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Abstract Saturated models constitute one of the powerful methods of conventional model theory,
with many applications. Here we develop a categorical abstract model theoretic approach to satu-
rated models within the theory of institutions. The most important consequence is that the method
of saturated models becomes thus available to a multitude of logical systems from logic or from
computing science.

In this paper we define the concept of saturated model at an abstract institution-independent
level and develop the fundamental existence and uniqueness theorems. As an application we prove
a general institution-independent version of the Keisler-Shelah isomorphism theorem “any two ele-
mentarily equivalent models have isomorphic ultrapowers” (assuming Generalized Continuum Hy-
pothesis).

1 Introduction

1.1 Institution-independent Model Theory

The theory of “institutions” [21] is a categorical abstract model theory which formalizes the intuitive
notion of logical system, including syntax, semantics, and the satisfaction between them. It provides
the most complete form of abstract model theory, the only one including signature morphisms, model
reducts, and even mappings (morphisms) between logics as primary concepts. Institution have been
recently also extended towards proof theory [36,15] in the spirit of categorical logic [28].

The concept of institution arose within computing science (algebraic specification) in response
to the population explosion among logics in use there, with the ambition of doing as much as possi-
ble at a level of abstraction independent of commitment to any particular logic [21,38,19]. Besides
its extensive use in specification theory (it has become the most fundamental mathematical struc-
ture in algebraic specification theory), there have been several substantial developments towards an
“institution-independent” (abstract) model theory [42,43,11,13,12,26,25,37,9,24,35]. A monog-
raphy dedicated to this topic is [17] and [14] is a relatively recent survey.

The significance of institution-independent model theory is manifold. First, it provides model
theoretic results and analysis for various logics in a generic and uniform way. Apart of reformulation
of standard concepts and results in a very general setting, thus applicable to many logical systems,
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some of them very different from the conventional logics, institution-independent model theory has
already produced a series of new significant results in conventional model theory [13,26,37,9,24].

Institution-independent model theory provides a new top-down way of doing model theory, mak-
ing explicit the generality and power of concepts by placing them at the right level of abstraction
and thus extracting the essence of the results independently of the largely irrelevant details of the
particular logic in use. This leads to a deeper conceptual understanding guided by a structurally
clean causality. Concepts come naturally as presumed features that “a logic” might exhibit or not,
hypotheses are kept as general as possible and introduced on a by-need basis, results and proofs are
modular and easy to track down despite their sometimes very deep content.

1.2 Summary and Contributions of this Work

Saturated models constitute one of the powerful methods of conventional model theory, with many
applications. For example this can be seen clearly in the classic textbook [6]. In this paper we define
the concept of saturated model in arbitrary institutions and develop the fundamental results for an
institution-independent saturated model theory. This makes available the method of saturated models
to a large variety of logics from computing science and logic.

Our first fundamental result is an existence theorem showing that (under certain conditions for
the institution) each model can be ‘embedded elementarily’ into a saturated model. Another funda-
mental result is a uniqueness theorem for the saturated models which are ‘sufficiently small’. Both
these properties, crucial in the applications, generalize corresponding first order model theory results
of [33] (Lem. 5.1.4 and Thm. 5.1.13 in [6]). In the last section we develop an institution-independent
version of a well known result in conventional concrete model theory showing that under certain
conditions, ultraproducts of models are saturated, which leads to an institution-independent proof
of the famous Keisler-Shelah isomorphism theorem “any two elementarily equivalent models have
isomorphic ultrapowers”. This proof has the merit that it separates clearly the ultrafilter part from
the proper model theoretic part, the latter being shown to be institution-independent. One thus ob-
tains a general version of Keisler-Shelah isomorphism theorem, under the Generalized Continuum
Hypothesis, which can be applied to a variety of logics formalized as institutions.

Our general institution-independent concepts are illustrated by the classical first order model
theory framework but also by the less conventional logics of partial algebra and preordered algebra.
Applications to many other logics are of course expected.

The paper is organized as follows. The first technical section introduces the institution the-
oretic preliminaries and recalls necessary fundamental concepts of institution-independent model
theory such as model amalgamation, elementary diagrams, internal logic, and finitary, small, quasi-
representable signature morphisms. The next section introduces the institution-independent con-
cept of saturated model and proves the existence theorem. The third technical section develops the
uniqueness property of saturated models. The last technical section is devoted to the institution-
independent generalization of Keisler-Shelah isomorphism theorem.

2 Institution-independent Model Theoretic Preliminaries

2.1 Categories

We assume the reader is familiar with basic notions and standard notations from category theory;
e.g., see [30] for an introduction to this subject. Here we recall very briefly some of them. By way of
notation, |C| denotes the class of objects of a category C, C(A,B) the set of arrows with domain A
and codomainB, and composition is denoted by “;” and in diagrammatic order. The category of sets
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(as objects) and functions (as arrows) is denoted by Set, and CAT is the category of all categories.1

The opposite of a category C (obtained by reversing the arrows of C) is denoted Cop.
Given a functor U : C′ → C, for any object A ∈ |C|, the comma category A/U has arrows

f : A → U(B) as objects (sometimes denoted as (f,B)) and h ∈ C′(B,B′) with f ;U(h) = f ′ as
arrows (f,B) → (f ′, B′).

A
f //

f ′
$$J

JJJJJJJJJ U(B)

U(h)

��
U(B′)

When C = C′ and U is the identity functor the category A/U is denoted by A/C.
A J-(co)limit in a category C is a (co)limit of a functor J → C. When J are directed partial

orders, respectively total orders, the J-colimits are called directed colimits, respectively inductive
colimits.

A functor L : J ′ → J is called final if for each object j ∈ |J | the comma category j/L is
non-empty and connected. Consequently, a subcategory J ′ ⊆ J is final when the corresponding
inclusion functor is final. Let us recall the following important result.

Theorem 1 [30] For each final functor L : J ′ → J and each functor D : J → C, there exists a
colimit µ : D ⇒ Colim(D) and a canonical isomorphism h : Colim(L;D) → Colim(D) when
a colimit µ′ : L;D ⇒ Colim(L;D) exists.

A class of arrows S ⊆ C in a category C is stable under pushouts if for any pushout square in C

• u //

��

•

��
•

u′
// •

u′ ∈ S whenever u ∈ S.
Given a class D ⊆ C of arrows, which is closed under isomorphisms, an objectB is a D-quotient

representation ofA is there exists an arrow (A //B ) ∈ D. A D-quotient ofA is an isomorphism
class of D-quotient representations of A. C is D-co-well-powered when for each object A, the D-
quotients of A form a set.

A standard categorical approach to finiteness is provided by the concept of finitely presented
object.

Definition 1 An object A in a category C is finitely presented [1] if and only if the hom-functor
C(A,−) : C → Set preserves directed colimits.

For example a set is finitely presented (as object of Set) if and only if it is finite.

Definition 2 In any category C, for any ordinal λ, a λ-chain is a commutative λ-diagram (Ai
fi,j //Aj )i<j≤λ

such that for each limit ordinal ζ ≤ λ, (fi,ζ)i<ζ is the colimit of (fi,j)i<j<ζ .
For any class of arrows D ⊆ C, a (λ,D)-chain is any λ-chain (fi,j)i<j≤λ such that fi,i+1 ∈ D

for each i < λ.
We say that an arrow h is a (λ,D)-chain if there exists a (λ,D)-chain (fi,j)i<j≤λ such that

h = f0,λ. In that case we may denote fi,j by hi,j , for any i < j ≤ λ.

1 Strictly speaking, this is only a hyper-category living in a higher set-theoretic universe.
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2.2 Institutions

An institution I = (SigI ,SenI ,ModI , |=I) consists of

1. a category SigI , whose objects are called signatures,
2. a functor SenI : SigI → Set, giving for each signature a set whose elements are called sentences

over that signature,
3. a functor ModI : (SigI)op → CAT giving for each signature Σ a category whose objects are

called Σ-models, and whose arrows are called Σ-(model) morphisms, and
4. a relation |=I

Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI |, called Σ-satisfaction,

such that for each morphism ϕ : Σ → Σ′ in SigI , the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ). We denote the reduct functor ModI(ϕ) by
�ϕ and the sentence translation SenI(ϕ) by ϕ( ). When M = M ′�ϕ we say that M is a ϕ-reduct

of M ′, and that M ′ is a ϕ-expansion of M . When there is no danger of ambiguity, we may skip the
superscripts from the notations of the entities of the institution; for example SigI may be simply
denoted Sig.
General assumption: We assume that all our institutions are such that satisfaction is invariant under
model isomorphism, i.e. if Σ-models M,M ′ are isomorphic, denoted M ∼= M ′, then M |=Σ ρ iff
M ′ |=Σ ρ for all Σ-sentences ρ.

Example 1 Let FOL be the institution of first order logic with equality in its many sorted form.
Its signatures are triples (S, F, P ) consisting of

– a set of sort symbols S,
– a family F = {Fw→s | w ∈ S∗, s ∈ S} of sets of function symbols indexed by arities (for the

arguments) and sorts (for the results), and
– a family P = {Pw | w ∈ S∗} of sets of relation (predicate) symbols indexed by arities.

Signature morphisms map the three components in a compatible way. This means that a signature
morphism ϕ : (S, F, P ) → (S′, F ′, P ′) consists of

– a function ϕst : S → S′,
– a family of functions ϕop = {ϕop

w→s : Fw→s → F ′
ϕst(w)→ϕst(s) | w ∈ S∗, s ∈ S}, and

– a family of functions ϕrl = {ϕrl
w→s : Pw → P ′

ϕst(w) | w ∈ S∗, s ∈ S}.

