιX(ω2).(3.4)

for ω1 ∈ Ω|ω1|(M), and

LX(ω1 ∧ ω2) = LX(ω1) ∧ ω2 + ω1 ∧ LX(ω2).(3.5)

Given a Riemannian metric g on the oriented manifold M we have the zeroth
order operator Rq : Ωq(M) → Ωn−q(M), known as the star-Hodge operator which,
with respect to an oriented orthonormal frame e1, e2, · · · , en in the cotangent space
at x, is given by

Rq
x(ei1 ∧ · · · ∧ eiq ) = ǫ(i1, · · · , iq)e1 ∧ · · · ∧ êi1 ∧ · · · ∧ êiq ∧ · · · ∧ en,(3.6)

1 ≤ i1 < i2, · · · , iq ≤ n, with ǫ(i1, i2, · · · , iq) denoting the sign of the permutation
of (1, 2 · · ·n) given by

(i1, i2, · · · , iq, 1, 2, · · · î1, · · · , î2, · · · î2, · · · , îq, · · · , n).

Here “hat” above symbol means the deletion of this symbol.
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The operators Rq’s satisfy

Rq ·Rn−q = (−1)q(n−q)Id.(3.7)

With the help of the operators Rq of an oriented Riemannian manifold of dimen-
sion n, one defines the fiberwise scalar product Ω(M)q ×Ωq(M) → Ω0(M) and the
formal adjoints

δq+1, δq+1(t) : Ωq+1(M) → Ωq(M),

(ιq−1
X )

♯
: Ωq−1(M) → Ωq(M), and (Lq

X)
♯
: Ωq(M) → Ωq(M)

of dq, dq(t), ιqX , Lq
X by:

≪ ω1, ω2 ≫= (Rn)−1(ω1 ∧Rq(ω2)),(3.8)

δq+1 = (−1)nq+1Rn−q · dn−q−1 ·Rq+1,(3.9)

δq+1(t) = (−1)nq+1Rn−q · dn−q−1(t) ·Rq+1,

(ιqX)♯ = (−1)nq−1Rn−q · ιn−q−1
X ·Rq−1,

(Lq
X)♯ = (−1)(n+1)q+1Rn−q · Ln−q

X ·Rq

These operators satisfy:

≪ dω1, ω2 ≫ =≪ ω1, δω2 ≫,(3.10)

≪ d(t)ω1, ω2 ≫ =≪ ω1, δ(t)ω2 ≫,

≪ ιXω1, ω2 ≫ =≪ ω1, (ιX)♯ω2 ≫,

≪ LXω1, ω2 ≫ =≪ ω1, (LX)♯ω2 ≫,

and

(LX)♯ = (ιX)♯ · δ + δ · (ιX)♯.(3.11)

Note that Lq
X + (Lq

X)♯ is a zeroth order differential operator. Let X♯ denote
the element in Ω1(M) defined by X♯(Y ) :=≪ X, Y ≫ and for ω ∈ Ω1(M) let
Eq

ω : Ωq(M) → Ωq+1(M), denote the exterior product by ω. Then we have

(ιqX)♯ = Eq−1
X♯ .(3.12)

It is easy to see that the scalar products ≪ ., . ≫ and the operators δq, δq(t), ι♯X
and L♯

X are independent of the orientation of M. Therefore they are defined (first
locally and then being differential operators globally) for an arbitrary Riemannian
manifold, not necessary orientable, and satisfy (3.8), (3.10)-(3.12) above.
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For a Riemannian manifold (M, g) one introduces the scalar product Ωq(M) ×
Ωq(M) → C by

< ω, ω′ >:=

∫

M

ω ∧ ω′ =

∫

M

≪ ω, ω′ ≫ dvol(g).(3.13)

In view of (3.10), δq+1(t), (ιqX)♯ and (Lq
X)♯ are formal adjoints of dq(t), ιqX(t)

and Lq
X with respect to the scalar product < ., . > .

