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Abstract

We develop foundations for structuring behavioural specifications based on the logic tradition of hidden
algebra. This includes an analysis of a number of important technical compositional properties for behavioural
signatures, such as pushouts, inclusions and unions, as well as an investigation of algebraic rules for
behavioural module composition. As a particularity of behavioural specifications, some of the constructions
and results arise in a partial algebraic form. This partiality aspect is one of the distinguishing features of our
approach to behavioural specification modules. In addition, our study does not commit to any actual choice
of structuring constructs, thus being applicable to a wide variety of structuring situations.

1. Introduction

Modern algebraic specification theory and practice has extended the traditional many-sorted algebra-
based specification to several new paradigms. One of the most promising is behavioural specification,
which originates from the work of Horst Reichel [31, 32] and can be found in the literature under names
such as hidden algebra [24, 25], observational logic [4, 27], coherent hidden algebra [19] and hidden
logic [33]. Behavioural specification characterises how objects (and systems) behave, not how they are
implemented. This new form of abstraction can be very powerful for the specification and verification of
software systems since it naturally embeds other useful paradigms such as concurrency, object-orientation,
constraints, nondeterminism, etc. (see [25] for details). In the tradition of algebraic specification, the
behavioural abstraction is achieved by using specification with hidden sorts and a behavioural concept of
satisfaction based on the idea of indistinguishability of states that are observationally the same, which also
generalizes process algebra and transition systems (see [25]).

An important effort has been undertaken to develop languages and systems supporting the behavioural
extension of conventional or less conventional algebraic specification techniques; these include CafeOBJ [18,
20], CIRC [35] and BOBJ [33]. In other situations, behavioural specification, although not directly realized
at the level of the language definition, is employed as a mere methodological device [5]. In all cases
there is the unavoidable need of a structuring mechanism for behavioural specifications. Structuring or
modularization is in fact a common aspect of any formal method that aims at assisting the development
of complex systems; without it such developments are simply not possible. Due to its important role in
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formal specification development (see for example [37]), the study of modularization is supported by a rather
vast scientific literature developed over the past four decades. In the case of logic-based formal methods it
has become standard to approach the study of modularization of systems through the so-called institution
theory of Goguen and Burstall [23]. This trend has led to a fairly uniform understanding of various systems
of modularization or structuring, one that has been successfully applied to the design of modern algebraic
specification languages such as CASL [2] or CafeOBJ [18, 20]. However, in spite of this, due to the inherent
complexity and difficulty of the subject, the study of modularization is far from being closed as insufficiently
explored aspects still exist. For instance, the recent works [17, 15] attempt to give an answer as complete
as possible to the issue of instantiating multiple parameters in a sharing context. Moreover, behavioural
specification itself poses a particular challenge given by some of the specificities of its underlying logic
that raise serious obstacles when attempting to apply established general theories on modularization. For
example, one major source of problems is given by the fact that the union or aggregation of behavioural
signatures is inherently partial rather than total and moreover, by noticing that this partiality is induced
by two different factors. On the one hand, one may not aggregate signatures that share a sort name that is
declared visible in one of the signatures and hidden in the other. On the other hand, any aggregation of
signatures has to fulfil the encapsulation condition characteristic to behavioural signature morphisms, which
cannot be guaranteed in all possible situations; this property is essential for the basic satisfaction condition
of the underlying logic to hold, which in turn is absolutely necessary with respect to modularization. The
requirement of both of these hypotheses (i.e. the preservation and the reflection of sorts’ visibility, together
with the encapsulation condition) has been extensively discussed in the literature (e.g. [25, 27]), not only
from a technical perspective, but also in terms of their practical relevance. Hence, under the current general
assumptions on behavioural specification, the union of signatures arises naturally as a partial operation.

In this paper we develop foundations for structuring of behavioural specifications in the light of the
most recent developments in structuring specifications in general [17, 15]. This means reliance upon well
established theoretical devices used in modularization studies such as institutions, pushouts, and inclusion
systems. It also means that only some of the concepts and results already available at the general level may
be applied directly, while much has to be reconsidered for the specific situation of behavioural specifications,
thus leading to a series of new theoretical investigations.

The structure and the contents of the paper can be briefly described as follows. After a first prelimi-
nary section that recalls a number of concepts and results from previous works on the modularization of
specifications on which we rely in our work, we present our contribution in two main sections:

1. The first one is devoted to our choice of a logical system that underlies behavioural specification. We
introduce the institution of hidden algebra, detail the connection with related work, and develop a
series of technical properties that are required by our modularization study. This includes pushouts
and inclusion systems for behavioural signatures, as well as the investigation of several basic algebraic
rules for the composition of behavioural signatures that are important for our study. A characteristic
of these rules is that they are given in the style of partial algebras (in the sense of [9]). In contrast to
their conventional corresponding variants they are conditional and, in addition, non-trivial to obtain.
For example, the associativity of the union or aggregation of signatures, which in general follows
immediately as a property of suprema, here, because of the partiality of the union of signatures, follows
by reliance on a series of specific technical results.

