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Grothendieck Institutions

Răzvan Diaconescu (diacon@imar.ro )
Institute of Mathematics “Simion Stoilow”, Romania

Abstract. We extend indexed categories, fibred categories, and Grothendieck constructions to institutions. We show that
the 2-category of institutions admits Grothendieck constructions (in a general 2-categorical sense) and that any split fibred
institution is equivalent to a Grothendieck institution of an indexed institution.

We use Grothendieck institutions as the underlying mathematical structure for the semantics of multi-paradigm (het-
erogenous) algebraic specification. We recuperate the so-called ‘extra theory morphisms’ as ordinary theory morphisms in
a Grothendieck institution. We investigate the basic mathematical properties of Grothendieck institutions, such as theory
colimits, liberality (free constructions), exactness (model amalgamation), and inclusion systems by ‘globalisation’ from
the ‘local’ level of the indexed institution to the level of the Grothendieck institution.

1. Introduction

Multi-paradigm (heterogenous) logical specification or programming languages admit institution
semantics in which each paradigm has an underlying institution and paradigm embedding for-
mally corresponds to institution morphism. This leads to a concept ofindexed institutionwhich
generalises indexed categories of (Paré and Schumacher, 1978; Tarlecki et al., 1991). Semantics
of multi-paradigm specification languages requires the extension of the institution concepts across
indexed institutions; this can be naturally achieved by an extension of the Grothendieck construc-
tion for indexed categories to indexed institutions, which this leads to the concept ofGrothendieck
institution. We prove that the 2-category of institutions admits internal Grothendieck constructions
abstractly expressed as special lax colimits. In a fibration framework, Grothendieck institutions can
be formalised asfibred institutions, we develop here this concept rather briefly, and show that Gro-
thendieck institutions are categorically equivalent to split fibred institutions by extending a classical
result by B́enabou.

The new algebraic specification languageCafeOBJ (Diaconescu and Futatsugi, 1998) provides a
good practical example for the use of Grothendieck or fibred institutions (Diaconescu and Futatsugi,
2002). In fact, the research on Grothendieck institutions is part of the research project on the logical
foundations ofCafeOBJ. The semantics ofCafeOBJ is based on the indexed institution resulting
from the various combinations of the basicCafeOBJ paradigms. This is illustrated by the following
so-called ‘CafeOBJ cube’ (consider only the full arrows):

where the nodes represent institutions and the arrows represent institution morphisms. The institu-
tion underlyingCafeOBJ is obtained as the Grothendieck institution of theCafeOBJ cube, which
is a lax colimit of theCafeOBJ cube in the 2-category of institutions.

The work of this paper can be regarded as a step forward from (Diaconescu, 1998), Grothendieck
institutions providing a higher conceptual framework for the so-called ‘extra theory morphisms’.

c© 2005Răzvan Diaconescu.
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We show that extra theory morphisms of (Diaconescu, 1998) can be regarded as ordinary theory
morphisms in a Grothendieck institution. In this way, we come back to the globalisation of insti-
tutional properties studied in (Diaconescu, 1998) from the new higher conceptual perspective of
the Grothendieck (fibred) institutions. In this paper we extend the main globalisation results of
(Diaconescu, 1998) (obtained there in sufficient form) to necessary and sufficient conditions. These
include theory colimits, liberality, exactness, and inclusion systems.

Theory colimits. Module expressions in algebraic languages in the Clear-OBJ tradition are eval-
uated as colimits of theories (Goguen and Burstall, 1992). The problem of existence of theory
colimits exhibits very clearly the conceptual power of Grothendieck institutions, which enable a
very compact proof (contrasting to the rather complex similar proof of (Diaconescu, 1998)) by
using important results from indexed category theory and institution theory.

Liberality. Liberality (Goguen and Burstall, 1992; Tarlecki, 1986) is a basic desirable property
expressing the possibility of free constructions generalising the principle of ‘initial algebra seman-
tics’ which underlies the tight semantics of algebraic languages, including semantics for parame-
terised modules (Diaconescu et al., 1993). Here we give a necessary and sufficient condition for the
liberality of a Grothendieck institution which extends a similar result of (Diaconescu, 1998).

Exactness. Exactness expresses the possibility of amalgamation of consistent models (or ‘imple-
mentations’, in a more application oriented jargon) for different specification modules (for more
details see (Diaconescu et al., 1993)) and is a necessary technical condition on the underlying logic
for good semantic properties of the module system for a specification language. A set of necessary
and sufficient conditions for the globalisation of exactness was the main conjecture of (Diaconescu,
1998), in this paper we solve this problem within the framework of Grothendieck institutions.

Inclusions. Theory inclusions model mathematically the concept of module import (see (Dia-
conescu et al., 1993)), which is the most fundamental structuring operation for specification lan-
guages.Inclusion systemswere first introduced in (Diaconescu et al., 1993) as the underlying
categorical structure of an institution-independent module algebra. They were further studied and
their definition simplified in (C̆az̆anescu and Roşu, 1997). Inclusion systems are related to the better
established concept of factorisation systems, but they capture the uniqueness property of inclusions
(such as set-theoretic inclusions). Here we extend the construction of inclusion systems for extra
theory morphisms of (Diaconescu, 1998) to Grothendieck institutions.

2. Preliminaries

2.1. CATEGORIES

This work assumes some familiarity with category theory (including 2-categories), and generally
uses the same notations and terminology as Mac Lane (MacLane, 1998), except that composition
is denoted by “;” and written in the diagrammatic order. The application of functions (functors) to
arguments may be written either normally using parentheses, or else in diagrammatic order without
parentheses, or, more rarely, by using sub-scripts or super-scripts. The category of sets is denoted
asSet, and the category of categories1 asCat. The opposite of a categoryC is denoted byCop.
The class of objects of a categoryC is denoted by|C|; also the set of arrows inC having the
objecta as source and the objectb as target is denoted asC(a,b). We use⇒ to denote 2-cells in
2-categories. The ‘horizontal’ composition between 2-cells is also written in diagrammatic order by
simple juxtaposition.