For a Riemannian manifold (M, g), one introduces the second order differential
operators ∆q : Ωq(M) → Ωq(M), the Laplace Beltrami operator, and ∆q(t) :
Ωq(M) → Ωq(M), the Witten Laplacian for the function h, by

∆q := δq−1 · dq + dq−1 · δq,

and

∆q(t) := δq−1(t) · dq(t) + dq−1(t) · δq(t).

Note that ∆q(0) = ∆q. In view of (3.1) -(3.8) and (3.10) one verifies

∆q(t) = ∆q + t(L−gradgh + L♯
−gradgh

) + t2||gradgh||Id(3.14)

and that L−gradgh + L♯
−gradgh

is a zeroth order differential operator.

The operators ∆q(t) are elliptic selfadjoint and positive, hence their spectra
spect∆q(t), lie on [0,∞). Further, as

ker∆q(t) = {ω ∈ Ωq(M)|dq(t) = 0, δq(t) = 0}

one can see that for all t ≥ 0 ker∆q(t) is isomorphic to ker∆q(0). Hence if 0 is an
eigenvalue of ∆q(0), then it is an eigenvalue of ∆q(t) for all t and with the same
multiplicity.

A very important fact in the proof of Theorems 3.1 and 3.2 below is is that
∆q(t)−∆q is a zeroth order operator for any t.

The following result is essentially due to E.Witten, and provides the first main
result of the WHS-theory.

Theorem 3.1. Suppose that τ = (g, h) is a generalized triangulation of the closed
Riemannian manifold M. There exist the constants C1, C2, C3 and T0 depending on
τ, so that for any t > T0, spect∆q(t) ⊂ [0, C1e

−C2t] ∪ [C3t,∞) and the number of
the eigenvalues of ∆q(t) in the interval [0, C1e

−C2t] counted with their multiplicity
is equal to the number of critical points of index q.

The above theorem states the existence of a gap in the spectrum of ∆q(t), namely
the open interval (C1e

−C2t, C3t), which widens to (0,∞) when t → ∞.
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Clearly C1, C2, C3 and T0 determine a constant T , so that 1 ∈ (C1e
−C2t, C3t)

and for t ≥ T,

spect∆q(t) ∩ [0, C1e
−C2t] = spect∆q(t) ∩ [0, 1]

and
spect∆q(t) ∩ [C3t,∞) = spect∆q(t) ∩ [1,∞).

For t > T we denote by Ωq(M)(t)sm the finite dimensional subspace of dimen-
sion mq , the number of critical points of index q, generated by the q−eigenforms
of ∆q(t) corresponding to the eigenvalues of ∆q(t) smaller than 1. The elliptic
theory implies that these eigenvectors, a priori elements in the L2−completion of
Ωq(M), are actually in Ωq(M). Note that d(t)(Ωq(M)(t)sm) ⊂ Ωq+1(M)(t)sm, so
that (Ω∗(M)(t)sm, d∗(t)) is a finite dimensional cochain subcomplex of (Ω∗, d∗(t))
and eth(Ω∗(M)(t)sm, d∗(t)) is a finite dimensional subcomplex of (Ω∗(M), d∗).

For t > T, consider the composition of morphisms of cochain complexes denoted
by l∗(t),

(Ω∗(M)sm, d
∗
(t))

S∗(t)
−−−→ (Ω∗(M)sm, d∗(t))

eth
−−→ (Ω∗(M), d∗)

Int∗
−−−→ (C∗(M, τ), ∂∗),

with Sq(t) = (π
t
)

n−2q
4 etqId, and d

q
(t) := (π

t
)1/2e−tdq(t). S∗(t) is an isomorphism

of cochain complexes referred to as the ”rescaling isomorphism”. The following
theorem due to Helffer-Sjöstrand, cf [HS2], provides the second main result of the
WHS-theory.

Theorem 3.2. (Helffer-Sjöstrand) Given M a closed manifold and τ = (g, h) a
generalized triangulation, there exists T1 > 0, depending on τ, so that for t > T1

1 /∈ spect∆q(t) and l∗(t) is an isomorphism of cochain complexes.