2. In the second main section we introduce our basic framework for structuring behavioural specifications,
which is based on recent ideas from [15]. An immediate consequence of the abstract nature of
the central definitions is that we are able to develop our study on the structuring of behavioural
specifications independently of any actual choice of specification building operators; this means direct
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applicability to a wide range of actual specification languages and systems. Moreover, the base
institution is also considered abstractly by axiomatising some of the compositionality properties of
hidden algebra; in this way, our work may be applied to other behavioural specification logics and
even to other specification logics that share with hidden algebra some compositional properties.

We also develop a few important algebraic rules for structured behavioural specifications, again in a
partial algebra style that is inherited from the level of signatures. This partiality aspect is unique to our
development since the module algebra literature [3, 21, 37] has considered thus far only total algebraic
rules. In fact, our results constitute a generalisation of those module algebra works in the sense in
which partial algebra is a generalisation of total algebra.

2. Preliminaries

In this section we recall a series of well-established concepts in the specification literature that are of
central importance for the mathematical and logical foundations of modularization.

2.1. Categories

Institution theory relies technically upon category theory. We assume the reader is familiar with basic
notions and standard notations from category theory. With few exceptions, in general we follow the
terminology and the notations of [29]. With respect to notational conventions, |C| denotes the class of
objects of a category C, C(A, B) the set of arrows (morphisms) with domain A and codomain B, and “;” the
composition (in diagrammatic order). A subcategory C′ of C is broad when |C′| = |C|. The category of sets
(as objects) and functions (as arrows) is denoted by Set, and the category of all categories (as objects) and
functors (as arrows)1 is denoted by CAT.

2.2. Institutions

Institutions have been defined by Goguen and Burstall in [10], the seminal paper [23] being printed after
a delay of many years. Below we recall the concept of institution, which formalises the intuitive notion of
logical system, including the syntax, semantics and the satisfaction between them.

Definition 2.1 (Institutions). An institution I = (SignI,SenI,ModI, |=I) consists of

1. a category SignI, whose objects are called signatures,

2. a functor SenI : SignI → Set, giving for each signature a set whose elements are called sentences over
that signature,

3. a functor ModI : (SignI)op → CAT giving for each signature Σ a category whose objects are called
Σ-models, and whose arrows are called Σ-(model) homomorphisms, and

4. a relation |=I
Σ
⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI|, called Σ-satisfaction,

such that for each morphism ϕ : Σ→ Σ′ in SignI, the satisfaction condition

M′ |=IΣ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) |=IΣ ρ

holds for each M′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

1Strictly speaking, this is only a quasi-category living in a higher set-theoretic universe.
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We denote the reduct functor ModI(ϕ) by �ϕ and the sentence translation SenI(ϕ) by ϕ( ). When
M = M′�ϕ we say that M is a ϕ-reduct of M′, and that M′ is a ϕ-expansion of M. When there is no danger of
ambiguity, we may skip the superscripts from the notations of the entities of the institution; for example,
SignI may be denoted simply by Sign.

General assumption: We assume that model isomorphisms preserve the satisfaction of all sentences of the
considered institutions, i.e. if M and N are isomorphic (denoted M � N) then for each sentence ρ we have
that M |= ρ if and only if N |= ρ. It is easy to see that this assumption holds in all the concrete examples of
institutions of interest for specification and programming.

There is a myriad of examples of logics captured as institutions, both from logic and from computing. A
few of them can be found in [13, 37]. In fact, the thesis underlying institution theory is that anything that
deserves to be called logic can be captured as an institution. The following is the most traditional institution
in algebraic specification.

Example 2.1 (Many sorted algebra – MSA). The MSA-signatures are pairs (S , F) consisting of a set S of
sort symbols and of a family F = {Fw→s | w ∈ S ∗, s ∈ S } of sets of function symbols indexed by arities (for
the arguments) and sorts (for the results). Signature morphisms ϕ : (S , F)→ (S ′, F′) consist of a function
ϕst : S → S ′ and a family of functions ϕop =

{
ϕ

op
w→s : Fw→s → F′

ϕst(w)→ϕst(s) | w ∈ S ∗, s ∈ S
}
.