Models M for a signature (S, F, P ) are first order structures interpreting each sort symbol s as
a set Ms, each function symbol σ as a function Mσ from the product of the interpretations of the
argument sorts to the interpretation of the result sort, and each relation symbol π as a subset Mπ

of the product of the interpretations of the argument sorts. In order to avoid the existence of empty
interpretations of the sorts, which may complicate unnecessarily our presentation, we assume that
each signature has at least one constant (i.e. function symbol with empty arity) for each sort. A
model homomorphism h : M → M ′ is an indexed family of functions {hs : Ms → M ′

s}s∈S such
that

– h is an F -algebra homomorphism M → M ′, i.e., hs(Mσ(m)) = M ′
σ(hw(m)) for each σ ∈

Fw→s and each m ∈Mw, and
– hw(m) ∈M ′

π if m ∈Mπ (i.e. hw(Mπ) ⊆M ′
π) for each relation π ∈ Pw and each m ∈Mw.

where hw : Mw → M ′
w is the canonical component-wise extension of h, i.e. hw(m1, . . . ,mn) =

(hs1(m1), . . . , hsn(mn)) forw = s1 . . . sn andmi ∈Msi . A model homomorphism is closed when
Mπ = h−1

w (M ′
π) for each relation symbol π ∈ Pw.
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For each signature morphism ϕ, the reductM ′�ϕ of a modelM ′ is defined by (M ′�ϕ)x = M ′
ϕ(x)

for each sort, function, or relation symbol x from the domain signature of ϕ.
Sentences are the usual first order sentences built from equational and relational atoms by it-

erative application of Boolean connectives and quantifiers. Sentence translations along signature
morphisms just rename the sorts, function, and relation symbols according to the respective signa-
ture morphisms. They can be formally defined by induction on the structure of the sentences. While
the induction step is straightforward for the case of the Boolean connectives it needs a bit of attention
for the case of the quantifiers. For any signature morphism ϕ : (S, F, P ) → (S′, F ′, P ′),

SenFOL(ϕ)((∀X)ρ) = (∀Xϕ)SenFOL(ϕ′)(ρ)

for each finite set X of variables for (S, F, P ). The variables need to be disjoint from the constants
of the signature, also we have to ensure that SenFOL thus defined is functorial indeed and that there
is no overloading of variables (which in certain situations would cause a failure of the Satisfaction
Condition). These may be formally achieved by considering that a variable for (S, F, P ) is a triple
of the form (x, s, (S, F, P )) where x is the name of the variable and s ∈ S is the sort of the
variable and that two different variables in X have different names. Then we let (S, F +X,P ) be
the extension of (S, F, P ) such that (F +X)w→s = Fw→s when w is non-empty and (F +X)→s =
F→s∪{(x, s, (S, F, P )) | (x, s, (S, F, P )) ∈ X} and we letϕ′ : (S, F+X,P ) → (S′, F ′+Xϕ, P ′)
be the canonical extension of ϕ that maps each variable (x, s, (S, F, P )) to (x, ϕ(s), (S′, F ′, P ′)).

The satisfaction of sentences by models is the usual Tarskian satisfaction defined inductively on
the structure of the sentences.

An universal Horn sentence in FOL for a first order signature (S, F, P ) is a sentence of the
form (∀X)(H ⇒ C), where H is a finite conjunction of (relational or equational) atoms and C is
a (relational of equational) atom, and H ⇒ C is the implication of C by H . The ‘sub-institution’
HCL, Horn clause logic, of FOL has the same signature category and model functor as FOL but
only universal Horn sentences as sentences.

An algebraic signature (S, F ) is just a FOL signature without relation symbols. The ‘sub-
institution’ of HCL which restricts the signatures only to the algebraic ones and the sentences to
universally quantified equations is called equational logic and is denoted by EQL.

Example 2 Here we consider the institution PA of partial algebra as employed by the specification
language CASL [3].

A partial algebraic signature is a tuple (S, TF, PF ), where TF is a family of sets of total function
symbols and PF is a family of sets of partial function symbols such that TFw→s ∩ PFw→s = ∅ for
each arity w and each sort s. In order to avoid empty carriers, like in the case of FOL, we assume
there exists at least one total constant for each sort. Signature morphisms map the three components
in a compatible way.

A partial algebra is just like an ordinary algebra (i.e. a FOL model without relations) but inter-
preting the function symbols of PF as partial rather than total functions. A partial algebra homomor-
phism h : A → B is a family of (total) functions {hs : As → Bs}s∈S indexed by the set of sorts S
of the signature such that hs(Aσ(a)) = Bσ(hw(a)) for each function symbol σ ∈ TFw→s∪PFw→s

and each string of arguments a ∈ Aw for which Aσ(a) is defined.
The sentences have three kinds of atoms: definedness def(t), strong equality t s= t′, and existence

equality t e= t′. The definedness def(t) of a term t holds in a partial algebraAwhen the interpretation
At of t is defined. The strong equality t s= t′ holds when both terms are undefined or both of them
are defined and are equal. The existence equality t e= t′ holds when both terms are defined and are
equal.2 The sentences are formed from these atoms by Boolean connectives and quantifications over
total variables (i.e variables that are always defined).

2 Notice that def(t) is equivalent to t
e
= t and that t

s
= t′ is equivalent to (t

e
= t′) ∨ (¬def(t) ∧ ¬def(t′)).
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Example 3 Preordered algebras are used for formal specification and verifications of algorithms
[18], for automatic generation of case analysis [18], and in general about reasoning about transitions
between states of systems. They constitute an unlabeled form of rewriting logic of [32]. Let POA
denote the institution of preordered algebras.

The signatures are just ordinary algebraic signatures. The POA models are preordered algebras
which are interpretations of the signatures into the category of preorders Pre rather than the category
of sets Set. This means that each sort gets interpreted as a preorder, and each function symbol as a
monotonic function. A preordered algebra homomorphism is just a family of monotonic functions
which is an algebra homomorphism.

The sentences have two kinds of atoms: (ordinary) equations and preorder atoms. A preorder
atom t ≤ t′ is satisfied by a preordered model M when the interpretations of the terms are in the
preorder relation of the carrier, i.e. Mt ≤ Mt′ . The sentences are formed from these atoms by
Boolean connectives and quantifications over variables.

Other examples of institutions in use in computing science include higher-order [5], polymor-
phic [39], various modal logics such as temporal [20], process [20], behavioral [4], coalgebraic [7],
object-oriented [22], and multi-algebraic (non-determinism) [29] logics.

For any signature Σ in an institution I:

– For each set E of Σ-sentences, let E∗ = {M ∈ Mod(Σ) |M |=Σ e for each e ∈ E}, and
– For each class M of Σ-models, let M∗ = {e ∈ Sen(Σ) |M |=Σ e for each M ∈ M}.

For an individual sentence or model x, by x∗ we mean {x}∗.
If E and E′ are sets of sentences of the same signature, then E′ ⊆ E∗∗ is denoted by E |= E′.
Two sentences, ρ1 and ρ2 of the same signature are semantically equivalent, denoted |=| when

ρ1 |= ρ2 and ρ2 |= ρ1. Two models, M1 and M2 of the same signature are elementarily equivalent,
denoted M1 ≡M2, when they satisfy the same sentences, i.e. {M1}∗ = {M2}∗.

Definition 3 [16] In any institution aΣ-sentence ρ is finitary if and only if it can be written as ϕ(ρ0)
where ϕ : Σ0 → Σ is a signature morphism such that Σ0 is a finitely presented signature and ρ0 is
a Σ0-sentence.

An institution has finitary sentences when all its sentences are finitary.

The above concept is a categorical expression of the fact that sentences contain only a finite number
of symbols. FOL, PA, POA are all examples of institutions with finitary sentences. For example
in FOL, a signature (S, F, P ) is finitely presented if and only if S, F , and P are finite. (Here F
‘finite’ means that {(w, s) | Fw→s 6= ∅} is finite and each Fw→s is also finite, and analogously for
P .) Consequently, it is obvious that FOL has finitary sentences.

2.3 Model amalgamation, Elementary diagrams, Internal logic

The rest of this preliminary section is devoted to a brief overview of some of the fundamental con-
cepts and methods in institution-independent model theory.

2.3.1 Model amalgamation

Exactness properties for institutions formalize the possibility of amalgamating models of different
signatures when they are consistent on some kind of ‘intersection’ of the signatures (formalized as a
pushout square). An institution I is exact if and only if the model functor ModI : (SigI)op → CAT
preserves finite limits. The institution is semi-exact if and only if ModI preserves pullbacks.

Semi-exactness is everywhere. Virtually all institutions formalizing conventional or non-conventional
logics are at least semi-exact. In general the institutions of many-sorted logics are exact, while those
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of unsorted (or one-sorted) logics are only semi-exact [19]. However, in applications the important
amalgamation property is the semi-exactness rather than the full exactness. Moreover, in practice
often the weak3 version of exactness suffices [10,44,34].

The following amalgamation property is a direct consequence of semi-exactness. The commut-
ing square of signature morphisms

Σ
ϕ1 //

ϕ2

��

Σ1

θ1

��
Σ2

θ2

// Σ′

is an amalgamation square if and only if for each Σ1-model M1 and a Σ2-model M2 such that
M1�ϕ1 = M2�ϕ2 , there exists an unique Σ′-model M ′, denoted M1 ⊗ϕ1,ϕ2 M2, such that M ′�θ1 =
M1 and M ′�θ2 = M2. When there is no danger of confusion we denote M1 ⊗ϕ1,ϕ2 M2 by the
simpler notation M1⊗M2. We can notice easily that in a semi-exact institution each pushout square
of signature morphisms is an amalgamation square.

More generally, for J small category, an institution is J-exact when ModI maps J-colimits of
signatures to corresponding limits of categories of models. In particular, an institution is directed/inductive-
exact when Mod maps directed/inductive colimits of signatures to corresponding limits of categories
of models.