1 We steer clear of any foundational problem related to the “category of all categories”; several solutions can be found
in the literature, see, for example (MacLane, 1998).
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Indexed categories (Paré and Schumacher, 1978) play an important rôle in this paper, for the
purpose of this work they are more adequate than thefibred categories(Grothendieck, 1963) for-
mulation of indexation. (Tarlecki et al., 1991) constitutes a good reference for indexed categories
and their applications to algebraic specification. Anindexed category(Tarlecki et al., 1991) is a
functorB: Iop→Cat; sometimes we denoteB(i) asBi (or Bi) for an indexi ∈ |I | andB(u) asBu for
an index morphismu∈ I . The following ‘flattening’ construction providing the canonical fibration
associated to an indexed category is known under the name of theGrothendieck constructionand
plays an important r̂ole in mathematics and in particular in this paper. Given an indexed category
B: Iop→Cat, let B] be theGrothendieck categoryhaving〈i, Σ〉, with i ∈ |I | andΣ ∈ |Bi |, as objects
and〈u, ϕ〉 : 〈i, Σ〉→ 〈i′, Σ′〉, with u∈ I(i, i′) andϕ : Σ→ Σ′Bu, as arrows. The composition of arrows
in B] is defined by〈u, ϕ〉;〈u′, ϕ′〉= 〈u;u′, ϕ;(ϕ′Bu)〉.

The following simple lemma will be used later in the paper:

LEMMA 1. Let B: Iop→ Cat be an indexed category. Then each arrow〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉 in
the Grothendieck category B] can be canonically factored as

〈u, ϕ〉= 〈1i , ϕ〉;〈u, 1Σ′Bu〉

Moreover, if the functor Bu has a left adjointBu with unit ζ, then〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉 can also
be factored as

〈u, ϕ〉= 〈u, Σζ〉;〈1i′ , ϕ〉

whereϕ : ΣBu→ Σ′ is the free extension ofϕ : Σ→ Σ′Bu.

〈i, Σ〉
〈1i ,ϕ〉 //

〈u,Σζ〉

��

〈u,ϕ〉

$$IIIIIIIIIIIIII
〈i, Σ′Bu〉

〈u,1Σ′Bu〉

��
〈i′, ΣBu〉

〈1i′ ,ϕ〉
// 〈i′, Σ′〉

2.1.1. Grothendieck Construction in 2-categories
In this section we internalise the Grothendieck construction for indexed categories to any 2-category
rather thanCat by using the following basic result:2

THEOREM 1. The Grothendieck category B] of an indexed category B: Iop→ Cat is the vertex of
the lax colimit µ: B ; B] of B inCat, where

− for each index i∈ |I |, µi : Bi → B] is the canonical inclusion of categories, and

− for each index morphism u∈ I(i, j), µu : Bu;µi ⇒ µj is defined by µub = 〈u, 1bBu〉 for each
object b∈ |B j |.

Lax colimits(see (Borceux, 1994)) constitute the most relaxed concept of colimit in 2-categories,
where diagrams are required to commute up to 2-cells only (rather than ordinary strict equality).
Notice that since the Grothendieck construction is a lax colimit of an ordinary (1-)functor, this
simply means that the lax co-coneµ of Theorem 1 is initial.

COROLLARY 1. Any 2-functor B: I∗ → Cat, where I∗ is the 2-dimensional dual changing the
direction of 2-cells both horizontally and vertically, induces a canonical 2-category structure on the
Grothendieck category B] of the (1)-functor B: Iop→ Cat.

2 We omit the proof of this result since we believe this is mathematical folklore although we are not aware of any clear
reference for this result. Also, the proof of this theorem is straightforward.
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We now internalise the concept of Grothendieck construction to 2-categories as follows:

DEFINITION 1. Given a (1-)functorB: Iop→ V, whereV is a 2-category, aGrothendieck con-
structionfor B is a lax colimitµ: B ; B]. ThenB] is called theGrothendieck objectassociated to
B. 2

2.2. INSTITUTIONS

Institutions (Goguen and Burstall, 1992) were introduced in the mid eighties as (categorical) abstract
model theory for specification and programming; since then the theory of institutions became the
modern level of algebraic specification and institutions now constitute the mathematical structure
underlying the algebraic specification theory. In this section we briefly review some of the basic
concepts on institutions. Besides the seminal paper (Goguen and Burstall, 1992), (Diaconescu et al.,
1993) contains many results about institutions with direct application to modularisation in algebraic
specification languages.

From a logic perspective, institutions are much more abstract than Tarski’s model theory, and
also have another basic ingredient, namely signatures and the possibility of translating sentences
and models across signature morphisms. A special case of this translation is familiar in first order
model theory: ifΣ→ Σ′ is an inclusion of first order signatures andM is aΣ′-model, then we can
form the reduct of M to Σ, denotedM�Σ. Similarly, if e is a Σ-sentence, we can always view it
as aΣ′-sentence (but there is no standard notation for this). The key axiom, called thesatisfaction
condition, says thattruth is invariant under change of notation, which is surely a very basic intuition
for traditional logic.

DEFINITION 2. An institutionℑ = (Sign,Sen,MOD, |=) consists of

1. a categorySign, whose objects are calledsignatures,

2. a functorSen : Sign→ Set, giving for each signature a set whose elements are calledsentences
over that signature,

3. a functor MOD : Signop→ Cat giving for each signatureΣ a category whose objects are called
Σ-models, and whose arrows are calledΣ-(model) morphisms, and

4. a relation|=Σ⊆ |MOD(Σ)|×Sen(Σ) for eachΣ ∈ |Sign|, calledΣ-satisfaction,

such that for each morphismϕ : Σ→ Σ′ in Sign, thesatisfaction condition

m′ |=Σ′ Sen(ϕ)(e) iff M OD(ϕ)(m′) |=Σ e

holds for eachm′ ∈ |MOD(Σ′)| ande∈ Sen(Σ). We may denote the reduct functor MOD(ϕ) by �ϕ
and the sentence translationSen(ϕ) by ϕ( ). 2

DEFINITION 3. Let ℑ = (Sign,Sen,MOD, |=) be an institution. For any signatureΣ the closure
of a setE of Σ-sentences isE• = {e | E |=Σ e}3. (Σ,E) is a theory if and only if E is closed, i.e.,
E = E•.