The (S , F)-models M, called algebras, interpret each sort symbol s as a set Ms and each function
symbol σ ∈ Fw→s as a function Mσ from the product Mw of the interpretations of the argument sorts to
the interpretation Ms of the result sort. An (S , F)-model homomorphism h : M → M′ is an indexed family
of functions {hs : Ms → M′s | s ∈ S } such that hs(Mσ(m)) = M′σ(hw(m)) for each σ ∈ Fw→s and each
m ∈ Mw, where hw : Mw → M′w is the canonical componentwise extension of h, i.e. hw(m1, . . . ,mn) =

(hs1(m1), . . . , hsn(mn)) for w = s1 . . . sn and mi ∈ Msi .
For each signature morphism ϕ : (S , F)→ (S ′, F′), the reduct M′�ϕ of an (S ′, F′)-model M′ is defined

by (M′�ϕ)x = M′ϕ(x) for each sort or function symbol x from the domain signature of ϕ.
For each signature (S , F), T(S ,F) =

(
(T(S ,F))s

)
s∈S is the least family of sets such that σ(t) ∈ (T(S ,F))s for

all σ ∈ Fw→s and all tuples t ∈ (T(S ,F))w. The elements of (T(S ,F))s are called (S , F)-terms of sort s. For each
(S , F)-algebra M, the evaluation of an (S , F)-term σ(t) in M, denoted Mσ(t), is defined as Mσ(Mt), where
Mt is the componentwise evaluation of the tuple of (S , F)-terms t in M.

Sentences are the usual first order sentences built from equational atoms t = t′, with t and t′ (well-formed)
terms of the same sort, by iterative application of Boolean connectives (∧,⇒, ¬, ∨) and quantifiers (∀X, ∃X
– where X is a sorted set of variables). Sentence translations along signature morphisms just rename the sort
and function symbols according to the respective signature morphisms. They can be formally defined by
recursion on the structure of the sentences. The satisfaction of sentences by models is the usual Tarskian
satisfaction defined recursively on the structure of the sentences. (As a special note for the satisfaction of the
quantified sentences, defined in this formalisation by means of model reducts, we recall that M |=Σ (∀X)ρ if
and only if M′ |=Σ+X ρ for each expansion M′ of M to the signature Σ + X that adds the variables X as new
constants to Σ.)

2.3. Pushouts of signatures and model amalgamation
The crucial role of model amalgamation for the semantic studies of formal specifications comes up in

a large number of works in the area, a few early cases being [6, 36, 38, 30, 21]. The model amalgamation
property is a necessary condition in many institution-independent model-theoretic results (see [13]), thus
being one of the most desirable properties for an institution. It can be considered even as more fundamental
than the satisfaction condition since in institutions with quantifications it is used in one of its weak forms
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in the proof of the satisfaction condition at the induction step corresponding to quantifiers (see [13] for the
details). Its importance within the context of module algebra has been first emphasized in [21]. Model
amalgamation properties for institutions formalise the possibility of amalgamating models of different
signatures when they are consistent on some kind of generalized ‘intersection’ of signatures.

Definition 2.2 (Amalgamation square). A commutative square of signature morphisms

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2 θ2

// Σ′

is an amalgamation square if and only if for each Σ1-model M1 and Σ2-model M2 such that M1�ϕ1 = M2�ϕ2 ,
there exists an unique Σ′-model M′, denoted M1 ⊗ϕ1,ϕ2 M2, or M1 ⊗ M2 for short when there is no danger of
ambiguity, such that M′�θ1 = M1 and M′�θ2 = M2. When we drop the uniqueness requirement we call this a
weak model amalgamation square.

In most of the institutions formalising conventional or non-conventional logics, pushout squares of
signature morphisms are model amalgamation squares [21, 13].

Definition 2.3 (Model amalgamation and semi-exactness). An institution has (weak) model amalgamation
when each pushout square of signatures is a (weak) amalgamation square. A semi-exact institution is an
institution with the model amalgamation property extended also to model homomorphisms.

The literature considers also extensions of model amalgamation from pushouts to arbitrary colimits;
however, for reasons of simplicity of presentation and because they are by far the most important case with
respect to the applications, in this paper we consider model amalgamation only for pushouts.

The result below is well known in the literature ([37, 13] are two of the many relevant references).

Proposition 2.1. MSA has all pushouts of signature morphisms and is semi-exact.

2.4. Inclusion systems
Inclusion systems were introduced in [21] as a categorical device supporting an abstract general study of

structuring of specification and programming modules that is independent of any underlying logic. They
have been used in a series of general module algebra studies such as [21, 26, 13] but also for developing
axiomatisability [34, 12, 13] and definability [1] results within the framework of the so-called institution-
independent model theory [13]. Inclusion systems capture categorically the concept of set-theoretic inclusion
in a way reminiscent of how the rather notorious concept of factorization system [7] captures categorically
the set-theoretic injections; however, in many applications the former are more convenient than the latter.
Here we recall from the literature the basics of the theory of inclusion systems.

The definition below can be found in the recent literature on inclusion systems (e.g. [13]) and differs
slightly from the original one of [21].