2.3.2 The method of diagrams

The method of diagrams is one of the most important conventional model theoretic methods. At the
level of institution-independent model theory, cf. [12] this is reflected as a categorical property which
formalizes the idea that the class of model morphisms from a model M can be represented (by a
natural isomorphism) as a class of models of a theory in a signature extending the original signature
with syntactic entities determined by M . Elementary diagrams can be seen as a coherence property
between the semantic structure and the syntactic structure of an institution. By following the basic
principle that a structure is rather defined by its homomorphisms (arrows) than by its objects, the
semantical structure of an institution is given by its model homomorphisms. On the other hand the
syntactical structure of an institution is essentially determined by its atomic sentences.

According to [12], an institution I has elementary diagrams when for each signatureΣ and each
Σ-model M , there exists a signature ΣM and a signature morphism ιΣ(M) : Σ → ΣM , functorial
in Σ and M , and a set EM of ΣM -sentences such that Mod(ΣM , EM ) and the comma category
M/Mod(Σ) are naturally isomorphic, i.e. the following diagram commutes by the isomorphism
iΣ,M that is natural in Σ and M .

Mod(ΣM , EM )
iΣ,M //

Mod(ιΣ(M)) ((QQQQQQQQQQQQ
(M/Mod(Σ))

forgetful
��

Mod(Σ)

The “functoriality” of ι means that for each signature morphism ϕ : Σ → Σ′ and each Σ-model
homomorphism h : M → M ′�ϕ, there exists a signature morphism ιϕ(h) : ΣM → Σ′

M ′ such that
EM ′ |= ιϕ(h)(EM ) and such that

Σ
ιΣ(M)//

ϕ

��

ΣM

ιϕ(h)

��
Σ′

ιΣ′ (M ′)

// Σ′
M ′

3 In the sense of ‘weak’ universal properties [30] not requiring uniqueness.
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commutes and ιϕ(h); ιϕ′(h′) = ιϕ;ϕ′(h;h′�ϕ) and ι1Σ
(1M ) = 1ΣM

.
The “naturality” of i means that for each signature morphism ϕ : Σ → Σ′ and each Σ-model

homomorphism h : M →M ′�ϕ the following diagram commutes:

Mod(ΣM , EM )
iΣ,M // M/Mod(Σ)

Mod(Σ′
M ′ , E′

M ′)
iΣ′,M′

//

Mod(ιϕ(h))

OO

M ′/Mod(Σ′)

h/Mod(ϕ)=h;(−)�ϕ

OO

The signature morphism ιΣ(M) : Σ → ΣM is called the elementary extension of Σ via M and the
set EM of ΣM -sentences is called the elementary diagram of the model M . Note that i−1

Σ,M (1M ) is
the initial model of (ΣM , EM ), which we denote as MM .

Example 4 For any (S, F, P )-model M , let (FM )→s = F→s ∪ Ms, otherwise let (FM )w→s =
Fw→s, and let MM be the (S, FM , P )-expansion of M such that Mm = m for each m ∈ M . Then
EM is the set of all (relational or equational) atoms satisfied by MM .

However, depending on the chosen concept of model homomorphism one may get other elemen-
tary diagrams for FOL. For example, when one restricts model homomorphisms to injective ones,
EM consists of all atoms and negations of atomic equations satisfied by MM , when one restricts
them to the closed ones if Mπ = h−1(Nπ) for each π ∈ P ), EM consists of all atoms and negations
of atomic relations satisfied by MM , and when one restricts them to closed injective model homo-
morphisms, EM consists of all atoms and all negations of atoms satisfied by MM . Let us recall
that an (S, F, P )-homomorphism h : M → N is an elementary embedding when N |= ρ implies
M |= ρ for each (S, F, P )-sentence ρ. When model homomorphisms are restricted to elementary
embeddings, then EM = M∗

M .

Example 5 The institution PA of partial algebras has elementary diagrams such that given a partial
algebra A, the elementary extension ι(A) of its signature via A adds its elements as total constants
and the elementary diagram EA of A consists of all existence equations satisfied by AA, where AA
is the ι(A)-expansion of A interpreting each of its elements by itself.

Example 6 POA has elementary diagrams such that given a preorder algebra M , the elementary
extension ι(M) of its signature via M adds its elements as constants and the elementary diagram
EM of M consists of all equations and preorder atoms satisfied by MM , where MM is the ι(M)-
expansion of M interpreting each of its elements by itself.

In similar ways, many other institutions either from conventional logic or from computing sci-
ence, have elementary diagrams [12,17]. The institution-independent concept of elementary dia-
grams presented above has been successfully used in a rather crucial way for developing several
results in institution-independent model theory, including (quasi-)variety theorems and existence
of free models for theories [12,17], Robinson consistency and Craig interpolation [26], Tarski el-
ementary chain theorem [25], existence of (co)limits of theory models [12], etc. A quite different
predecessor of our institution-independent method of diagrams has been used for developing quasi-
variety theorems and existence of free models within the context of the so-called ‘abstract algebraic
institutions’ [42,43].

2.3.3 Internal logic

Much of our institution-independent development of model theory relies on the possibility of defin-
ing concepts such as classical Boolean connectives, quantification, and atomic sentences internally
to any institution. The main implication of this fact is that the abstract satisfaction relation between
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models and sentences can be decomposed at the level of arbitrary institutions into several concrete
layers of satisfaction defined categorically in terms of (a simple form of) injectivity and reduction.
Essentially speaking, this is what gives depth to the institution-independent approach to model the-
ory.

Definition 4 [41,11] Given a signature Σ in an institution

- the Σ-sentence ρ′ is a (semantic) negation of ρ when ρ′∗ = |Mod(Σ)| \ ρ∗, and
- theΣ-sentence ρ′ is the (semantic) conjunction of theΣ-sentences ρ1 and ρ2 when ρ′∗ = ρ∗1∩ρ∗2.

An institution has (semantic) negation when each sentence of the institution has a negation, and
has (semantic) conjunctions when each two sentences (of the same signature) have a conjunction.
Distinguished negations are often denoted by ¬ , while distinguished conjunctions by ∧ .

Other Boolean connectives, such as disjunction (∨), implication (⇒), equivalence (⇔), etc., can
be derived as it is usually classically done from negations and (finite) conjunctions.

An institution which has negations and finite conjunctions is called a Boolean complete institu-
tion.

Fact 21 The Boolean connectives are unique modulo semantical equivalence.

Definition 5 [43,11] For any signature morphism χ : Σ → Σ′ in an arbitrary institution,

- a Σ-sentence ρ is a (semantic) existential χ-quantification of a Σ′-sentence ρ′ when ρ∗ =
(ρ′∗)�χ; in this case we may write ρ as (∃χ)ρ′,

- a Σ-sentence ρ is a (semantic) universal χ-quantification of a Σ′-sentence ρ′ when ρ∗ =
|Mod(Σ) \ (|Mod(Σ′)| \ ρ′∗)�χ; in this case we may write ρ as (∀χ)ρ′.

For a class D ⊆ Sig of signature morphisms, we say that the institution has universal/existential
D-quantification when for each χ : Σ → Σ′ in D, each Σ′-sentence has a universal/existential
χ-quantification.

Example 7 FOL has D-quantifications for the class D of the injective signature extensions with a
finite number of constants, which means the class of the signature morphisms χ : Σ → Σ′ that are
injective in all components and such that Σ′ has only constants outside the image of ϕ.

Let χ : Σ → Σ′ be a signature morphism as above and let ρ′ be a Σ′-sentence. Then (∀χ)ρ′ is
theΣ sentence defined as follows. There exists a signature extension χ′ : Σ → Σ′′ ofΣ with a finite
set of variablesX such that there exists an isomorphism of signatures (i.e. bijective component-wise)
θ : Σ′ → Σ′′ with χ; θ = χ′. We define (∀χ)ρ′ as the FOL-sentence (∀X)θ(ρ′). The same kind of
argument applies also to existential quantifications in FOL.

PA has D-quantification for D the class of the injective signature extensions with a finite number
of total constants, while POA has quantification similar to FOL.

Second order quantification can be captured by taking D to be the class of the injective signature
morphisms.

Note that all the classes D of signature morphisms introduced in this example enjoy properties
such as closure under composition, under isomorphisms, and stability under pushouts.

2.3.4 Finitary, small, quasi-representable signature morphisms

In many actual institutions, quantifications are done via signature extensions with a finite number
of constants. The following definition generalizes this situation to signature morphisms in arbitrary
institutions, and further to infinite cardinalities.
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Definition 6 A signature morphism χ : Σ → Σ′ is finitary when for each co-limit (µi)i∈I of a
directed diagram (fi,j)(i<j)∈(I,≤) of Σ-models

Ai

µi ��7
77

77
7

fi,j // Aj

µj����
��

�

A

and for each χ-expansion A′ of A
– there exists an index i ∈ I and a χ-expansion µ′

i : A
′
i → A′ of µi, and

– any two different expansions as above can be ‘unified’ in the sense that for any χ-expansions
µ′
i and µ′

k as above there exists an index j ∈ I with i, k < j, a χ-expansion µ′
j as above and

f ′i,j , f
′
k,j χ-expansions of fi,j , fk,j such that the following commutes

A′
i

f ′
i,j //

µ′
i   @

@@
@@

@@
@

A′
j

µ′
j

��

A′
k

f ′
k,joo

µ′
k~~}}

}}
}}

}}

A′

A signature morphism Σ
ϕ //Σ′ is λ-small for a cardinal λwhen for each λ-chain (Mi

fi,j //Mj )i<j≤λ

of Σ-homomorphisms and each M ′ a ϕ-expansion of Mλ, there exists i < λ and M ′
i

f ′
i,λ //M ′ a

ϕ-expansion of fi,λ.

Fact 22 Finitary signature morphisms are λ-small for each infinite cardinal λ.