A theory morphismϕ : (Σ,E)→ (Σ′,E′) is a signature morphismϕ : Σ→ Σ′ such thatϕ(E)⊆E′.
LetTh(ℑ) denote the category of all theories inℑ. 2

For any institutionℑ, the model functor MOD extends from the category of its signaturesSign to
the category of its theoriesTh(ℑ), by mapping a theory(Σ,E) to the full subcategory MOD(Σ,E)
of MOD(Σ) formed by theΣ-models which satisfyE.

3 E |=Σ emeans thatM |=Σ e for anyΣ-modelM that satisfies all sentences inE.
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DEFINITION 4. A theory morphismϕ : (Σ,E)→ (Σ′,E′) is liberal if and only if the reduct functor
�ϕ : MOD(Σ′,E′)→MOD(Σ,E) has a left-adjoint( )ϕ.

The institutionℑ is liberal if and only if each theory morphism is liberal.2

General results (Tarlecki, 1986) show that liberality is equivalent to the power of Horn axiomatis-
ability.

DEFINITION 5. An institutionℑ = (Sign,Sen,MOD, |=) is exactif and only if the model functor
MOD : Signop→ Cat preserves finite limits.ℑ is semi-exactif and only if MOD preserves only
pullbacks.2

Exactness properties for institutions formalise the possibility of amalgamating models of different
signatures when they are consistent on some kind of ‘intersection’ of the signatures (formalised
as a pullback). In practice, the weak4 version of exactness properties may actually suffice (see
(Diaconescu, 1998; Tarlecki, 2000)).

2.2.1. Institution morphisms
DEFINITION 6. Letℑ andℑ′ be institutions. Then aninstitution morphismℑ′→ ℑ consists of

1. a functorΦ : Sign′→ Sign,

2. a natural transformationα : Φ;Sen⇒ Sen′, and

3. a natural transformationβ : MOD′⇒Φop;MOD

such that the followingsatisfaction conditionholds

m′ |=′Σ′ αΣ′(e) iff βΣ′(m′) |=Σ′Φ e

for anyΣ′-modelm′ from ℑ′ and anyΣ′Φ-sentencee from ℑ.
An institutionmodificationbetween institution morphisms(Φ,α,β)⇒ (Φ′,α′,β′) consists of

1. a natural transformationτ : Φ⇒Φ′,

2. a modificationω : β⇒ β′;τMOD, i.e., for eachΣ′ ∈ |Sign′|, a natural transformationωΣ′ : βΣ′⇒
β′Σ′ ;MOD(τΣ′).

2

By defining the canonical compositions (both vertical and horizontal) for institution morphisms
and modifications, we can define a 2-categoryInswhich has institutions as objects (0-cells), insti-
tution morphisms as 1-cells, and their modifications as 2-cells.

In the literature there are several other concepts of institution homomorphism (such as the
so-called “institution representations”), each of them being adequate to some specific class of prob-
lems; a survey on this topic can be found in (Tarlecki, 1996). The definition presented above and
originally given by (Goguen and Burstall, 1992) intuitively expresses that a “richer” institution is
built over a “poorer” one, and is the most relevant for the applications of this work. This definition
is also a structure preserving one (as will be seen in Section 3).

The following properties of institution morphisms play an important rôle in this paper.

DEFINITION 7. An institution morphism(Φ,α,β) : ℑ′→ ℑ is

− anequivalenceiff Φ is an equivalence of categories,

− anembeddingiff Φ admits a left-adjointΦ (with unit ζ); an institution embedding is denoted
as(Φ,Φ,ζ,α,β) : ℑ′→ ℑ, and is

4 In the sense of ‘weak universal properties’ of (MacLane, 1998) requiring onlyexistencewithout uniqueness for the
corresponding universal arrows.
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− liberal iff βΣ′ has a left-adjointβΣ′ for eachΣ′ ∈ |Sign′|.

An institution embedding(Φ,Φ,ζ,α,β) : ℑ′ → ℑ is exact if and only if the square below is a
pullback

MOD(Σ) MOD(Σ1)
MOD(ϕ)oo

MOD(ΣΦΦ)

MOD(Σζ)

OO

MOD(Σ1ΦΦ)

MOD(Σ1ζ)

OO

MOD′(ΣΦ)

βΣΦ

OO

MOD′(Σ1Φ)
MOD

′
(ϕΦ)

oo

βΣ1Φ

OO

whereϕ : Σ→ Σ1 is any signature morphism inℑ. 2

Our notion of institution equivalence is a natural generalisation of the notion of categorical equiv-
alence. The idea of institution embedding (although not formulated directly) is as old as the seminal
work on institutions (Goguen and Burstall, 1992). Notice that the terminology ‘institution embed-
ding’ is used also by (Meseguer, 1998) but in a completely different sense. Besides (Diaconescu,
1998), several stronger variants of liberal institution morphisms have been independently introduced
in the literature, such that thecategorical retractive simulationsof (Kreowski and Mossakowski,
1995) and theextension mapsof (Meseguer, 1998). Exact institution embeddings are a novel concept
which expresses the primitive possibility of amalgamation of consistent models across an institution
embedding. Similar notions of exactness based onβ-naturality diagrams being pullbacks have been
introduced in the literature, such as theadditive institution morphismsof (Diaconescu, 1998; Dia-
conescu and Stefaneas, 1998) and theinstitutions representations with amalgamationof (Tarlecki,
2000).