Moreover, for t > T1 there exists a family of isometries J q(t) : Cq(M, τ) →
Ωq(M)(t)sm of finite dimensional vector spaces so that lq(t)J q(t) = Id + O(1/t).
It is understood that Cq(M, τ) is equipped with the canonical scalar product defined
in section 1, before Theorem 1.2, and Ωq(M)(t)sm with the scalar product < ., . >
defined by (3.13).

Theorem 3.2 provides inside (Ω∗(M), d∗(t)), (a reparametrization of (Ω∗(M), d∗)
induced by the multiplication operator ethSq(t) : Ωq(M) → Ωq(M)) the finite

dimensional subcomplex (Ω∗(M)sm, d
∗
(t)) which, after rescaling, is asymptotically

isometric to (C∗(M, τ), ∂∗).

Recall that De Rham Hodge theory provides a canonical and unique representa-
tion of each cohomology class of (C∗(M, τ), ∂∗) by harmonic q−forms with respect
to g. Theorem 3.2 provides, asymptotically, a canonical and unique representation
of the full complex (C∗(M, τ), ∂∗) and its base Ex inside (Ω∗(M), d∗).
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4. Ideas of the proof of Theorems 3.1 and 3.2.

The proof of Theorems 3.1 and 3.2 is based on a mini-max criterion for detecting a
gap in the spectrum of a positive selfadjoint operator in a Hilbert space H, Lemma
4.1 below, and on the explicit formula for ∆q(t) in admissible coordinates in a
neighborhood of the critical points.

Lemma 4.1. Let A : H → H be a densely defined (not necessary bounded ) self
adjoint positive operator in a Hilbert space (H,<,>) and a, b two real numbers so
that 0 < a < b < ∞. Suppose that there exists two closed subspaces H1 and H2 of
H with H1 ∩H2 = 0 and H1 +H2 = H such that:
(1) < Ax1, x2 > ≤ a||x1||

2 for x1 ∈ H1,
(2) < Ax1, x2 > ≥ b||x2||2 for x1 ∈ H2.

Then spectA
⋂

(a, b) = ∅.

The proof of this Lemma is elementary and is left as an exercise for the reader.

Consider x ∈ Cr(h) and choose admissible coordinates (x1, x2, ..., xn) in the
neighborhood of x. Since with respect to these coordinates

h(x1, x2, ..., xn) = k − 1/2(x2
1 + · · ·+ x2

k) + 1/2(x2
k+1 + · · ·+ x2

n)

and gij(x1, x2, ..., xn) = δij , by (3.14) the operator ∆q(t) has the form:

∆q,k(t) = ∆q + tMq,k + t2(x2
1 + · · ·+ x2

n)Id(4.1)

with

∆q(
∑

I

aI(x1, x2, ..., xn)dxI) = −(
n
∑

i=1

∂2

∂x2
i

aI(x1, x2, ..., xn))dxI ,

and Mq,k the linear operator determined by

Mq,k(
∑

I

aI(x1, x2, ..., xn)dxI) =
∑

I

ǫq,kI aI(x1, x2, ..., xn)dxI .(4.2)

Here I = (i1, i2 · · · iq), 1 ≤ i1 < i2 · · · < iq ≤ n, dI = dxi1 ∧ · · · ∧ diq and

ǫq,kI = −n+ 2k − 2q + 4♯{j|k + 1 ≤ ij ≤ n},

where ♯A denotes the cardinality of the set A. Note that ǫq,kI ≥ −n and is = −n iff
q = k.

Let Sq(Rn) denote the space of smooth q−forms ω =
∑

I aI(x1, x2, ..., xn)dxI

with aI(x1, x2, ..., xn) rapidly decaying functions. The operator ∆q,k(t) acting on
Sq(Rn) is globally elliptic (in the sense of [Sh1] or [Hö]), selfadjoint and positive.
This operator is the harmonic oscillator in n variables acting on q−forms and its

properties can be derived from the harmonic oscillator in one variable − d2

dx2 +a+bx2

acting on functions. In particular the following result holds.
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Proposition 4.2. (1) ∆q,k(t), regarded as an unbounded densely defined opera-
tor on the L2−completion of Sq(Rn), is selfadjoint, positive and its spectrum is
contained in 2tZ≥0 (i.e positive integer multiple of 2t).

