Patterns for Maude
Metalanguage Applications

Georgiana Goriac
Eugen-loan Goriac

Sinaia School on Formal Verification of Software Systems
3-10 March 2008
http://www.imar.ro/~diacon/sinaiaschool.html

Topics

e Software patterns
e Maude metalanguage applications
e Case study: a topological sorting system

Software patterns

e introduced by Christopher Alexander

— urban design and building architecture

e common language used in order to describe :
— a design problem
— a context in which the problem occurs
— the core of a solution to solve the problem

The problem

e specifying and analizing a system
e system examples:
— simulators

— provers
— models of computation

Maude metalanguage applications

e a particular type of application in which
Maude is used to define modules for
specifying:

— a language syntax
— a language parser
— a way of execution

— a manner of printing execution results

Case study — the TOPO system

Maude>
(poset SIMPLE-POSET is
rela<b.
rele<b.
relb<c.
end)

Maude>tsortcdabe.

result: adebc.

special syntax for
defining a partial order
set

call of a topological
sorting command

system response

Deeper analysis

e User Interface

— define the communication flow between the user and
the system under implementation

e System Language Signature

— define the system language signature used in order to
validate system inputs

 System Language Parser

— develop a parser in Full Maude for transforming the
input matching the system language grammar into a
semantics in terms of the Maude language

User Interface

e system loop mode
[1 nput :QidList, st at e:State, out put :QidList]

e system state structure

— an object characterized by attributes
iInput : TermList
output : QidList
defPOSet : Header ... — [init]
stat;)

e user interface rewrite rules fin

>t | >input [out]
[init], [in], [out] : /t output | =t
10PUL, | 4efpOsSet |' OWPY

System Language Signature

e TOPO grammar

POSet ::= poset Nane is Rel ati on*end

Name := ldentifier

Rel ati on :=rel LHS < RHS .
LHS = (bj

RHS ;= (bj

Qhj ==al|b]..|z

* declaration of metavariable sorts
sorts @POSet@ @Relation@ .

e declaration of metaexpressions corresponding operators
op poset_is_end : @Token@ List{@Relation@} -> @POSe t@ .
oprel < .:@Token@ @Token@ -> @Relation@ .
op tsort_. : @Bubble@ -> @Command@ .

System Language Parser

e the association of Maude semantics to the user
input

e example:
(poset ORDER is (mod ORDER is
iIncluding BOOL .
—> including ITEMS .
rela<b. eqa<b-=true.
end) endm)
* steps:

— creating an operator for parsing some input
— creating a rule that calls the parsing operator

Sinaia School on Formal Verification of
Software Systems, 3-10 March 2008

10

System Language Parser

op parsePOSet :Term Term -> Module .
eq parsePOSet (T, T)=...--- make use of the metaParse operation

crl [parseUnit-POSet] :
<O : X@Database | db : DB,

input : (' poset is_end[T, T']),
output : nil,
Atts

>

=>

<O : X@Database | db: insTermModule(getName(M), M, DB) :
input : nilTermList,
output : (\n 'Introduced 'poset 'specification: ge tName(M) \n),
Atts

>

if M = parsePOSet (T, T').

Sinaia School on Formal Verification of

11
Software Systems, 3-10 March 2008

Applying the patterns

e Maude metalanguage applications can be
developed by using an iteration-based
strategy

 The idea is to build the base version of the
system to be implemented and then, at each
iteration to add new capabilities to that
system

 Every time an iteration is performed, the
enriched system has to be tested for errors

About the patterns

 The design of these patterns is based on the
experience acquired by the authors during the
development of some applications or by
studying other applications

 The greatest achievement is the refactoring of
the CIRC proving tool, based on the patterns

References

Eugen-loan Goriac, Georgiana Caltais, Dorel Lucanu,
Oana Andrei and Gheorghe Grigoras

Patterns for Maude Metalanguage Applications
(accepted at WRLA'0S8, to appear in ENTCS)

http://circidei.info.uaic.ro/pmma2008/topo.maude

http://www.imar.ro/~diacon/sinaiaschool.html

Sinaia School on Formal Verification of
Software Systems, 3-10 March 2008

14