3. Grothendieck Institutions

The following definition generalises the concept of indexed category to institutions.

DEFINITION 8. An indexed institutionJ is a functorJ : Iop→ Ins. 2

The following theorem generalises the Grothendieck construction from categories to institutions:

THEOREM 2. The 2-category of institutionsIns admits a Grothendieck construction for each
indexed institutionJ : Iop→ Ins.

Proof.5

We start with the following lemma:

LEMMA 2. Let K be any 2-category andIK be the Grothendieck 2-category for the 2-functor
Cat[(−)op,K] : Cat∗→ Cat. Then the fibrationΠK : IK → Cat creates Grothendieck constructions
for each functorJ : Iop→ IK .

Proof.We have to prove that for each functorJ : Iop→ IK , there exists a Grothendieck construc-
tion µ: J ; J ] in IK such thatΠK(µ) = µK , whereµK : S ; S ] is the Grothendieck construction in
Cat for S = J ;ΠK .

5 For a better understanding of the structure of Grothendieck institutions we go here for a rather direct proof of this
result. Alternatively one may use the general theorem of existence of weighted colimits in enriched categories (Borceux,
1994) instantiated to the case of lax colimits.
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Iop J //

S

!!BBBBBBBBBBBBBB IK

ΠK

��
Cat

SinceIK is a Grothendieck (2-)category, as notational convention, let us assume thatJ u = 〈Su, ℑu〉
for eachu∈ I (either index or index morphism).

Let J ] = 〈S ], ℑ]〉, whereℑ] : (S ])op→ K is the unique functor (by the universal property of the
Grothendieck construction forS ) such that

− µi
K ;(ℑ])op = (ℑi)op for each objecti ∈ |I |, and

− µu
K(ℑ])op = (ℑu)op for each arrowu∈ I .

We then defineµ by

µu = 〈µu
K , 1ℑu〉

for eachu∈ I (either index or index morphism) and we have to prove thatµ is initial. This is enough
since lax colimits of (ordinary 1-)functors are simply initial lax co-cones. Consider another lax co-
cone〈ν, ρ〉 : J ; 〈S ′, ℑ′〉. We prove that there exists a unique〈ν′, ρ′〉 : 〈S ], ℑ]〉 → 〈S ′, ℑ′〉 such
that

− 〈µi
K , 1ℑi 〉;〈ν′, ρ′〉= 〈νi , ρi〉 for each indexi ∈ |I |, and

− 〈µu
K , 1ℑu〉〈ν′, ρ′〉= 〈νu, ρu〉 for each index morphismu∈ I .

By projecting the first condition on the first component, we have thatν′ : S ] → S ′ is the unique
functor such thatµi

K ;ν′ = νi for each indexi ∈ |I | andµu
Kν′ = νu for each index morphismu∈ I .

The first condition on the second component means(µi
K)opρ′ = ρi for eachi ∈ |I |, which deter-

mines the natural transformationρ′ by ρ′〈i,Σ〉 = ρi
Σ for eachi ∈ |I | andΣ ∈ |S i |. The checking of the

second condition follows now by routine calculations.
This concludes the proof of this lemma.

The theorem now follows by noticing thatIns= IRoom, whereRoomis the 2-category which has
objects triples(M,S,R) such that

− M is a category,

− S is a set (regarded as discrete small category), and

− R is a function|M| → P (S), whereP is the contravariant power-set functor,

and has pairs of functors〈M′ f→M, S
g→ S′〉 as 1-cells(M′,S′,R′)→ (M,S,R) such that the follow-

ing diagram

|M′| R //

| f |

��

P (S′)

P (g)

��
|M|

R′
// P (S)

commutes, and has natural transformationsf ⇒ f ′ as 2-cells between〈 f , g〉 ⇒ 〈 f ′, g′〉.
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Notice that the generality level of Lemma 2 permits variants of Theorem 2 for concepts of
institutions enriched with additional structure, such as proof-theoretic, operational, etc. This can
be easily achieved by replacingRoomwith an appropriate 2-category.

The explicit structure of the Grothendieck institution of an indexed institution is given by the
following:

REMARK 1. The Grothendieck institutionJ ] of an indexed institutionJ : Iop→ Inshas

1. the Grothendieck categorySign] as its category of signatures, whereSign: Iop→ Cat is the
indexedcategory of signatures of the indexed institutionℑ,

2. MOD] : (Sign])op→ Cat as its model functor, where

− MOD](〈i, Σ〉) = MODi(Σ) for each indexi ∈ |I | and signatureΣ ∈ |Signi |, and

− MOD](〈u, ϕ〉) = βu
Σ′ ;MODi(ϕ) for each〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉,

3. Sen] : Sign]→ Set as its sentence functor, where

− Sen](〈i, Σ〉) = Seni(Σ) for each indexi ∈ |I | and signatureΣ ∈ |Signi |, and

− Sen](〈u, ϕ〉) = Seni(ϕ);αu
Σ′ for each〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉,

4. m |=]
〈i,Σ〉 e iff m |=i

Σ e for each indexi ∈ |I |, signatureΣ ∈ |Signi |, modelm∈ |MOD](〈i, Σ〉)|,
and sentencee∈ Sen](〈i, Σ〉).

whereJ i = (Signi ,MODi ,Seni , |=i) for each indexi ∈ |I | and J u = (Φu,αu,βu) for u ∈ I index
morphism.2

COROLLARY 2. The concept of extra theory morphism (Diaconescu, 1998) across an institution
morphismℑ′→ℑ (with all its subsequent concepts) is recuperated as an ordinary theory morphism
in the Grothendieck institution of the indexed institution given by the morphismℑ′→ ℑ (i.e., which
has•→ • as its index category).