The concept of quasi-representable signature morphisms defined below are a slight weakening
of the concept of representable signature morphisms introduced in [11] which capture the signature
extensions with constants in an abstract categorical manner.

Definition 7 [17,25] In any institution, a signature morphism χ : Σ → Σ′ is quasi-representable
when for each Σ′-model M ′, the canonical functor below determined by the reduct functor Mod(χ)
is an isomorphism (of comma categories)

M ′/Mod(Σ′) ∼= (M ′�χ)/Mod(Σ).

Example 8 Usual first order variables in actual standard institutions such as FOL, PA, POA, but
also in institutions such as E(FOL), the restriction of FOL allowing only elementary embeddings
as model homomorphisms, as captured by the classes D of signature morphisms of Ex. 5, provide
examples of quasi-representable signature morphisms. However, this concept accommodates also
other less conventional types of variables (see [17]).

The proof of Propositions 1 and 2 below are given in the appendix.

Proposition 1 All model reduct functors corresponding to quasi-representable signature morphisms
create directed colimits of models.

The following shows some important structural properties of quasi-representability.

Proposition 2
1. In any institution the (finitary) quasi-representable signature morphisms form a subcategory of

Sig.
2. If the institution is semi-exact, then quasi-representable signature morphisms are stable under

pushouts.
3. If the institution is directed-exact, then any directed colimit of quasi-representable signature

morphisms consists of quasi-representable signature morphisms.
4. If ϕ and ϕ;χ are quasi-representable then χ is quasi-representable.
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3 Saturated Models: existence

Definition 8 For each signature morphism χ : Σ → Σ′, a Σ-model M χ-realizes a set E′ of Σ′-
sentences, if there exists a χ-expansion M ′ of M which satisfies E′. It χ-realizes finitely E′ if it
realizes every finite subset of E′.

A Σ-model M is (λ,D)-saturated for λ a cardinal and D a class of signature morphisms when

for each ordinal α < λ and each (α,D)-chain (Σi
ϕi,j //Σj )i<j≤α with Σ0 = Σ, for each

(Σα
χ //Σ′ ) ∈ D, each ϕ0,α-expansion of M χ-realizes any set of sentences if and only if it

χ-realizes it finitely.

Example 9 The conventional concept of saturated model (see Sect. 5.1 of [6]) is an instance of Dfn.
8 by taking D to be the class of FOL injective signature extensions with one constant. Note than one
reaches the same when replacing ‘one constant’ by ‘finite number of constants’. The latter variant
for D has better structural properties, such as closure under composition.

Fact 31 Let D be the class of FOL injective signature extensions with a finite number of constants,
and let λ be an infinite cardinal. For each (λ,D)-saturated model M and for each sort s, if Ms is
infinite then card(Ms) ≥ λ.

Proof Let Σ be the (FOL) signature of M . Let us assume that card(Ms) < λ for some sort s
for which Ms is infinite. Then we take one (card(Ms),D)-chain given by the signature extension
with constants Σ ↪→ Σ ] Ms, and let χ be the extension of Σ ] Ms with one new constant x.
Consider E = {x 6= m | m ∈ Ms}. Then the (Σ ]Ms)-expansion M ′ of M such that M ′

m = m
for each m ∈ Ms, finitely realizes E but does not realize E, which contradicts the fact that M is
(λ,D)-saturated.

The following result shows that each model can be elementarily ‘extended’ into a saturated
model, thus giving the existence of saturated models. This existence result comes up with a set of
merely technical conditions, which can be rather easily established in the concrete examples, and
that are sufficient to lift the only fundamental assumption, namely the 5th condition of Thm. 2,
through (λ,D)-chains. This core condition can be regarded as a form of compactness.

Theorem 2 Consider an institution and a class D of signature morphisms that is closed under
compositions with isomorphisms and such that

1. M ≡ N if there exists a model homomorphism M → N ,
2. it has finite conjunctions and existential D-quantifications,
3. it has inductive colimits of signatures and is inductive-exact,
4. for each signature Σ, the category of Σ-models has inductive colimits,

5. for each signature morphism Σ
χ //Σ′ ∈ D and E′ set of Σ′-sentences, if A realizes E′

finitely then there exists a model homomorphism A→ B such that B realizes E′,

6. for each signature morphism Σ
χ //Σ′ ∈ D and each Σ-model M , the class of χ-expansions

of M form a set, and
7. each signature morphism from D is quasi-representable, the category Sig of signatures is D-co-

well-powered, and for each ordinal λ there exists a cardinal α such that each morphism that is
a (λ,D)-chain is α-small.

Then for any cardinal λ and for each Σ-model M there exists a Σ-homomorphism M → N such
that N is (λ,D)-saturated.

Proof First we prove that there exists a Σ-homomorphism M
h //N such that for each (λ,D)-

chain Σ
ϕ //Σ′ , each (Σ′ χ //Σ′′ ) ∈ D, each ϕ-expansion M ′ of M , and each set E′′ of Σ′′-

sentences realized finitely by M ′, N ′ χ-realizes E′′, where M ′ h′
//N ′ is the unique ϕ-expansion
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of h. (The existence of h′ is guaranteed by the fact that ϕ is quasi-representable, which follows
by ordinal induction from the condition that all signature morphisms in D are quasi-representable
and that the institution is inductive-exact, by applying Prop. 2 [for inductive colimits rather than the
more general directed colimits].)

Σ

ϕ

��

M
h // N

Σ′

χ

��

M ′ h′
// N ′

Σ′′ M ′′ h′′
// N ′′

For fixed Σ and M , by (ϕ,M ′, χ, E′′) let us denote tuples where Σ
ϕ //Σ′ is a (λ,D)-chain,

M ′ is a ϕ-expansion of M , (Σ′ χ //Σ′′ ) ∈ D, and E′′ is a set of Σ′′-sentences which is χ-
realized finitely by M ′. Two such tuples (ϕ1,M ′1, χ1, E1) and (ϕ2,M ′2, χ2, E2) are isomorphic
when there exists an isomorphism θ : ϕ1;χ1 ⇒ ϕ2;χ2 of (λ+ 1)-chains

Σ = Σ1
0 . . .

//

1Σ=θ0

��

. . . Σ1
i

ϕ1
i,j //

θi

��

Σ1
j

θj

��

// . . . // Σ1
λ = Σ′1 χ1

//

θλ=θ′

��

Σ′′1

θ′′

��
Σ = Σ2

0 . . .
// . . . Σ2

i
ϕ2

i,j

// Σ2
j

// . . . // Σ2
λ = Σ′2

χ2
// Σ′′2

such that M ′2�θ′ = M ′1 and θ′′(E1) = E2. By the conditions of the theorem (Sig being D-co-
well-powered and all χ-expansions of a model forming a set), the isomorphism classes of tuples
(ϕ,M ′, χ, E′′) form a set, let us denote it by L(M). If k is the cardinal of L(M), we may consider
{(ϕi,M ′i, χi, Ei) | i < k} a complete system of independent representatives for L(M).

Now, by ordinal induction we construct a chain of Σ-homomorphisms (Mi

hi,j //Mj )i<j≤k as
follows:

– M0 = M ,

– for each successor ordinal j+ 1 let M ′j
h′
0,j //M ′

j be the unique ϕj-expansion of M
h0,j //Mj .

Because M ′j χj-realizes Ej finitely, we have that M ′
j χ

j-realizes Ej finitely too. By condition

5., there exists M ′
j

f ′
//P ′ such that P ′ χj-realizes Ej . Then we define Mj+1 = P ′�ϕj and

hj,j+1 = f ′�ϕj , and
– for each limit ordinal j we take the colimit of the chain before j.

Let N = Mk and h = h0,k. Keeping above notations, consider (ϕ,M ′, χ, E′′). If j < k is the iso-
morphism class of (ϕ,M ′, χ, E′′), we may assume without any loss of generality that (ϕ,M ′, χ, E′′) =
(ϕj ,M ′j , χj , Ej). We have to show that N ′ χj-realizes Ej .

This holds because we have that M ′
j+1 χ

j-realizes Ej (where M ′
j+1 is the unique ϕj-expansion

of Mj+1 determined by M ′j�ϕj = M
h0,j+1//Mj+1 .). Let M ′′

j+1 be a χj-expansion of M ′
j+1 such

that M ′′
j+1 |= Ej . Because M ′′

j+1

h′′
j+1,k //N ′′ , the unique (ϕj ;χj)-expansion of hj+1,k, preserves

satisfaction N ′′ |= Ej , hence N ′ χj-realizes Ej .
In the second part of the proof we assume the conclusion of the first part and consider a cardinal α

such that each (λ,D)-chain isα-small. By ordinal induction we construct aα-chain (Ni
fi,j //Nj )i<j≤α
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such that N0 = M and each fj,j+1 has the property of h above. We want to show that Nα is (λ,D)-

saturated, therefore the desired model homomorphism is M
f0,α //Nα .

Assume N ′
α χ-realizes E′′ finitely, where (ϕ,N ′

α, χ, E
′′) ∈ L(Nα). We have to prove that N ′

α

χ-realizes E′′. Because ϕ is α-small, there exists j < α and N ′
j

f ′
j,α //N ′

α a ϕ-expansion of fj,α.

By quasi-representability this determines expansions N ′
j

f ′
j,j+1//N ′

j+1 and N ′
j+1

f ′
j+1,α //N ′

α . Notice
that by conditions 1. and 2., N ′

j χ-realizes finitely E′′ because N ′
α does. Recall that fj,j+1 has

the property of h from the first part of the proof therefore we have that N ′
j+1 χ-realizes E′′. Let

N ′′
j+1 be χ-expansion of N ′

j+1 such that N ′′
j+1 |= E′′. By quasi-representability we lift f ′j+1,α to

N ′′
j+1

f ′′
j+1,α //N ′′

α and because model homomorphisms preserve satisfaction we get that N ′′
α |= E′′.