(2) ker∆q,k(t) = 0 if k 6= q and dim ker∆q,q(t) = 1.

(3) ωq,t = (t/π)n/2e−t
∑

i x
2

i /2dx1 ∧ · · · ∧ dxq is the generator of ker∆q,q(t) with
the L2−norm 1.

For details consult [BFKM] page 805.

Choose a smooth function γη(u), η ∈ (0,∞), u ∈ R, which satisfies :

γη(u) =

{

1 if u ≤ η/2

0 if u > η

}

.(4.3)

Introduce ω̃η
q,t ∈ Ωq

c(R
n)defined by

ω̃η
q,t(x) = β−1

q (t) γη(|x|)ωq,t(x) with |x| =
√

∑

i x
2
i and

βq(t) = (t/π)n/4(

∫

Rn

γ2
η(|x|)e

−t
∑

i x
2

i dx1 · · ·dxn)
1/2.(4.4)

The smooth form ω̃η
q,t has the support in the disc of radius η, agrees with ωq,t

on the disc of radius η/2 and satisfies

< ω̃η
q (t), ω̃

η
q (t) >= 1(4.5)

with respect to the scalar product < ., . > on Sq(Rn) induced by the Euclidean
metric. The following proposition can be obtained by elementary calculations in
coordinates in view of the explicit formula of ∆q,k(t) cf [BFKM], Appendix 2.

Proposition 4.3. For a fixed r ∈ N≥0 there exists C,C′, C′′, T0, ǫ0 so that t > T0

and ǫ < ǫ0 imply

(1) | ∂|α|

∂x
α1

1
···∂xαn

n
∆q,q(t)ω̃

ǫ
q,t(x)| ≤ Ce−C′t for any x ∈ Rn and multiindex α =

(α1, · · · , αn), with |α| = α1 + · · ·+ αn ≤ r.

(2) < ∆q,k(t)ω̃
ǫ
q,t, ω̃

ǫ
q,t > ≥ 2t|q − k|

(3) If ω ⊥ ω̃ǫ
q,t with respect to the scalar product < ., . > then

< ∆q,qω, ω > ≥ C′′t||ω||2.

For the proof of Theorems 3.1 and 3.2 we choose ǫ0 > 0 so that for each y ∈
Cr(h) there exists an admissible coordinate chart ϕy : (Uy, y) → (D2ǫ, 0) so that
Uy ∩ Uz = ∅ for y 6= z, y, z ∈ Cr(h).

Choose once for all such an admissible coordinate chart for any y ∈ Crq(h).
Introduce the smooth forms ωy,t ∈ Ωq(M) defined by

ωy,t|M\ϕ−1

y (D2ǫ)
= 0, ωy,t|ϕ−1

y (D2ǫ)
= ϕ∗

y(ω̃
ǫ
q,t).(4.6)
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The forms ωy,t ∈ Ωq(M), y ∈ Crq(h) are orthonormal. Indeed if y 6= z, y, z ∈
Crq(h), ωy,t and ωz,t have disjoint support, hence are orthogonal, and because the
support of ωy,t is contained in an admissible chart, < ωy,t, ωy,t >= 1 by (4.5).

For t > T0, with T0, given by Proposition 4.3, we define Jq(t) : Cq(X, τ) →
Ωq(M) to be the linear map determined by

Jq(t)(Ey) = ωy(t),

where Ey ∈ Cq(X, τ) is given by Ey(z) = δyz for y, z ∈ Cr(h)q. Jq(t) is an isometry,
thus in particular injective.

Proof of Theorems 3.1 and 3.2: (sketch). Take H to be the L2−completion
of Ωq(M) with respect to the scalar product < ., . >, H1 := Jq(t)(Cq(M, τ)) and
H2 = H⊥

1 . Let T0, C, C
′, C′′ be given by Proposition 4.3 and define

C1 := inf
z∈M ′

||gradgh(z)||,

with M ′ = M \
⋃

y∈Crq(h)
ϕ−1
y (Dǫ),

C2 = sup
x∈M

||(L−gradgh + L♯
−gradgh

)(z)||;

here ||gradgh(z)|| resp. ||(L−gradgh+L♯
−gradgh

)(z)|| denotes the norm of the vector

gradgh(z) ∈ Tz(M) resp. of the linear map (L−gradgh+L♯
−gradgh

)(z) : Λq(Tz(M)) →

Λq(Tz(M)) with respect to the scalar product induced in Tz(M) and Λq(Tz(M)) by

g(z). Recall that if X is a vector field then LX + L♯
X is a zeroth order differential

operator, hence an endomorphism of the bundle Λq(T ∗M) → M.