Definition 2.4 (Inclusion systems). A pair of categories 〈I, E〉 is an inclusion system for a category C if I
and E are two broad subcategories of C such that

1. I is a partial order (with the ordering relation denoted by ⊆), and

2. every arrow f in C can be factored uniquely as f = e f ; i f with e f ∈ E and i f ∈ I.
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The arrows of I are called abstract inclusions, and the arrows of E are called abstract surjections. The
domain of the inclusion i f in the factorization of f is called the image of f and is denoted as Im( f ) or f (A)
when A is the domain of f . An inclusion i : A→ B may also be denoted simply by A ⊆ B.

An inclusion system 〈I, E〉 is said to be epic when all abstract surjections of E are epimorphisms in C.

In [11] it is shown that the class I of abstract inclusions determines the class E of abstract surjections. In
this sense, [11] gives an explicit equivalent definition of inclusion systems that is based only on the class I of
abstract inclusions. The standard example of inclusion system is that from Set, with set theoretic inclusions
in the role of the abstract inclusions and surjective functions in the role of the abstract surjections. The
literature contains many other examples of inclusion systems for the categories of signatures and for the
categories of models of various institutions from logic or from specification theory. Due to lack of space let
us recall here only a couple of them.

Example 2.2 (Inclusion systems for MSA-signatures). Besides the trivial inclusion system that can be defined
in any category (i.e. identities as abstract inclusions and all arrows as abstract surjections) the category of
MSA-signatures admits also the following two non-trivial inclusion systems:

inclusion system abstract surjections abstract inclusions
ϕ : (S , F)→ (S ′, F′) (S , F) ⊆ (S ′, F′)

closed ϕst : S → S ′ surjective S ⊆ S ′

Fw→s = F′w→s for w ∈ S ∗, s ∈ S
strong ϕst : S → S ′ surjective S ⊆ S ′

F′w′→s′ =
⋃
ϕst(ws)=w′s′ ϕ

op(Fw→s) Fw→s ⊆ F′w→s for w ∈ S ∗, s ∈ S

Note that the strong inclusion system of the category of MSA-signatures is epic.

Definition 2.5 (Union and intersection). In any inclusion system, the union and the intersection of two
objects A and B are, respectively, their least upper bound A∪ B and their greatest lower bound A∩ B, relative
to the partial order ⊆.

In [21] it has been shown that whenever a category equipped with an inclusion system has pullbacks,
the existence of unions implies the existence of intersections, which can be obtained as pullbacks of the
structural morphisms that correspond to unions.

A ∩ B ⊆
//

⊆

��

A

⊆

��

B
⊆
// A ∪ B

It is often useful that the intersection-union squares are not only pullbacks, but they are also pushouts.

Example 2.3. In the strong inclusion system for MSA-signatures, any two signatures Σ1 and Σ2 admit the
union Σ1 ∪Σ2 and the intersection Σ1 ∩Σ2 (see [21]). Moreover, the lattice of inclusions is distributive and all
the corresponding intersection-union squares of signatures are pushout squares. The closed inclusion system
for MSA-signatures does not enjoy any of these properties, and for this reason it is completely unsuitable for
the development of specifications.
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The following abstract concept captures a rather common situation in practice, including of course MSA;
it has been introduced in [21].

Definition 2.6 (Inclusive institution). An institution is inclusive when its category of signatures is endowed
with an inclusion system such that whenever Σ ⊆ Σ′, we have Sen(Σ) ⊆ Sen(Σ′).

3. The institution of hidden algebra

The logic underlying behavioural specification that we consider here is an upgraded version of the
so-called hidden algebra [24] (abbreviated HA). This section is structured as follows:

1. We first recall the institution of hidden algebra.

2. Then we develop results about the existence of pushouts and pullbacks of signatures, and we derive
the model amalgamation property for hidden algebras.

3. We define an inclusion system for behavioural signatures and clarify the necessary conditions for the
existence of unions of behavioural signatures.

4. Based upon results developed in the first parts of the section, in the final part we develop a number of
algebraic rules for the union and intersection of behavioural signatures. Most notably, we investigate
the associativity of the union and the distributivity of the union over the intersection; both properties
arise in a conditional and partial form.

3.1. Signatures, sentences, models and satisfaction

Our presentation of the main concepts of hidden algebra given below represents an upgraded variant of
the so-called coherent hidden algebra [19, 20] framework employed by CafeOBJ, which also covers the
hidden algebra framework of [33]. This is both a simplification and an extension of the classical hidden
algebra of [24, 25] in several directions, most notably by allowing operations with multiple hidden sorts in the
arity, and differs only slightly from other modern formalisations of hidden algebra in the literature [27, 33].
HA is also significantly more general than coalgebra with final semantics [28] since it integrates smoothly
data types and it allows behavioural operations with multiple hidden sorts.