3.1. FIBRED INSTITUTIONS

For the readers preferring fibred categories to indexed categories, we generalise fibred categories to
fibred institutions. We show thatsplit fibred institutionsare essentially the same as the (previously
introduced) Grothendieck institutions. Readers with no background in fibred categories may skip
this section because the rest of the paper does not use any of the developments of this section and
stays within the framework of indexed and Grothendieck institutions. For this reason we also keep
the developments of this section very brief.

DEFINITION 9. Given a categoryI , afibred institution over the base Iis a tuple
ℑ = (Sign, I ,Π,MOD,Sen, |=) such that

− Π : Sign→ I is a fibred category, and

− (Sign,MOD,Sen, |=) is an institution.

ℑ is split when the fibrationΠ is split.
A cartesian institution morphismis an institution morphism between fibred institutions for which

the signature mapping functor is cartesian functor between the corresponding fibred categories of
signatures.2

EXAMPLE 1. By Remark 1 any Grothendieck institution is a split fibred institution.2
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Now we try to define an opposite mapping, from (split) fibred institutions to indexed institutions.

DEFINITION 10. Given a fibred institutionℑ = (Sign, I ,Π,MOD,Sen, |=), for each objecti ∈ |I |,
thefibre ofℑ at i is the institutionℑi = (Signi ,MODi ,Seni , |=i) where

− Signi is the fibre ofΠ at i, and

− MODi , Seni , and|=i are the restrictions of MOD, Sen, and respectively|= to Signi .

2

PROPOSITION 1. Given a fibred institutionℑ = (Sign, I ,Π,MOD,Sen, |=), for each arrow u∈
I(i, j), any ‘inverse image functor’Φu : Sign j → Signi determines a canonical institution morphism
(Φu,αu,βu) : ℑ j → ℑi between the fibres ofℑ, whereαu

Σ′ = Sen(ϕΦ
Σ′) andβu

Σ′ = MOD(ϕΦ
Σ′) for each

signatureΣ′ in the fibreSign j at j, andϕΦ
Σ′ : Σ′Φu→ Σ′ being the distinguished cartesian morphism

corresponding toΦu.
Proof. The naturality ofαu and βu follow directly from the way the family of distinguished

cartesian morphisms{ϕΦ
Σ′}Σ′ determine the functorΦu, and by applying the sentence functor and

the model functor, respectively, to the corresponding commutative diagrams.
Finally, the satisfaction condition for the institution morphism(Φu,αu,βu) follows from the

satisfaction condition of the fibred institutionℑ applied for the distinguished cartesian morphisms.

COROLLARY 3. Consider a category I. There exists a natural isomorphism between the category
of split fibred institutions over I (with cartesian institution morphisms as arrows) and the category
of institutions indexed by I (with natural transformation between the indexing functors as arrows).

Now we can extend B́enabou’s result (B́enabou, 1985) to fibred institutions:

COROLLARY 4. Each fibred institution is equivalent to a Grothendieck institution.

4. Globalisation of Institutional Properties

This section is devoted to the study of the most important institutional properties (as seen from the
semantics of specification languages; see (Diaconescu et al., 1993)) for Grothendieck institutions.
These include theory colimits, liberality (i.e., free constructions), exactness (i.e., model amalgama-
tion), and inclusion systems for institutions. In all cases we follow the same pattern of ‘globalisation’
of the properties by lifting them from the ‘local’ level of the indexed institution to the ‘global’ level
of the Grothendieck institution. All developments of this section can be immediately translated into
the language of fibred categories/institutions. However, the framework of indexed institutions seems
to be the most appropriate for applications and for the presentations and development of the results.

Most of the developments of this section rely on a stronger version of indexed institution for
which the institution morphisms are embeddings. This is a natural technical condition which almost
always occurs in practical applications.

DEFINITION 11. An embedding-indexed institutionis an indexed institutionJ : Iop→ Ins for
which all institution morphismsJ u are embeddings(Φu,Φu,ζu,αu,βu) for all index morphisms
u∈ I .

A embedding-indexed institution iscoherentif and only if

Φu;Φu′ = Φu;u′ (i.e., the indexed category of signatures is ‘globally’ reversible)

and

ζu;Φuζu′Φu = ζu;u′

for eachu∈ I(i, j) andu′ ∈ I( j,k). 2
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4.1. THEORY COLIMITS IN GROTHENDIECK INSTITUTIONS

DEFINITION 12. An indexed categoryB: Iop→ Cat is locally J-cocompletefor a small category
J if and only if the categoryBi is J-cocomplete for each indexi ∈ |I |. 2

The ‘sufficient’ part of the following fundamental result was essentially obtained for the first
time in (Diaconescu, 1998) in the context of ‘extra theory morphisms’.

THEOREM 3. Let J : Iop→ Ins be an embedding-indexed institution such that I is J-cocomplete
for a small category J. Then the category of theoriesTh(J ]) of the Grothendieck institutionJ ] has
J-colimits if and only if the indexed category of signaturesSign of J is locally J-cocomplete.

Proof.For the ‘necessary’ part of this theorem, it is sufficient to notice that for each indexi ∈ I ,
the canonical inclusion functorTh(J i) ↪→ Th(J ]) reflects colimits, henceTh(J i) hasJ-colimits if
Th(J ]) hasJ-colimits. This implies thatSigni hasJ-colimits for each indexi ∈ I .

For the ‘sufficient’ part of the theorem, by the fundamental result that in any institution the
forgetful functor from theories to signatures creates colimits (see (Goguen and Burstall, 1992)), we
have only to show that the category of signatures of the Grothendieck institutionJ ] hasJ-colimits.
By Remark 1, the category of signatures ofJ ] is the Grothendieck category of signaturesSign].
The conclusion of the theorem now follows from the general result on existence of colimits in
Grothendieck categories (see (Tarlecki et al., 1991)).

This theorem shows very clearly the conceptual power of Grothendieck institutions, since in this
case they enable a very compact proof by invoking important results from indexed category theory.
This situation contrasts to the rather complex proof given in (Diaconescu, 1998) for the existence of
colimits for extra theory morphisms.