Hence N ′
α χ-realizes E′′.

In the following we discuss the applicability of Thm. 2 by making an analysis of its underlying
conditions, with special emphasis on the emblematic example of FOL. In the case of FOL the con-
clusion of Thm. 2 can be drawn indirectly through the respective conclusion for its more convenient
technically sub-institution FOL′ that restricts the signature morphisms to the injective extensions
with constants and the model homomorphisms to the elementary embeddings. The same may be
done for other concrete institutions too.

Condition 1. In FOL′ this holds by default because all FOL′-model homomorphisms are ele-
mentary embeddings.

Condition 3. The existence of inductive colimits of signatures actually implies that we have
to allow infinitely large signatures. Note that we have not imposed any finiteness condition on the
signature in any of our examples. With regard to the actual condition on FOL′ signature morphisms,
this is rather straightforward.

The inductive-exactness property on models is also a straightforward property in actual institu-
tions, being just a special case of exactness. It is however a bit more delicate on model homomor-
phisms because in FOL′ the model homomorphisms are elementary. Luckily, we can transfer the
inductive-exactness property on model homomorphisms from FOL to FOL′. Thus let us consider
a chain (ϕi,j)i<j≤λ of FOL′ signature morphisms and a family of FOL-model homomorphisms
(hi)i≤λ such that hj�ϕi,j = hi for i < j. We have to establish that hλ is elementary embedding
whenever hi is elementary embedding for each i < λ. The elementarity of hλ follows trivially
because it is an expansion of any hi along an injective signature extension with constants.

Condition 4. Because we work within the sub-institution of the elementary embeddings, this
condition is fullfilled by Tarski’s Elementary Chain Theorem, which has also received an institution-
independent generalization in [25].

Condition 5. This is the single crucial condition of Thm. 2 and can be regarded as a form of
compactness. For each finite i ⊆ E, let Ai be the χ-expansion of A such that Ai |= i. Recall
a well known compactness result in FOL stating that there exists an ultrafilter U on Pω(E) (the
set of the finite subsets of E) such that (the ultraproduct corresponding to U )

∏
U Ai |= E. Then∏

U Ai�χ =
∏
U A. Also, we know thatA can be elementarily embedded into the ultrapower

∏
U A,

which shows the condition for FOL′.
The same argument can be invoked when the role of FOL is played by any other Łoś institution

([11]; see also Dfn. 11 below) such that signature morphisms preserve filtered products.
Condition 6. This is evidently fullfilled in any institution where models consist of interpretations

of the symbols of the signatures in set theoretic universes, for those signature morphisms which do
not add new sorts. Note that this is obviously fullfilled by the FOL injective signature extensions
with constants.

Condition 7. Since FOL′ signature morphisms are injective signature extensions with constants,
all signature morphisms are quasi-representable. Let D be the class of finitary injective signature
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extensions with constants. For each signature Σ, there exists only a set of isomorphism classes of
finitary injective extensions of Σ with constants, hence D is co-well-powered. For each ordinal λ,
each (λ,D)-chain is λ+-small, where λ+ denotes the least cardinal strictly then λ. This is a special
case of the following general result, whose proof is exiled to the appendix:

Proposition 3 In any inductive-exact institution if each signature morphism of D is finitary and
quasi-representable, then for each infinite ordinal λ, each (λ,D)-chain of signature morphisms is
λ+-small.

Based on above analysis of the conditions underlying Thm. 2 we obtain the following conven-
tional FOL corollary together with similar corollaries for other institutions:

Corollary 1 In FOL and POA let D be the class of signature extensions with a finite number of
constants. In PA let D be the class of the injective signature extensions with a finite number of total
constants.

Then for each cardinal λ, each FOL/POA/PA model can be embedded elementarily into a
(λ,D)-saturated model.

Although the hypotheses of the existence Thm. 2 require existential quantifiers and conjunctions,
existence of saturated models can be easily extended to sub-institutions with much less expressive
power of sentences.

Corollary 2 In EQL, HCL, each model can be ‘elementarily embedded’ into a (λ,D)-saturated
model for each cardinal λ and for the usual D consisting of the injective signature extensions with
a finite number of constants.

Proof LetM be a model in EQL or in HCL and consider a FOL elementary embedding M h //N
such that N is (λ,D)-saturated in FOL. It is easy to notice that N is (λ,D)-saturated in EQL and
HCL too. MoreoverM ≡ N in EQL and HCL because they are elementarily equivalent in FOL.
Since EQL and HCL do not make any restrictions on FOL model homomorphisms, we have that

M
h //N is a model homomorphism also in EQL and HCL,M ≡ N , andN is (λ,D)-saturated.

4 Saturated Models: uniqueness

Definition 9 The elementary diagrams ι of an institution are simple when for each signature Σ
and all Σ-models A,B, for each ιΣ(B)-expansion A′ of A, the following is a pushout square of
signature morphisms.

Σ
ιΣ(B) //

ιΣ(A)

��

ΣB

ιΣB
(A′)

��
ΣA

ιιΣ(B)(1A)
// (ΣB)A′

Example 10 It is easy to note that in actual examples, those elementary diagrams such that their
elementary extensions just add the elements of the model as new constants to its signature, like in
FOL, PA, POA etc., are simple because the above diagram is in fact a diagram of the form

Σ //

��

Σ ] |B|

��
Σ ] |A| // Σ ] |B| ] |A|
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where |A| and |B| denote the sets of elements of (the carriers of) A and B and ] denotes the
disjoint union of sets.

Definition 10 Let M be a model in an institution with elementary diagrams ι. For any cardinal
number λ, we say that M has D-size λ when ιΣ(M) = ϕ0,λ for some (λ,D)-chain (ϕi,j)i<j≤λ.

Note that the concept of ‘size’ introduced by Dfn. 10 above is a relation between models and
cardinals rather than a function from models to cardinals.

Example 11 If we take D to be the class of FOL finite injective extensions of signatures with
constants, a FOL model M has D-size card(|M |), the cardinality of its set |M | of elements
(|M | = ∪s∈SMs where S is the set of the sorts of Σ). On the other hand, if M has D-size
λ, then card(|M |) ≤ λ, therefore we can conclude that a model M has D-size λ if and only if
card(|M |) ≤ λ. By Fact 31 we can further establish the following:

Corollary 3 For any infinite cardinal λ, for each λ-saturated FOL model M of size λ such that
Ms is infinite for at least one sort, card(|M |) = λ.

Theorem 3 Assume that the institution

1. has pushouts and inductive colimits of signatures,
2. is semi-exact and inductive-exact on models,
3. has simple elementary diagrams ι,
4. has existential D-quantification for a (sub)category D of signature morphisms which is stable

under pushouts,
5. has negations and finite conjunctions, and
6. has finitary sentences.

Then any two elementary equivalent (λ,D)-saturated Σ-models of D-size λ are isomorphic.

Proof Let M,N be Σ-models satisfying the hypotheses of the theorem. We consider a pushout of
signature morphisms as follows:

Σ
ιΣ(M) //

ιΣ(N)

��

ΣM

φM

��
ΣN

φN

// Σ′′

and construct elementarily equivalent Σ′′-expansions, M ′′ of MM and N ′′ of NN .
Suppose we have already constructed M ′′ and N ′′. Let M ′ = M ′′�φN

and N ′ = N ′′�φM
.

Because the elementary diagrams are simple and pushouts are unique up to isomorphisms, we may
assume without any loss of generality thatΣ′′ = (ΣN )M ′ , φM = ιιΣ(N)(1M ) and φN = ιΣN

(M ′).
Because M ′

M ′�φN
= M ′ and M ′

M ′�φM
= MM (which follows from the naturality of i and be-

cause M ′
M ′ = i−1

ΣN ,M ′(1M ′) and MM = i−1
Σ,M (1M )), by the uniqueness part of the semi-exactness

we get that M ′′ = M ′
M ′ .

But N ′′ |= EM ′ (because M ′′ ≡ N ′′), hence we get a model homomorphism h : M ′′ → N ′′.
Similarly we get another Σ′′-homomorphism h′ : N ′′ → M ′′. By the initiality of M ′′ and N ′′ we
have that h;h′ = 1M ′′ and h′;h = 1N ′′ . Thus we have that M ′′ ∼= N ′′, hence by reduction to Σ we
obtain also that M ∼= N , which proves the theorem.

Now let us come back to the construction ofM ′′ andN ′′. Since bothM andN have the same D-

size λ, ιΣ(M) = ϕ0,λ
M and ιΣ(N) = ϕ0,λ

N where (Σi
M

ϕi,j
M //Σj

M
)i<j≤λ and (Σi

N

ϕi,j
N //Σj

N
)i<j≤λ

are (λ,D)-chains of signature morphisms.

By ordinal induction we define another (λ,D)-chain (Σi
φi,j

//Σj )i<j≤λ such that Σ0 = Σ
and for each j < λ
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- Σj
γj

M //Σ′j
M Σj+1

M

θ′j
Moo is the pushout of Σj Σj

M

θj
Moo

ϕj,j+1
M //Σj+1

M
,

- Σj
γj

N //Σ′j
N Σj+1

N

θ′j
Noo is the pushout of Σj Σj

N

θj
Noo

ϕj,j+1
N //Σj+1

N
,

- Σ′j
M

ψj
M //Σj+1 Σ′j

M

ψj
Noo is the pushout of Σ′j

M Σj
γj

Moo
γj

N //Σ′j
N

,

- θj+1
M = θ′

j
M ;ψjM and θj+1

N = θ′
j
N ;ψjN , and

- φj,j+1 = γjM ;ψjM = γjN ;ψjN

Σj+1
M

θ′j
M

""E
EE

EE
EE

E

Σj
M

ϕj,j+1
M

==zzzzzzzz

θj
M

""E
EE

EE
EE

E
Σ′j

M
ψj

M

""F
FFFFFFF

Σ

ϕ0,j
M

>>}}}}}}}}

ϕ0,j
N   A

AA
AA

AA
A Σj

φj,j+1
//

γj
M

<<xxxxxxxx

γj
N ""F

FFFFFFF Σj+1

Σj
N

ϕj,j+1
N !!D

DD
DD

DD
D

θj
N

<<yyyyyyyy
Σ′j

N

ψj
N

<<xxxxxxxx

Σj+1
N

θ′j
N

<<yyyyyyyy

Because D is stable under pushouts, γjM , γ
j
N , ψ

j
M , ψ

j
N ∈ D, and because D is closed under compo-

sitions, φj,j+1 = γjM ;ψjM ∈ D.