We can use the constants T0, C, C
′, C′′, C1, C2 to construct C′′′ and ǫ1 so that

for t > T0 and ǫ < ǫ1, we have < ∆q(t)ω, ω >≥ C3t < ω, ω > for any ω ∈ H2 (cf.
[BFKM], page 808-810).

Now one can apply Lemma 4.1 whose hypotheses are satisfied for a = Ce−C′t, b =
C′′′t and t > T0. This concludes the first part of Theorem 3.1.

Let Qq(t), t > T0 denote the orthogonal projection in H on the span of the
eigenvectors corresponding the eigenvalues smaller than 1. In view of the elliptic-
ity of ∆q(t) all these eigenvectors are smooth q−forms. An additional important
estimate is given by the following Proposition:

Proposition 4.4. For r ∈ N≥0 one can find ǫ0 > 0 and C3, C4 so that for t > T0

as constructed above, and any ǫ < ǫ0 one has, for any v ∈ Cq(M, τ)

sup
x∈M

||(Qq(t)J
q(t)− Jq(t))(v)|| ≤ C3e

−C4t||v||,

(Qq(t)J
q(t) − Jq(t))(v) ∈ Ωq(M), with similar estimates for the Cp−norm of

(Qq(t)J
q(t)− Jq(t), with p ≤ r.

The proof of this Proposition is contained in [BZ1], page 128 and [BFKM] page
811. Its proof requires (3.14), Proposition 4.3 and general estimates coming from
the ellipticity of ∆q(t).
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Proposition 4.4 implies that for t large enough, say t > t0, Iq(t) := Qq(t)J
q(t)

is bijective, which finishes the proof of Theorem 3.1.

For t ≥ T0, as constructed in Proposition 4.4, let J q(t) be the isometry defined
by

J q(t) := Iq(t)(Iq(t)♯Iq(t))−1/2(4.7)

and denote by Uy,t := J q(t)(Ey) ∈ Ωq(M), y ∈ Cr(h)q. Proposition 4.4 implies
that there exists t0 and C so that for t > t0 and y ∈ Cr(h)q one has:

sup
z∈M\ϕ−1

y (Dǫ)

||Uy,t(z)|| ≤ Ce−ǫt,(4.8)

||Uy,t(z)− ωy,t(z)|| ≤ C
1

t
, for z ∈ W−

y ∪ ϕ−1
y (Dǫ).(4.9)

To check Theorem 3.2 it suffices to show that

|

∫

W−

x′

Ux,te
th − (

t

π
)

n−2q
4 etqδxx′ | ≤ C′′ 1

t

for some C′′ > 0 and any x, x′ ∈ Cr(h)q.

If x 6= x′ this follows from (1). If x = x′ from (4.8) and (4.9). �
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5. Extensions and a survey of applications.

1. One can relax the definition of the generalized triangulation by dropping from
C1 the constraint on g to be Euclidean in the neighborhood of the critical points.
This will keep Theorems 3.1 and 3.2 valid as stated; however almost all calculations
will be longer since the explicit formulae for ∆q(t) and its spectrum when regarded
on S∗(Rn) will be more complicated.

2.One can drop the hypothesis that the Morse function h is self indexing. In
this case Theorem 3.1 remains true as stated but in Theorem 3.2, lq(t) should be
replaced by

(Ω∗(M)sm, d∗(t))
eth
−−→ (Ω∗(M), d∗)

Int∗
−−−→ (C∗(M, τ), ∂∗),

and J q(t) by J q(t) · Σq(t) with Σq(t) : (Cq(M, τ), ∂∗) → (Cq(M, τ), ∂∗(t)), and
∂∗(t) = Σq+1(t) · ∂q · (Σq(t))−1 the morphism of cochain complexes defined by

Σq(t)(Ex) = (
π

t
)

n−2q
4 eh(x)Ex,

x ∈ Crq(h) cf. [BFK3].