Definition 3.1 (Behavioural signature). An HA-signature is a tuple (H,V, F, BF) where

– (H ∪ V, F) is an MSA-signature with H ∩ V = ∅; the sorts in V are called visible sorts and the sorts in
H are called hidden sorts; and

– (H ∪ V, BF) is a subsignature of (H ∪ V, F) such that BFw→s = ∅ when w ∈ V∗; the operations of BF
are called behavioural operations.

For any HA-signature (H,V, F, BF) let msa(H,V, F, BF) denote its underlying MSA-signature (H ∪ V, F).

Definition 3.2 (Hidden algebra). Given a signature (H,V, F, BF), an (H,V, F, BF)-algebra is just an MSA-
algebra for the signature msa(H,V, F, BF).

Definition 3.3 (Hidden congruence). Given an (H,V, F, BF)-algebra A, a hidden (H,V, F, BF)-congruence ∼
on A is an (H ∪ V, BF)-congruence whose components on visible sorts are all identities.

Definition 3.4 (Behavioural equivalence). The largest hidden (H,V, F, BF)-congruence on an (H,V, F, BF)-
algebra A, denoted ∼A, is called the behavioural equivalence on A.
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A proof of the following crucial result can be found in several variants in several places in the literature;
in the form represented by our particular hidden algebra formalisation it can be found in [14]. This result
generalizes the final semantics employed by the early hidden algebra frameworks [24] or by the coalgebraic
approaches [28] to the situation of behavioural operations with multiple hidden sorts in the arity and of loose
interpretation of the visible part of the signature.

Theorem 3.1. The behavioural equivalence exists for any (H,V, F, BF)-algebra.

Definition 3.5 (HA-sentence). Given a HA-signature (H,V, F, BF), the (H,V, F, BF)-sentences are built like
the MSA (H ∪ V, F)-sentences from two kinds of atoms, behavioural equations t ∼ t′ and strict equations
t = t′, by iteration of Boolean connectives (∧, ∨, ¬,⇒, etc.) and quantifications.

Definition 3.6 (HA-satisfaction). The satisfaction relation between (H,V, F, BF)-algebras and (H,V, F, BF)-
sentences is defined like in MSA, in the Tarski style, by recursion on the structure of sentences, with the
addition that a hidden algebra A satisfies a behavioural equation t ∼ t′ if and only if At ∼A At′ .

Definition 3.7 (Quasi-morphism of HA-signatures). A quasi-morphism of HA-signatures ϕ : (H,V, F, BF)→
(H′,V ′, F′, BF′) is just an MSA-signature morphism ϕ : msa(H,V, F, BF)→ msa(H′,V ′, F′, BF′) such that

– ϕ(H) ⊆ H′, ϕ(V) ⊆ V ′, and

– the restriction of ϕ to (H ∪ V, BF) is an MSA-signature morphism (H ∪ V, BF)→ (H′ ∪ V ′, BF′).

Fact 3.1. The HA-signature quasi-morphisms are closed under composition.

Definition 3.8 (HA-signature morphism). A quasi-morphism ϕ : (H,V, F, BF) → (H′,V ′, F′, BF′) is a
signature morphism if and only if the following ‘encapsulation’ condition holds:

for any σ′ ∈ BF′w→s, if w ∩ ϕ(H) , ∅ (i.e. w contains an ‘old’ hidden sort)
then there exists σ in BF such that σ′ = ϕ(σ).

Notation 3.1. Given an MSA-signature (S , F) and a sort z ∈ S we define

F[z] = {(σ,w, s) | w ∈ S ∗, s ∈ S , σ ∈ Fw→s, z ∈ w}.

Note that for any MSA-signature (S , F) and sort z ∈ S , any morphism of MSA-signatures ϕ : (S , F)→ (S ′, F′)
induces a map ϕ[z] : F[z] → F′[ϕ(z)] defined by ϕ[z](σ,w, s) =

(
ϕ(σ), ϕ(w), ϕ(s)

)
.

Fact 3.2. Let ϕ : (H,V, F, BF)→ (H′,V ′, F′, BF′) be any quasi-morphism of HA-signatures. Then

1. If ϕ is injective on hidden sorts then ϕ is a morphism of signatures if and only if for any h ∈ H the map
ϕ[h] : BF[h] → BF′[ϕ(h)] is surjective.

2. If ϕ is injective then ϕ is a morphism of signatures if and only if for any h ∈ H the map ϕ[h] : BF[h] →

BF′[ϕ(h)] is bijective.

Fact 3.3. The HA-signature morphisms are closed under composition.