4.2. LIBERALITY IN GROTHENDIECK INSTITUTIONS

DEFINITION 13. An indexed institutionJ : Iop→ Insis locally liberal if and only if the institution
J i is liberal for each indexi ∈ I . 2

The following result represents the global counterpart of a similar result of (Diaconescu, 1998)
where we studied liberality at the level theory morphisms only.

THEOREM 4. The Grothendieck institutionJ ] of an indexed institutionJ : Iop→ Ins is liberal if
and only ifJ is liberal and each institution morphismJ u is liberal for each index morphism u∈ I.

Proof.The ‘necessary’ part of the theorem follows by noticing that local liberality of the indexed
institution is contained by the liberality of the Grothendieck institution because each model functor
MODi is a restriction of the model functor MOD] of the Grothendieck institutionJ ]:

Th(J i)op //

MOD
i

$$JJJJJJJJJJJJJJJJ
Th(J ])op

MOD
]

��
Cat

and by noticing that for each index morphismu∈ I(i, i′), the liberality of the institution morphism
J u = (Φu,αu,βu) is the same as the liberality of the (extra) signature morphism
〈u, 1Σ′Φu〉 : 〈i, Σ′Φu〉 → 〈i′, Σ′〉.

For the ‘sufficient’ part of the theorem, we consider an (extra) theory morphism
〈u, ϕ〉 : 〈i, (Σ,E)〉 → 〈i′, (Σ′,E′)〉 and a(Σ,E)-model M. The free expansion ofM along 〈u, ϕ〉
is the modelβΣ′(Mϕ)/E′, whereMϕ is the free expansion ofM along the (intra) signature mor-
phismϕ : Σ→ Σ′Φu (by the liberality ofJ i), and /E′ is the left adjoint to the forgetful inclusion
MODi′(Σ′,E′) ↪→MODi′(Σ′) (by the liberality ofJ i′). Finally, the universal property ofβΣ′(Mϕ)/E′
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follows as a composition of the three universal properties corresponding to the three adjunctions
involved:

M //

h
""EEEEEEEEEEEE Mϕ�ϕ

hϕ�ϕ

��

Mϕ //

hϕ

$$IIIIIIIIIIIIII βΣ′(βΣ′(Mϕ))

βΣ′ (hϕ)

��

βΣ′(Mϕ) //

hϕ
%%KKKKKKKKKKKKKK

βΣ′(Mϕ)/E′

hϕ/E′

��
βΣ′(N)�ϕ βΣ′(N) N |= E′

This liberality result is also stronger than its counterpart from (Diaconescu, 1998) because it
gives an ‘if and only if’ characterization of liberality in Grothendieck institutions.

4.3. EXACTNESS IN GROTHENDIECK INSTITUTIONS

From all the properties of Grothendieck institutions, exactness seems to be the most complex to
study. In (Diaconescu, 1998) we conjectured an ‘if and only if’ characterization of exactness for
extra theory morphisms, in this section we solve this problem. Our approach is to decompose the
exactness property into a set of atomic orthogonal necessary and sufficient conditions.

DEFINITION 14. An indexed institutionJ : Iop→ Ins is locally (semi-)exactif and only if the
institutionJ i is (semi-)exact for each indexi ∈ I . 2

PROPOSITION 2. If the Grothendieck institution of an indexed institution is semi-exact, then the
indexed institution is locally semi-exact.

Proof. By Remark 1, for each indexi, the model functor MODi is the restriction MOD](〈i,−〉)
of the model functor of the Grothendieck institution to the sub-categorySigni of the Grothendieck
category of signaturesSign] (i.e. the category of signatures of the Grothendieck institution).

(Signi)op //

MOD
i

$$JJJJJJJJJJJJJJJJ
(Sign])op

MOD
]

��
Cat

Because the canonical injectionSigni → Sign] preserves co-limits (as a simple general property of
the Grothendieck constructions), we have that MODi preserves whatever limits are preserved by
MOD], hence MODi preserves pullbacks.

PROPOSITION 3. If the Grothendieck institution of an indexed institution is semi-exact, then each
institution embedding of the indexed institution is exact.

Proof. Consider an institution embedding(Φu,Φu,ζu,αu,βu) : J i′ → J i , and an arbitrary signa-
ture morphismϕ : Σ→ Σ1 in J i .

Notice that the following square

〈i, Σ〉
〈1,ϕ〉 //

〈u,Σζ〉
��

〈i, Σ1〉

〈u,Σ1ζ〉
��

〈i′, ΣΦ〉
〈1,ϕΦ〉

// 〈i′, Σ1Φ〉

is a pushout. Because the Grothendieck institution is semi-exact, this pushout is mapped by the
(Grothendieck) model functor to a pullback square. All we still have to do is to notice that this
pullback square gives the exactness of the institution embedding(Φu,Φu,ζu,αu,βu).
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DEFINITION 15. A coherent embedding-indexed institutionJ : Iop→ Insis semi-exactif and only
if for each pushout

i
u1 //

u2

��

j1

v1

��
j2

v2
// k

in I , the following square

MODi(Σ) MODi(ΣΦu1Φu1)
MOD

i
(Σζu1)oo MOD j1(ΣΦu1)

βu1
ΣΦu1oo

MODi(ΣΦu1Φu1)

MOD
i
(Σζu2)

OO

MOD j1(ΣΦu1Φv1Φv1)

MOD
j1

(ΣΦu1ζv1)

OO

MOD j2(ΣΦu2)

βu2
ΣΦu2

OO

MOD j2(ΣΦu2Φv2Φv2)
MOD

j2
(ΣΦu2ζv2)

oo MODk(ΣΦuiΦvi)
βv2

ΣΦu2Φv2

oo

βv1
ΣΦu1Φv1

OO

is a pullback for each signatureΣ in ℑi . 2

PROPOSITION 4.Let J be a coherent embedding-indexed institution. If the Grothendieck institu-
tion J ] is semi-exact, then the indexed institutionJ is also semi-exact.