3. One can twist both complexes (C∗(M, τ), ∂∗) and (Ω∗, d∗) by a finite dimen-
sional representation of the fundamental group, ρ : π1(M) → GL(V ). In this case
an additional data is necessary: a Hermitian structure µ on the flat bundle ξρ in-
duced by ρ. The ”canonical” scalar product on (C∗(M, τ, ρ), ∂∗) will be obtained by
using the critical points (the cells of the generalized triangulation and the hermitian
scalar product provided by µ in the fibers of ξρ above the critical points. The De-
Rham complex in this case is replaced by (Ω∗(M, ρ), d∗ρ) of differential forms with
coefficients in ξρ and the differential is provided by the flat connection in ξρ. The
scalar product will require in addition of the Riemannian metric g the Hermitian
structure µ (cf. [BFK] or [BFK2]). Under the hypotheses that the Hermitian struc-
ture is parallel in small neighborhoods of the critical points, the proofs of Theorems
3.1 and 3.2 remain the same. An easy continuity argument permits to reduce the
case of an arbitrary Hermitian structure to the previous one by taking a C0 approx-
imation of a given Hermitian structure by Hermitian structures which are parallel
near the critical points. Since the Witten Laplacians do not involve derivatives
of the Hermitian structure such a reduction is possible. If the representation is a
unitary representation in a finite dimensional Euclidean space one has a canonical
Hermitian structure in ξρ (parallel with respect to the flat canonical connection
in ξρ.) This extension was used in the new proofs of the Cheeger- Muller theorem
and its extension concerning the comparison of the analytic and the Reidemeister
torsion. cf. [BZ], [BFK].

4.One can further extend the WHS-theory to the case where ρ is a special type of
an infinite dimensional representation, a representation of the fundamental group
in an A− Hilbert module of finite type. This extension was done in [BFKM] for ρ
unitary and in [BFK4] for ρ arbitrary. In this case the Laplacian ∆q(t) do not have
discrete spectrum and it seems quite remarkable that Theorems 3.1 and 3.2 remain
true. It is even more surprising that exactly the same arguments as presented above
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can be adapted to prove them. A particularly interesting situation is the case of
the left regular representation of a countable group Γ on the Hilbert space L2(Γ)
when regarded as an N (Γ) right Hilbert module of the von Neumann algebra N (Γ),
cf.[BFKM] for definitions. One can prove that Farber extended L2−cohomology of
M, a compact smooth manifold with infinite fundamental group defined analytically
(i.e. using differential forms and a Riemannian metric) and combinatorially (i.e
using a triangulation) are isomorphic and therefore the classical L2−Betti numbers
and Novikov-Shoubin invariants defined analytically and combinatorially are the
same. For the last fact see see [BFKM].

This WHS-theory was a fundamental tool in the proof of the equality of the
L2−analytic and the L2−Reidemeister torsion presented [BFKM].

5. One can further extend Theorems 3.1 and 3.2 to bordisms (M, ∂−M, ∂+M),
and ρ a representation of Γ = π1(M) on an A−Hilbert module of finite type. In
this case one has first to extend the concept of generalized triangulation to such
bordisms. This will involve a pair (h, g) which in addition to the requirements
C1-C3 is supposed to satisfy the following assumptions: g is product like near
∂M = ∂−M ∪ ∂+M,

h : M → [a, b] with h−1(a) = ∂−M, h−1(b) = ∂+M, a, b regular values, and h
linear on the geodesics normal to ∂M near ∂W. This extension was done in [BFK2]
and was used to prove gluing formulae for analytic torsion and to extend the results
of [BFKM] to manifolds with boundary.

5. One can actually extend WHS-theory to the case where h is generalized
Morse function, i.e. the critical points are either nondegenerated or birth-death.
This extension is much more subtle and very important. Beginning work in this
direction was done by Hon Kit Wai in his OSU dissertation.
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