The additional ‘encapsulation’ condition of Dfn. 3.8 has the flavour of class encapsulation from object-
oriented programming and guarantees that the behavioural equivalence on the ‘old’ (hidden) sorts is not
changed. The following result is a very important consequence of this and has been proved in several different
variants in several places in the literature (perhaps for the first time in [22] but within a significantly more
restricted hidden-algebra context).
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Corollary 3.1 (HA-satisfaction condition). For any HA-signature morphism ϕ : Σ→ Σ′, any Σ-sentence ρ
and any Σ′-algebra A′ we have that

A′ |= ϕ(ρ) if and only if A′�ϕ |= ρ.

Hence, HA is an institution.

In both [22] and [24] the authors remark that the derivation of the encapsulation condition on the
morphisms of signatures from the meta-principle of invariance of truth under change of notation (the
Satisfaction Condition of institutions) seems to confirm the naturalness of each of the principles.

3.2. Pushouts of signature morphisms

Pushouts of signature morphisms constitute one of the most important technical devices employed
in various kinds of module compositions such as module aggregation (or sum), and most notably in the
instantiation of parameterised modules. In this section we study the existence of pushouts of signature
morphisms in HA by lifting them from MSA in two steps; first to the category of quasi-morphisms and then
to the category of HA-signature morphisms. Colimits of MSA-signatures, and pushouts in particular, are a
classic of algebraic specification literature and we do not recall their construction here. For the readers keen
to understand these from scratch we recommended references such as [39, 13].

Proposition 3.1. The forgetful functor from the category of quasi-morphisms of HA-signatures to SignMSA

lifts pushouts.

Proof. Let (ϕ1, ϕ2) be a span of quasi-morphisms of signatures as depicted below.

(H0,V0, F0, BF0)
ϕ1
//

ϕ2

��

(H1,V1, F1, BF1)

(H2,V2, F2, BF2)

Assuming that (θ1, θ2) is the following pushout of the underlying MSA-signature morphisms of ϕ1 and ϕ2, let
H and V be the sets θ1(H1) ∪ θ2(H2) and θ1(V1) ∪ θ2(V2), respectively. Then S = H ∪ V .

(H0 ∪ V0, F0)
ϕ1
//

ϕ2

��

(H1 ∪ V1, F1)

θ1
��

(H2 ∪ V2, F2)
θ2

// (S = H ∪ V, F)

Let us show that H ∩ V = ∅. Since for each k ∈ {0, 1, 2}, Hk ∩ Vk = ∅ and for each k ∈ {1, 2}, ϕk(H0) ⊆ Hk

and ϕk(V0) ⊆ Vk, there exists H′, V ′ such that H′ ∩ V ′ = ∅, and a commutative square like below such that
gi(Hi) ⊆ H′ and gi(Vi) ⊆ V ′, for i ∈ {1, 2} (these may be obtained for example by considering pushouts of
the restrictions of ϕ1 and ϕ2 to hidden and visible sorts, respectively).

H0 ∪ V0
ϕ1
//

ϕ2

��

H1 ∪ V1

g1

��

H2 ∪ V2 g2
// H′ ∪ V ′
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Therefore, by the pushout property of (θ1, θ2), there exists f : S → H′∪V ′ such that θ1; f = g1 and θ2; f = g2.
If there existed hi ∈ Hi and v j ∈ V j such that θi(hi) = θ j(v j) then gi(hi) = g j(v j) ∈ H′ ∩ V ′, which contradicts
H′ ∩ V ′ = ∅. Hence, H ∩ V = ∅.

We extend θ1 and θ2 to quasi-morphisms of signatures by letting σ in BF if and only if there exists
k ∈ {1, 2} andσk in BFk such thatσ = θk(σk). The resulting square is a commuting square of quasi-morphisms
of signatures.

It remains to prove that for any quasi-morphisms ζk : (Hk,Vk, Fk, BFk)→ (H′′,V ′′, F′′, BF′′), where k ∈
{1, 2}, such that ϕ1; ζ1 = ϕ2; ζ2 there exists a unique quasi-morphism ζ : (H,V, F, BF)→ (H′′,V ′′, F′′, BF′′)
verifying the equality θk; ζ = ζk.

(H0,V0, F0, BF0)
ϕ1
//

ϕ2

��

(H1,V1, F1, BF1)

θ1
��

ζ1

��

(H2,V2, F2, BF2)
θ2

//

ζ2

//

(H,V, F, BF)
ζ

##

(H′′,V ′′, F′′, BF′′)

We obtain ζ as an MSA-signature morphism (H ∪ V, F) → (H′′ ∪ V ′′, F′′) from the universal property of
pushout squares in the category of the MSA-signatures. In order to prove that it is a quasi-morphism of
HA-signatures, let us first notice that

ζ(V) = ζ
(
θ1(V1) ∪ θ2(V2)

)
= ζ

(
θ1(V1)

)
∪ ζ

(
θ2(V1)

)
= ζ1(V1) ∪ ζ2(V2).