Proof.Consider a pushout square inI as in Definition 15. Notice (by the colimit construction in
Grothendieck categories cf. (Tarlecki et al., 1991)) that the following square

〈i, Σ〉
〈u1,Σζu1〉 //

〈u2,Σζu2〉

��

〈 j1, ΣΦu1〉

〈v1,ΣΦu1ζv1〉

��

〈 j2, ΣΦu2〉
〈v2,ΣΦu2ζv2〉

// 〈k, ΣΦuiΦvi〉

is a pushout in the category of signaturesSign] of the Grothendieck institution. Because the
Grothendieck institution is semi-exact, the Grothendieck model functor MOD] maps this pushout
square to the pullback square of Definition 15.

THEOREM 5. LetJ be a coherent embedding-indexed institution. The Grothendieck institutionJ ]

is semi-exact if and only if

− the indexed institutionJ is locally semi-exact,

− the indexed institutionJ is semi-exact, and

− all institution embeddings are exact.
Proof.The ‘necessary’ part of this theorem holds by Proposition 2, Proposition 4, and Proposition

3.
For the ‘sufficient’ part, we consider an arbitrary pushout of signatures in the Grothendieck

institution
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〈Sign0, Σ0〉
〈Φu1,ϕ1〉 //

〈Φu2,ϕ2〉

��

〈Sign1, Σ1〉

〈Φ1,θ1〉

��
〈Sign2, Σ2〉 〈Φ2,θ2〉

// 〈Sign, Σ〉

where

ℑ0 ℑ1
(Φu1,Φu1,ζu1,αu1,βu1)oo

ℑ2

(Φu2,Φu2,ζu2,αu2,βu2)

OO

ℑ
(Φ2,Φ2,ζ2,α2,β2)

oo

(Φ1,Φ1,ζ1,α1,β1)

OO

is the underlying square of institution embeddings.6

By factoring each of the extra signature morphisms accordingly to the second part of Lemma 1,
and by applying the pushout construction in Grothendieck categories (cf. (Tarlecki et al., 1991)), due
to the coherence property of the indexed institution, the pushout square of extra signature morphisms
can be expressed as the following composition of four pushout squares:

〈Sign0, Σ0〉
〈Φu1,Σ0ζu1〉 //

〈Φu2,Σ0ζu2〉
��

〈Sign1, Σ0Φu1〉
〈1,ϕ1〉 //

〈Φ1,Σ0Φu1ζ1〉
��

〈Sign1, Σ1〉

〈Φ1,Σ1ζ1〉
��

〈Sign2, Σ0Φu2〉
〈Φ2,Σ0Φu2ζ2〉

//

〈1,ϕ2〉
��

〈Sign, Σ0ΦuiΦi〉
〈1,ϕ1Φ1〉

//

〈1,ϕ2Φ2〉
��

〈Sign, Σ1Φ1〉

〈1,θ1〉
��

〈Sign2, Σ2〉 〈Φ2,Σ2ζ2〉
// 〈Sign, Σ2Φ2〉

〈1,θ2〉
// 〈Sign, Σ〉

The Grothendieck model functor

− maps the up-left pushout square to a pullback square because the indexed institution is semi-
exact,

− maps the down-right pushout square to a pullback square because the indexed institution is
locally semi-exact, and

− maps the up-right and down-left pushout squares to pullback squares because the institution
embeddings(Φ1,Φ1,ζ1,α1,β1) and(Φ2,Φ2,ζ2,α2,β2) are exact.

Therefore, the Grothendieck model functor maps the original pushout square of signatures in the
Grothendieck institution to a pullback square by composing the four pullback squares obtained
from mapping the four component pushout squares.

Unlike the corresponding results for theory colimits or liberality, the result of Theorem 5 cannot
always be applied in practice; there are important practical cases when the necessary conditions for
the (semi-)exactness of the Grothendieck institution do not hold. In such situations one should try
to base the semantics of the specification language on a subclass of practically meaningful cases for
which the (semi-)exactness property can be obtained (Diaconescu, 1998). In this case Theorem 5

6 Notice that in the diagrams of this proof we represent the indices by their corresponding signature categories and the
index morphisms by the corresponding functors between the signature categories.
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allow us to isolate the condition which is responsible for the failure of the (semi-)exactness property.
It seems that in practice only the last two conditions of Theorem 5 might fail to hold.

4.4. INCLUSION SYSTEMS IN GROTHENDIECK INSTITUTIONS

Inclusion systemswhere first introduced by (Diaconescu et al., 1993) for the institution-independent
study of structuring specifications. They provide the underlying mathematical concept for module
imports, which are the most fundamental structuring construct. Mathematically, inclusion systems
capture categorically the concept of set-theoretic ‘inclusion’ in a way reminiscent of factorization
systems (Borceux, 1994).Weak inclusion systemswere introduced in (C̆az̆anescu and Roşu, 1997)
as a weakening of the original definition of inclusion systems of (Diaconescu et al., 1993).

DEFINITION 16. 〈I , E〉 is a weak inclusion systemfor a categoryC if I and E are two sub-
categories with|I |= |E |= |C| such that

1. I is a partial order, and

2. every arrowf in C can be factored uniquely asf = e; i with e∈ E andi ∈ I .

The arrows ofI are calledinclusions, and the arrows ofE are calledsurjections.7 The domain
(source) of the inclusioni in the factorization off is called called theimage of fand denoted as
Im( f ). An injection is a composite between an inclusion and an isomorphim.