For each limit ordinal k ≤ λ, we define Σk
M

θk
M //Σk as the unique signature morphism such

that ϕi,kM ; θkM = θiM ;φi,kM for each i < k. θkN is defined similarly. Therefore θM and θN appear
as natural transformations between λ-chains, θM : ϕM ⇒ φ and θN : ϕN ⇒ φ. Let φM = θλM ,
φN = θλN , and Σ′′ = Σλ.

It is clear from the construction that for each j ≤ λ we have that Σj
M

θj
M // Σj Σj

N

θj
Noo is a

pushout for Σj
M

ϕ0,j
Moo Σ

ϕ0,j
N //Σj

N
.

In the second part of the proof, by ordinal induction we define for each j ≤ λ, Σj-models
M j ≡ N j such that M j�φi,j = M i, N j�φi,j = N i for each i ≤ j, and M j�θj

M
= MM �ϕi,j

M
and

N j�θj
N

= NN �ϕi,j
N

, as follows:

- M0 = M and N0 = N ,
- for each successor ordinal j + 1 let M ′j be the (unique) amalgamation MM�ϕj+1,λ

M
⊗ M j .

For each finite E′ ⊆ (M ′j)∗, we have that M j |= (∃γjM ) ∧ E′ (which is a sentence of the
institution because the institution has finite conjunctions and existential D-quantification and
γjM ∈ D). Because M j ≡ N j we deduce that N j |= (∃γjM ) ∧ E′. Because N is λ-saturated,
(φi,k)0≤i<k≤j is a (j,D)-chain with j < λ, γjM ∈ D, and N j�φ0,j = N , there exists a γjM -
expansionN ′j ofN j such thatN ′j |= (M ′j)∗. Because the institution has negations, this means
N ′j ≡M ′j . Now we define N j+1 to be the (unique) amalgamation NN �ϕj+1,λ

N
⊗N ′j . Like for

N ′j , but now using the saturation of M , we obtain the existence of M j+1 ≡ N j+1 such that
M j+1�ψj

M
= M ′j .
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- for each limit ordinal j, by the inductive-exactness property M j and N j are the unique Σj-
models such that M j�φi,j = M i and N j�φi,j = N i for each i < j. In order to prove M j ≡ N j ,
we use the fact that the institution has finitary sentences. For any Σj-sentence ρj there ex-
ists i < j such that ρj = φi,j(ρi) for some Σi-sentence ρi. Then by the Satisfaction Con-
dition and because M i ≡ N i, M j |= ρj iff M i |= ρi iff N i |= ρi iff N j |= ρj . That
M j�θj

M
= MM�ϕj,λ

M
and N j�θj

N
= NN�ϕj,λ

N
follow by the uniqueness part of the inductive-

exactness property by noticing that for each i < j, (M j�θj
M

)�ϕi,j
M

= (MM �ϕj,λ
M

)�ϕi,j
M

and

(N j�θj
N

)�ϕi,j
N

= (NN �ϕj,λ
N

)�ϕi,j
N

.

Finally, M ′′ is taken as Mλ and N ′′ as Nλ.

The following uniqueness property of saturated models is an immediate instance of the general
uniqueness Thm. 3.

Corollary 4 In FOL, PA, POA (with appropriate D as considered above), any two elementarily
equivalent models (λ,D)-saturated models of cardinality λ are isomorphic.

5 Saturated Ultraproducts

For this section we assume the Generalized Continuum Hypothesis,

λ+ = 2λ

for each infinite cardinal λ.
Let us also recall some cardinal arithmetic results needed by our work. A good reference for

cardinal arithmetic is [27].

Proposition 4 (Cardinal arithmetic)

– if ω ≤ α then α× α = α,
– if 2 ≤ α ≤ β and ω ≤ β then αβ = 2β , and
– if α ≤ β+ then αβ = β+.

Model ultraproducts in institutions. Let us first recall the categorical concept of ultraproduct.
Let C be a category with small products and directed colimits. Consider a family of objects

{Ai}i∈I . Each filter F over the set of indices I determines a functor AF : F → C such that

AF (J ⊂ J ′) =
∏
i∈J ′ Ai

pJ′,J //
∏
i∈J Ai for each J, J ′ ∈ F with J ⊂ J ′, and with pJ ′,J being

the canonical projection.
Then the filtered product of {Ai}i∈I modulo F is the colimit µ : AF ⇒

∏
F Ai of the functor

AF . ∏
i∈J ′ Ai

pJ′,J //

µJ′
""E

EE
EE

EE
E

∏
i∈J Ai

µJ||zz
zz

zz
zz

∏
F Ai

If F is ultrafilter then the filtered product modulo F is called an ultraproduct.
The filtered product construction from conventional model theory (in [6] called ‘reduced prod-

uct’; see Dfn. 4.1.6 there) has been probably defined categorically for the first time in [31] and has
been used in some abstract model theoretic works, such as [2]. The equivalence between the cat-
egory theoretic and the set theoretic definitions of the filtered products is shown in [23]. Filtered
products of models exist in FOL, POA and PA since in all these cases the respective categories
of models have all small limits and co-limits.
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Definition 11 [11] For a signature Σ in an institution, for each filter F ∈ F over a set I and for
each family {Ai}i∈I of Σ-models, a Σ-sentence e is

– preserved by F-filtered factors if
∏
F Ai |=Σ e implies {i ∈ I | Ai |=Σ e} ∈ F , and

– preserved by F-filtered products if {i ∈ I | Ai |=Σ e} ∈ F implies
∏
F Ai |=Σ e.

When F is the class of ultrafilters, preservation by F-filtered factors/products is called preservation
by ultrafactors/ultraproducts. A sentence is a Łoś sentence when is preserved by all ultrafactors and
all ultraproducts. An institution is a Łoś institution when it has all ultraproducts of models and all its
sentences are Łoś sentences.

The institution-independent method of ultraproducts has been developed in [11]. The conven-
tional Fundamental Ultraproducts Theorem shows that FOL is a Łoś institution, its institution-
independent generalization of [11] shows that a multitude of very diverse institutions are also Łoś
institutions. Examples include PA, POA, EQL, HCL, etc.

Special ultrafilters. Let (P,≤) and (P ′,≤) be partial orders with binary least upper bounds ∨ and
greatest lower bounds ∧. A function f : P → P ′ is

- anti-monotonic if x < y implies f(x) > f(y), and
- anti-additive if f(x ∨ y) = f(x) ∧ f(y)

For any functions f, g : P → P ′, f ≤ g if f(x) ≤ g(x) for all x ∈ P .
An ultrafilter U is λ-good (see Sect. 6.1 of [6]) for a cardinal λ if for each α < λ and each anti-

monotonic function f : Pω(α) → U there exists an anti-additive function g : Pω(α) → U such that
g ≤ f . (By Pω(α) we denote the set of the finite subsets of α ordered by set theoretic inclusion.)

An ultrafilter U over I is countably incomplete if there exists an ω-chain I = I0 ⊃ I1 ⊃ . . . ⊃
In ⊃ . . . such that In ∈ U and Iω =

∩
n∈ω In = ∅. This definition is slightly different but equivalent

to that given in [6] (see Prop. 4.3.3 there).
The proof of the following theorem consists of combinatorial set-theoretic arguments, and can

be found in [6] (Thm. 6.1.4).

Theorem 4 For any set I of cardinality λ, there exists a λ+-good countably incomplete ultrafilter
over I .

Definition 12 A sentence functor Sen is D-stable for a class D of signature morphisms when for
each χ : Σ → Σ′ in D we have card(Sen(Σ′)) ≤ card(Sen(Σ)).

The following example is typical for a multitude of institutions, including all of those presented
in this paper.

Example 12 In FOL, let D be the class of all injective signature extensions with a finite number of
constants. We show that for each (χ : Σ → Σ′) ∈ D we have that card(Sen(Σ)) = card(Sen(Σ′)).
Therefore SenFOL is D-stable.

On the one hand because χ is injective we have that card(Sen(Σ)) ≤ card(Sen(Σ′)).
On the other hand the function Sen(Σ′) → Sen(Σ) which maps each Σ′-sentence ρ′ to (∃χ)ρ′

is injection, hence card(Sen(Σ′)) ≤ card(Sen(Σ)).

The proof of the following is given in the appendix.

Proposition 5 Consider an institution with finitary sentences and with a class D of signature mor-
phisms such that the sentence functor is D-stable. Then for each (α,D)-chain ϕ : Σ → Σ′ we have
that card(Sen(Σ′)) ≤ card(α) × card(Sen(Σ)).

Theorem 5 Consider a Łoś institution with finitary sentences and with a class D of signature mor-
phisms such that
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1. it has finite conjunctions and existential D-quantifications,
2. the sentence functor Sen is D-stable,
3. the model reduct functors corresponding to D-signature morphisms preserve ultraproducts of

models, and
4. each signature morphism ϕ : Σ → Σ′ lifts completely ultraproducts, i.e. for each ϕ-expansion
A′ of an ultraproduct

∏
U Ai there are ϕ-expansions A′

i of each Ai such that A′ =
∏
U A

′
i.