Since ζk(Vk) ⊆ V ′′, for k ∈ {1, 2} it follows that ζ(V) ⊆ V ′′. Similarly, we obtain ζ(H) ⊆ H′′.
Now let σ ∈ BFw→s. Then there exists k ∈ {1, 2}, wk ∈ (Hk ∪ Vk)∗, sk ∈ Hk ∪ Vk and σk ∈ BFwk→sk such

that σ = θk(σk). Hence, ζ(σ) = ζ
(
θk(σk)

)
= ζk(σk). Given that ζk is a quasi-morphism of HA-signatures, it

follows that ζk(σk) ∈ BF′′ζk(wk)→ζk(sk), which means that ζ(σ) ∈ BF′′ζ(w)→ζ(s).

Proposition 3.2. Under the notations used in the proof of Prop. 3.1, if ϕ2 is a morphism of HA-signatures
then θ1 is a morphism of HA-signatures too.

Proof. Assume that σ ∈ BFw→s satisfies w ∩ θ1(H1) , ∅. By the definition of BF, the interesting case is that
in which σ = θ2(σ2), with σ2 in BF2. Let us thus consider h ∈ w ∩ H and h1 ∈ H1 such that h = θ1(h1).

Since σ = θ2(σ2), there exists a hidden sort h2 in the arity w2 of σ2 such that h = θ2(h2). Moreover,
since h = θ1(h1) = θ2(h2), by the pushout construction in the category of sets, it follows that there exists
h0 ∈ H0 such that h1 = ϕ1(h0) and h2 = ϕ2(h0). Hence

w2 ∩ ϕ2(H0) , ∅.

Now by the encapsulation hypothesis for ϕ2, there exists σ0 in BF0 such that σ2 = ϕ2(σ0), which allows us
to define σ1 = ϕ1(σ0); since σ0 is in BF0 it follows that σ1 is in BF1. We thus obtain

θ1(σ1) = θ1
(
ϕ1(σ0)

)
(by the definition of σ1) = θ2

(
ϕ2(σ0)

)
(since ϕ1; θ1 = ϕ2; θ2)

= θ2(σ2) (since σ2 = ϕ2(σ0)) = σ (since σ = θ2(σ2)).

This completes the proof.
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Corollary 3.2. The forgetful functor from the category of HA-signature morphisms to the category of
quasi-morphisms of HA-signatures lifts pushouts.

Proof. The conclusion of this corollary follows from Prop. 3.2 (applied twice) if, in addition, we can show
that under the notations used in the proof of Prop. 3.1, the mediating quasi-morphism ζ is a morphism
whenever both ζ1 and ζ2 are morphisms.

Let us consider σ′ ∈ (BF′)w′→s′ such that w′ ∩ ζ(H) , ∅. Then there exists h ∈ H such that ζ(h) ∈ w′.
By the construction of pushouts in Set there exists k ∈ {1, 2} and hk ∈ Hk such that h = θk(hk). Hence, there
exists k ∈ {1, 2} such that w′ ∩ ζk(Hk) , ∅. Since ζk is a morphism, meaning that it satisfies the encapsulation
condition, there exists σk in BFk such that σ′ = ζk(σk). As a result, we can define σ = θk(σk) such that

ζ(σ) = ζ
(
θk(σk)

)
= ζk(σk) = σ′.

Finally, since σk is in BFk, we deduce that σ is a behavioural operation in BF.

Corollary 3.3. The forgetful functor from the category of HA-signature morphisms to SignMSA lifts pushouts.

3.3. Pullbacks of quasi-morphisms of signatures
In specification theory and practice, the role of pullbacks of signature morphisms is, in general, minor

compared with that played by pushouts. This situation is related to the fact that while pushouts constitute the
main technical device underlying various forms of aggregation of specifications, the role played by pullbacks
is confined mostly to the fact that they are used for the general definition of intersections from unions (within
a given inclusion system). The intersections of signatures are used mainly in situations that consider some
form of sharing (for example in works such as [17, 15] etc.).

In HA, pullbacks of signature morphisms enjoy lesser properties than those enjoyed by pushouts; however,
these are sufficient for a full development of the theory of structuring behavioural specifications.

Proposition 3.3. The forgetful functor from the category of the quasi-morphisms of HA-signatures to SignMSA

lifts pullbacks.

Proof. Consider the following cospan of quasi-morphisms of HA-signatures.

(H1,V1, F1, BF1)

θ1
��

(H2,V2, F2, BF2)
θ2

// (H,V, F, BF)

Let (ϕ1, ϕ2) be the pullback as depicted below of the underlying MSA-signature morphisms of θ1 and θ2 such
that H0 ∩ V0 = ∅ (this condition can be easily ensured based on the standard pullback construction in Set as a
subset of a product, by noticing that H1 ∩ V1 = H2 ∩ V2 = ∅ implies (H1 × H2) ∩ (V1 × V2) = ∅).