A weak inclusion system〈I , E〉 is an inclusion systemif and only if I has finite least upper
bounds (denoted+) and all surjections are epics (see (Diaconescu et al., 1993)).2

Recall from (Diaconescu, 1998) the following technical definition:

DEFINITION 17. LetC andC′ be two categories with weak inclusion systems〈I , E〉 and〈I ′, E ′〉
respectively. Then a functorU : C→ C

′ lifts inclusions uniquelyif and only if for any inclusion
ι′ : A′ ↪→ BU in I ′ with B∈ |C|, there exists a unique inclusionι ∈ I such thatιU = ι′. 2

Because of the structure of the Grothendieck institutions (see Remark 1), the problem of an
inclusion system for its category of signatures is reduced to the problem of inclusion systems in
Grothendieck categories. However, in this paper we limit this study to the case of weak inclusion
systems.

4.4.1. Inclusion Systems in Grothendieck categories
THEOREM 6. Let B: Iop→ Cat be an indexed category such that

− I has a weak inclusion system〈I I , E I 〉,

− Bi has a weak inclusion system〈I i , E i〉 for each index i∈ |I |,

− Bu preserves inclusions for each inclusion index morphism u∈ I I , and

− Bu preserves inclusions and surjections and lifts inclusions uniquely for each surjection index
morphism u∈ E I .

Then, the Grothendieck category B] has an inclusion system〈I B] , EB]〉 where〈u, ϕ〉 is

− inclusioniff both u andϕ are inclusions, and

− surjectioniff both u andϕ are surjections.

7 Surjections of some weak inclusion systems need not necessarily be surjective in the ordinary sense.
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Proof. I B] andEB] are both sub-categories ofB] becauseBu preserves inclusions (surjections)
wheneveru is inclusion (surjection).

We now consider an arrow〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉 in the Grothendieck categoryB] and prove
that it factors uniquely as a composite between an arrow fromEB] and an arrow fromI B] . We factor
u in 〈I I , E I 〉 andϕ in 〈I i , E i〉 as follows:

i
u //

ue
��;;;;;;;; i′ Σ

ϕ //

ϕe
��>>>>>>>> Σ′Bui

Bue

i′′
ui

@@��������
Σ1

ϕ1

;;wwwwwwwww

Sinceue lifts inclusions uniquely there exists an unique inclusionϕi : Σ′′→ Σ′Bui
such thatϕiBue

=
ϕ1. Notice that〈ui , ϕi〉 is an inclusion,〈ue, ϕe〉 is a surjection, and that〈u, ϕ〉= 〈ue, ϕe〉;〈ui , ϕi〉.

Finally, the uniqueness of this factorization follows stepwise from the uniqueness of the factor-
ization of the index morphism, then from the uniqueness of the factorization through the inclusion
system ofBi (by using the preservation of inclusions by theBue

), and finally from the uniqueness of
the lifting to I i′′ .

A similar result was proved in (Diaconescu, 1998) directly for extra theory morphisms. Theo-
rem 6 avoids some complexities of the corresponding result from (Diaconescu, 1998) which were
related to the sentences. This simplification is possible due to the fact that we have a (Grothen-
dieck) institution in which extra theory morphisms appear as ordinary theory morphisms which
permits the automatic lifting of inclusion systems from signatures to theories (see (Diaconescu et al.,
1993; C̆az̆anescu and Roşu, 1997)). In fact, as pointed out by (Căz̆anescu and Roşu, 1997), for the
case of weak inclusion systems this can be done in two different ways, thus obtaining two different
weak inclusion systems at the level of theories for each weak inclusion system for signatures. In
this way, from Theorem 6 one can also obtain a different variant of the result in (Diaconescu, 1998)
corresponding to the other way of lifting of weak inclusion systems from signatures to theories,
which shows that Theorem 6 is conceptually more general than the result of (Diaconescu, 1998).
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5. Conclusions

We extended the concepts of Grothendieck and fibred categories to institutions, including a Grothen-
dieck construction for institutions (easily extensible to other related structures) and an equivalence
result á la B́enabou between Grothendieck and fibred institutions. We showed that the concept of
extra theory morphism of (Diaconescu, 1998) appears as ordinary (intra) theory morphism in a
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Grothendieck institution, leading to a higher conceptual approach to multi-paradigm (heterogenous)
algebraic specification. We also extended the ‘globalization’ results of institutional properties of
(Diaconescu, 1998), by giving necessary and sufficient conditions for theory colimits, liberality,
exactness in Grothendieck institutions, and by providing inclusion systems to Grothendieck cat-
egories. The conceptual power of Grothendieck institutions enabled us to extend the results of
(Diaconescu, 1998), also by highly simplifying some of the proofs, and to give a necessary and
sufficient characterization for the exactness problem in Grothendieck institutions (conjectured in
(Diaconescu, 1998)).
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Paŕe, R. and D. Schumacher: 1978,Indexed Categories and their Applications, Vol. 661 ofLecture Notes in Mathematics,

Chapt. Abstract Families and the Adjoint Functor Theorems, pp. 1–125. Springer.
Tarlecki, A.: 1986, ‘On the Existence of Free Models in Abstract Algebraic Institutions’.Theoretical Computer Science

37, 269–304. Preliminary version, University of Edinburgh, Computer Science Department, Report CSR-165-84,
1984.

Tarlecki, A.: 1996, ‘Moving between logical systems’. In: M. Haveraaen, O. Owe, and O.-J. Dahl (eds.):Recent Trends
in Data Type Specification. pp. 478–502. Proceedings of 11th Workshop on Specification of Abstract Data Types.
Oslo, Norway, September 1995.

Tarlecki, A.: 2000, ‘Towards Heterogeneous Specifications’. In: D. Gabbay and M. van Rijke (eds.):Proceedings,
International Conference on Frontiers of Combining Systems (FroCoS’98). pp. 337–360.

Tarlecki, A., R. Burstall, and J. Goguen: 1991, ‘Some Fundamental Algebraic Tools for the Semantics of Computation,
Part 3: Indexed Categories’.Theoretical Computer Science91, 239–264. Also, Monograph PRG–77, August 1989,
Programming Research Group, Oxford University.

gi.tex; 23/02/2005; 23:03; p.17



gi.tex; 23/02/2005; 23:03; p.18