For λ any infinite cardinal and U a countably incomplete λ-good ultrafilter over I , for any signature
Σ, if card(Sen(Σ)) < λ, then for any family {Ai}i∈I of Σ-models, the ultraproduct

∏
U Ai is

(λ,D)-saturated.

Proof Consider a (α,D)-chain (Σi
ϕi,j //Σj )i<j≤α with α < λ such that Σ0 = Σ, a ϕ0,α-

expansion Aα of
∏
U Ai, (χ : Σα → Σ′) ∈ D, and a set E of Σ′-sentences such that Aα χ-realizes

E finitely.
Because each signature morphism lifts completely ultraproducts, for each i ∈ I , there exists Aαi

ϕ0,α-expansion of Ai such that
∏
U A

α
i = Aα.

Because U is countably incomplete, there exists an ω-chain I = I0 ⊃ I1 ⊃ . . . ⊃ In ⊃ . . . such
that In ∈ U and Iω =

∩
n∈ω In = ∅. We define f : Pω(E) → U (recall that Pω(E) is the set of all

finite subsets E′ of E)

- f(∅) = I , and
- f(E′) = In ∩ {i | Aαi |= (∃χ) ∧E′} where n is the cardinality of E′.

f is well defined because
∏
U A

α
i = Aα |= (∃χ) ∧ E′ and sentences are preserved by ultrafactors

(hence {i ∈ I | Aαi |= (∃χ) ∧E′} ∈ U ).
f is also anti-monotonic because for each E1 ⊂ E2 ⊆ E, In1 > In2 (where n1 respectively n2

are the cardinalities of E1 respectively E2), and {i | Aαi |= (∃χ) ∧ E1} ⊇ {i | Aαi |= (∃χ) ∧ E2}.
Because U is λ-good and the cardinality of E is less than λ× λ = λ (see Prop. 5 and 4) there exists
an anti-additive function g : Pω(E) → U such that g ≤ f . For each i ∈ I let Ei = {ρ ∈ E | i ∈
g({ρ})}.

If the cardinality ofEi is greater than n, then i ∈ In. In order to see this, consider {ρ1, . . . , ρn} ⊆
Ei. This means i ∈ g({ρk}) for all k ≤ n. As g is anti-additive, we have that i ∈

∩
k≤n g({ρk}) =

g({ρ1, . . . , ρn}) ⊆ f({ρ1, . . . , ρn}) ⊆ In.
Because

∩
n∈ω In = ∅, for each i ∈ I , Ei is finite. Otherwise if Ei were infinite we would have

that i ∈ In for all n ∈ ω, which contradicts
∩
n∈ω In = ∅.

Because each Ei is finite, we have that i ∈
∩
ρ∈Ei

g({ρ}) = g(
∪
ρ∈Ei

{ρ}) = g(Ei) ⊆ f(Ei).
This means that Aαi |= (∃χ) ∧ Ei. Let A′

i be the χ-expansion of Aαi such that A′
i |= Ei.

Finally, we show that
∏
U A

′
i |= E. Because χ preserves ultraproducts, from

∏
U A

′
i |= E we

obtain that Aα =
∏
U A

α
i χ-realizes E. For each ρ ∈ E, we have that g({ρ}) ⊆ {i | A′

i |= ρ}.
Because g({ρ}) ∈ U , we deduce that {i | A′

i |= ρ} ∈ U , hence
∏
U A

′
i |= ρ because ρ is preserved

by ultraproducts.

The conditions of Thm. 5 which need some special attention are perhaps the last two ones.
The discussion can be simplified quite a lot if in actual institutions one narrows the class of the
considered signature morphisms just to the injective signature extensions with constants. Therefore
in FOL, the typical choice for D would be of course the class of all finitary signature extensions with
constants. Note that this restriction on the signature morphisms does not narrow the applicability of
Thm. 5, since the only signature morphisms of the institution that are involved in this result are the
(α,D)-chains (for α < λ), hence the other signature morphisms apart of those mentioned above
are irrelevant for this result. This situation is similar to how the existence Thm. 2 may be applied to
actual situations.

Coming back to the two conditions above mentioned, the preservation of ultraproducts by the
model reducts holds by the preservation of direct products and of directed colimits (cf. Prop. 1).
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Concerning the lifting condition, any interpretation X →
∏
U Ai of a set of variables in an ultra-

product of Σ-models
∏
U Ai gives an interpretation X →

∏
i∈I Ai which by using the product

projections further gives interpretations X → Ai for each i ∈ I . The interpretations X → Ai
provides a complete lifting of

∏
U Ai to an ultraproduct of Σ ]X-models.

Note that in some institutions Thm. 5 together with the fact that each model can be elementarily
embedded in any of its ultrapowers (see [17] for a general institution-independent version of this
result) may provide an alternative way to reach essentially the same conclusion as Thm. 2. The costs
are however quite high: assuming Boolean connectives, the Łoś property for the institution, and also
the rather difficult result on the existence of good countably incomplete ultrafilters (Thm. 4).

The following constitutes an institution-independent generalization of the famous result proved
by Keisler for FOL. (This result has been proved by Shelah without Generalized Continuum Hy-
pothesis in [40].)

Corollary 5 Consider an institution satisfying the hypotheses of Theorems 3 and 5 and such that
each model has a D-size. Let us further assume that for each model M , if M has a D-size λ, then
each ultrapower

∏
U M for an ultrafilter U over I has D-size λcard(I).

Then any two elementarily equivalent models have isomorphic ultrapowers (for the same ultra-
filter).

Proof Let M ≡ N be elementarily equivalent Σ-models. Consider a cardinal λ such that both
M and N have D-size λ+ and such that card(Sen(Σ)) ≤ λ. Let U be a countably incomplete
λ+-good ultrafilter over λ. Then both

∏
U M and

∏
U N have D-size (λ+)λ = λ+ (see Prop. 4

on cardinal arithmetic). By Thm. 5 both ultrapowers are (λ+,D)-saturated. By Thm. 3 they are
therefore isomorphic.

Corollary 6 In FOL, PA, POA, any two elementarily equivalent models have isomorphic ultra-
powers.

Proof On the one hand, in all these three institutions (with appropriate D defined above) hypotheses
of Thm. 5 and 3 hold as discussed above. On the other hand, when we define the sizes of models
by their cardinality, the specific condition of Cor. 5 holds obviously since each ultrapower

∏
U M is

the quotient of the power
∏
i∈IM .

Definition 13 An institution which has ultraproducts of models has the Keisler-Shelah property if
and only if every two elementarily equivalent models have isomorphic ultrapowers.

Counterexample 51 In the sub-institution of FOL which restricts the sentences to those that do
not use the equality symbol, consider the signature Σ = ({s}, {σ : s → s}, ∅) and two models of
this signature A and B defined as follows:

- As = {0, 1} ; Aσ(0) = 0 and Aσ(1) = 1
- Bs = {0, 1} ; Bσ(0) = 1 and Bσ(1) = 0
It is clear that A ≡ B but A and B are not isomorphic. Because A and B are finite, each of them

is isomorphic to any of their ultrapowers, hence for each ultrafilter U , ultrapowers
∏
U A and

∏
U B

cannot be isomorphic.
This is counterexample for Keisler-Shelah property exploits an institution where the syntactic

power (given by the sentences) is not enough to enforce a semantic property (isomorphism of mod-
els). The concordance between these aspects is ensured in our results by the existence of elementary
diagrams. In the absence of elementary diagrams the uniqueness of saturated models (Thm. 3),
which is one of the main causes for the Keisler-Shelah property, is not guaranteed.

Acknowledgements We thank Daniel Găină and Mihai Codescu for carefully studying this work and providing constructive
criticism leading to correction of several mistakes and to improving our work, and Andrei Popescu for help with some
cardinal theoretic issues. We are very grateful to the anonymous reviewer for a careful and competent study of our work that
has resulted in a series of significant corrections.
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6 Conclusions

We have lifted the concept of saturated model from from conventional concrete model theory to the
institution-independent model theoretic framework. We have developed the fundamental existence
and uniqueness results for institution-independent saturated models. We have applied the latter result
for developing a very general version of Keisler-Shelah isomorphism theorem. The former result has
already been used by [8] for developing some institution-independent preservation and axiomatiz-
ability results via saturation.

Future work may develop along two rather different but related directions. One of them is to use
our general theory to provide concrete saturated model theories for various less conventional logics
in the same manner as we have done here about POA and PA. The other development direction is
to further develop results on saturated model theory at the abstract institution-independent level of
our work.
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9. Mihai Codescu and Daniel Găină. Birkhoff completeness in institutions. Logica Universalis, 2(2):277–309, 2008.
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editor, Logica Universalis, pages 113–133. Birkhäuser, 2005.
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A Exiled proofs

This appendix contains proofs of some of the preliminary or supporting results for this work.

Proposition 1. All model reduct functors corresponding to quasi-representable signature morphisms create directed col-
imits of models.

Proof Let χ : Σ → Σ′ be a quasi-representable signature morphism, let (A′
i

f ′
i,j //A′

j )(i<j)∈(I,≤) be a directed

diagram of Σ′-models, and let (Ai

fi,j //Aj )(i<j)∈(I,≤) be its χ-reduct. Consider a colimit (Ai
µi //A)i∈|I| of

{fi,j}(i<j)∈(I,≤). Because χ is quasi-representable, for each i ∈ I , there exists a χ-expansion µ′i : A′
i → Bi of µi. By

the uniqueness property of quasi-representability and because the diagram is directed we can show that Bi = Bj for all
i, j ∈ I , and that µ′i = f ′i,j ;µ

′
j for all (i ≤ j) ∈ (I,≤). By a similar argument we can further show that {µ′i}i∈I is a

colimit of {f ′i,j}(i<j)∈(I,≤)
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Proposition 2.
1. In any institution the (finitary) quasi-representable signature morphisms form a subcategory of Sig.
2. If the institution is semi-exact, then quasi-representable signature morphisms are stable under pushouts.
3. If the institution is directed-exact, then any directed colimit of quasi-representable signature morphisms consists of

quasi-representable signature morphisms.
4. If ϕ and ϕ;χ are quasi-representable then χ is quasi-representable.

Proof 1. That composition of quasi-representable morphisms is quasi-representable follows immediately from the defini-
tion. Identity morphisms are trivially finitary quasi-representable. We focus on showing that finitary quasi-representable mor-
phisms are closed under composition. Therefore consider χ : Σ → Σ′ and χ′ : Σ′ → Σ′′ finitary quasi-representable mor-

phisms. We have only to prove thatχ;χ′ is finitary. Let (Ai
µi //A )i∈|I| be a colimit of a directed diagram (Ai

fi,j //Aj )(i<j)∈(I,≤)

ofΣ-model homomorphisms and letA′′ be a χ;χ′-expansion ofA. Because χ is finitary there exists i ∈ |I| and µ′i : A′
i →

A′′�χ′ an χ-expansion of µi.
Notice that (J,≤) = {j ≤ k | i ≤ j, k} is also directed and is a final subcategory of (I,≤). Because χ is quasi-

representable and (J,≤) is directed, A′
i determines

- a χ-expansion (A′
i

f ′
j,k //A′

j )(j<k)∈(J,≤) of (Ai

fj,k //Aj )(j<k)∈(J,≤), and

- a χ-expansion (A′
j

µ′
j //A′′�χ′ )j∈|J| of {µj}j∈|J| which is a co-cone for {f ′j,k}(j<k)∈(J,≤).

By Prop. 1, quasi-representable signature morphisms create directed colimits, hence {µ′j}j∈|J| is a colimiting co-cone
because {µj}j∈|J| is a colimiting co-cone (cf. Thm. 1 since (J,≤) is a final subcategory of (I,≤)).

Now, we have only to apply the hypothesis that χ′ is finitary in order to get j ∈ |J | and a χ′-expansion µ′′j of µ′j . Then
µ′′j is a χ;χ′-expansion of µj .

2. Consider a pushout of signature morphisms

Σ
χ //

θ

��

Σ′

θ′

��
Σ1 χ1

// Σ′
1

such that χ is quasi-representable. We have to show that χ1 is quasi-representable.
Consider a Σ1-model homomorphism h1 : M ′

1�χ1 → N1. Let h : M → N be its θ-reduct. M = M ′
1�χ1�θ =

M ′
1�θ′�χ. Because χ is quasi-representable, let h′ : M ′

1�θ′ → N ′ be the unique χ-expansion of h. By the semi-exactness
of the institution, the unique amalgamation h′1 of h1 and h′ is the unique χ1-expansion from M ′

1 of h1.

3. Let (Σi

ϕi,j //Σj )(i<j)∈(I,≤) be a directed diagram of quasi-representable signature morphisms and let (Σi
θi //Σ )i∈|I|

be its colimit. We fix arbitrary i ∈ |I| and show that θi is quasi-representable.

Let M�θi

hi //Ni be a Σi-homomorphism for some Σ-model M . For each j ∈ I , let Mj = M�θj
. Notice

that Mj�ϕi,j = Mi when j > i. For each j > i, because ϕi,j is quasi-representable, let hj : Mj → Nj be the
unique ϕi,j -expansion of hi. By the uniqueness of expansion for quasi-representable signature morphisms, we can show that
hj′�ϕj,j′ = hj for each i ≤ j < j′.

Now let (J,≤) be the sub-poset of (I,≤) determined by the elements {j | i ≤ j}. Because (J,≤) is a final sub-poset
of (I,≤), by Thm.1 we deduce that (θi)i∈|J| is a colimit of (ϕj,j′ )(j<j′)∈(J,≤). Because the institution is directed-exact,
let h : M → N be the unique Σ-homomorphism such that h�θj

= hj for each j ∈ |J |. Then h is the unique θi-expansion
from M of hi.

4. Let Σ
ϕ //Σ′ and Σ′ χ //Σ′′ . Consider any Σ′-model homomorphism M ′′�χ

h′
//N ′ . Then the unique

(ϕ;χ)-expansion of h′�ϕ to a Σ′′-model homomorphism M ′′ h′′
//N ′′ constitutes the unique χ-expansion of h′ to a

Σ′′-model homomorphism from M ′′.

Proposition 3. In any inductive-exact institution if each signature morphism of D is finitary and quasi-representable, then
for each infinite ordinal λ, each (λ,D)-chain of signature morphisms is λ+-small.

Proof Consider a (λ,D)-chain of signature morphisms Σ
ϕ //Σ′ and consider a λ+-chain ofΣ-model homomorphisms

(Mi

hi,j //Mj )i<j≤λ+ . Let Mλ
λ+ be a ϕ-expansion of Mλ+ .

For each 0 ≤ i < j ≤ λ, let Σi

ϕi,j //Σj be the segment in the chain ϕ determined by i and j.
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By transfinite induction on α ≤ λ we define an increasing sequence of ordinals strictly bounded by λ+, {iα}α≤λ and

an inductive diagram (Mα
j

hα
j,k //Mα

k )iα≤j<k≤λ+ in Mod(Σα) such that hα
j,k�ϕβ,α = hβ

j,k
for all 0 ≤ β < α ≤ λ

and iβ ≤ j < k as follows:

– i0 = 0 and h0
j,k = hj,k for all j < k ≤ λ+.

– Assume α = β + 1 is a successor ordinal. We first notice that (hβ

i,λ+ )iβ≤i<λ+ is a colimit of (hβ
j,k

)iβ≤j<k<λ+ .

This is so because hβ
j,k

�ϕ0,β = hj,k , (hi,λ+ )iβ≤i<λ+ is a colimit of (hj,k)iβ≤j<k<λ+ (since (hj,k)iβ≤j<k<λ+

is a final sub-diagram of (hj,k)0≤j<k<λ+ ; see Thm. 1), ϕ0,β is quasi-representable (by an argument similar to the ar-
gument that ϕ is quasi-representable used by the proof of Thm. 2, and because quasi-representable signature morphisms
create directed colimits (cf. Prop. 1)). But Mα

λ+ = Mλ
λ+�ϕα,λ is a ϕβ,α-expansion of Mβ

λ+ . Because α = β + 1,

ϕβ,α ∈ D, hence it is finitary. Therefore there exists iβ ≤ iα < λ+ and a ϕβ,α-expansion Mα
iα

hα

iα,λ+
//Mα

λ+

of hβ

iα,λ+ . By the quasi-representability of ϕβ,α, by transfinite induction, this further determines an unique ϕβ,α-

expansion (hα
j,k)iα≤j<k≤λ+ of (hβ

j,k
)iα≤j<k≤λ+ .

– Assume α is a limit ordinal. Then we define iα = sup{iβ | β < α}. We have that iα < λ+ because α ≤ λ and iβ <
λ+ for each β < α. (This holds because one can prove that

∪
β<α

iβ is ordinal and hence iα =
∪

β<α
iβ , therefore

we have card(iα) = card(
∪

β<α
iβ) ≤ card(α) × card(α) ≤ λ × λ = λ < λ+.) For all iα ≤ j < k ≤ λ+

by inductive-exactness let hα
j,k be the amalgamation of (hβ

j,k
)β<α, i.e. the uniqueΣα-model homomorphism such that

hα
j,k�ϕβ,α = hβ

j,k
.

Proposition 5 Consider an institution with finitary sentences and with a class D of signature morphisms such that the
sentence functor is D-stable. Then for each (α,D)-chain ϕ : Σ → Σ′ we have that card(Sen(Σ′)) ≤ card(α) ×
card(Sen(Σ)).

Proof Let us denote the segment of the chain ϕ between i and j by ϕi,j : Σi → Σj . Then Σ = Σ0 and Σ′ = Σα. We
prove the proposition by transfinite induction on α.

Ifα is a successor ordinal β+1 we have that card(Sen(Σα)) = card(Sen(Σβ+1)) ≤ card(Sen(Σβ)) ≤ card(β)×
card(Sen(Σ0)) = card(β + 1) × card(Sen(Σ0))

If α is a limit ordinal then α = ∪β<αβ. Because the institution has finitary sentences, by Lemma 1 below we
obtain that card(Sen(Σα)) ≤ card(

⊎
β<α

Sen(Σβ)). By the induction hypothesis card(Sen(Σβ)) ≤ card(β) ×
card(Sen(Σ0)) ≤ card(α × Sen(Σ0)). Therefore, we have card(Sen(Σα)) ≤ card(α × α × Sen(Σ0)) and finally
card(Sen(Σα)) ≤ card(α) × card(Sen(Σ0)).

Lemma 1 Consider an institution with finitary sentences. Then for each limit ordinalα and (α,D)-chain (Σi

ϕi,j //Σj )i<j≤α

we have that card(Sen(Σα)) ≤ card(
⊎

η<α
Sen(Σβ)).

Proof We define an injection ι from Sen(Σα) to
⊎

β<α
Sen(Σβ). For each ρ ∈ Sen(Σα) it exists Σρ a finitely presented

signature, a sentence ρfin ∈ Sen(Σρ) and a signature morphism ψρ : Σρ → Σα such that ψρ(ρfin) = ρ. Because
Σρ is finitely presented and Σα is an inductive colimit there exists β an ordinal such that ψρ factors through Σβ . Let
φρ : Σρ → Σβ such that φρ;ϕβ,α = ψρ. We define ι(ρ) to be φρ(ρfin). Because ϕβ,α(ι(ρ)) = ρ we get immediately
that ι is an injection.