(H0 ∪ V0, F0)
ϕ1
//

ϕ2

��

(H1 ∪ V1, F1)

θ1
��

(H2 ∪ V2, F2)
θ2

// (H ∪ V, F)

We extend ϕ1 and ϕ2 to quasi-morphisms of signatures by defining for each w ∈ (H0 ∪ V0)∗ and s ∈ H0 ∪ V0:

(BF0)w→s = ϕ−1
1

(
(BF1)ϕ1(w)→ϕ1(s)

)
∩ ϕ−1

2
(
(BF2)ϕ2(w)→ϕ2(s)

)
.
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The resulting square is a commutative diagram of quasi-morphisms of signatures.

(H′,V ′, F′, BF′)
ζ

$$

ζ1

��

ζ2

//

(H0,V0, F0, BF0)
ϕ1
//

ϕ2

��

(H1,V1, F1, BF1)

θ1
��

(H2,V2, F2, BF2)
θ2

// (H,V, F, BF)

All we need to show is that for any quasi-morphisms ζk : (H′,V ′, F′, BF′) → (Hk,Vk, Fk, BFk), where
k ∈ {1, 2}, such that ζ1; θ1 = ζ2; θ2, there exists a unique ζ : (H′,V ′, F′, BF′) → (H,V, F, BF) such that
ζ;ϕk = ζk. We first obtain ζ as an MSA-signature morphism from the universal property of pullback squares
in the the category of MSA-signatures. To prove that it is a quasi-morphism of HA-signatures, note that

ζ(V ′) ⊆ V0 if and only if ζ(V ′) ⊆ ϕ−1
k (Vk), for k ∈ {1, 2} (sinceV0 = ϕ−1

k (Vk), for k ∈ {1, 2})
if and only if ϕk

(
ζ(V ′)

)
⊆ Vk, for k ∈ {1, 2}

if and only if ζk(V ′) ⊆ Vk, for k ∈ {1, 2} (since ζk = ζ;ϕk).

Since for each k ∈ {1, 2}, ζk is a quasi-morphism, it follows that ζk(V ′) ⊆ Vk, for k ∈ {1, 2}; hence, ζ(V ′) ⊆ V0.
In exactly the same way we can also prove that ζ(H′) ⊆ H0.

Now let σ ∈ BF′w′→s′ . For each k ∈ {1, 2} we have

ϕk
(
ζ(σ)

)
= ζk(σ) ∈ (BFk)ζk(w′)→ζk(s′).

Consequently, ζ(σ) ∈ ϕ−1
1

(
(BF1)ϕ1(ζ(w′))→ϕ1(ζ(s′))

)
∩ ϕ−1

2
(
(BF2)ϕ2(ζ(w′))→ϕ2(ζ(s′))

)
= (BF0)ζ(w′)→ζ(s′).

Proposition 3.4. Under the notations of the proof of Prop. 3.3, if θ2 is a morphism of HA-signatures then ϕ1
is a morphism of HA-signatures as well.

Proof. Suppose that σ1 : w1 → s1 is a behavioural operation symbol in BF1 such that w1∩ϕ1(H0) , ∅. Then
θ1(σ1) : θ1(w1) → θ1(s1) is a behavioural operation in BF such that θ1(w1) ∩ (ϕ1; θ1)(H0) , ∅; moreover,
since ϕ1; θ1 = ϕ2; θ2 and ϕ2(H0) ⊆ H2, we have θ1(w1) ∩ θ2(H2) , ∅. By the encapsulation condition of θ2,
we deduce that there exists a behavioural operation σ2 : w2 → s2 in BF2 such that θ2(σ2) = θ1(σ1). Hence,
since (ϕ1, ϕ2) is a pullback of the underlying MSA-signature morphisms of θ1 and θ2, we know there exists
an operation symbol σ0 in F0 such that ϕ1(σ0) = σ1 and ϕ2(σ0) = σ2. This allows us to conclude, based on
the definition of BF0, that σ0 is a behavioural operation in BF0 (such that ϕ1(σ0) = σ1).

At this point the common path walked in establishing pushouts and pullbacks of HA-signature morphisms
splits. Although by Prop. 3.3 and 3.4 we know that for every cospan of HA-signature morphisms (θ1, θ2),
its pullback (ϕ1, ϕ2) in the category of quasi-morphisms gives a square of HA-signature morphisms, this
does not mean we have a pullback in the category of HA-signature morphisms. The following is a very
simple counterexample. Let us instantiate the signature morphisms of Prop. 3.3 and 3.4 such that each of the
considered signatures defines only one sort, which is hidden; ϕ1 is the identity of the signature that has only
two unary operation symbols σ and σ′, declared as behavioural; ζ2 and θ2 are the identities on the signature
containing only σ, also considered behavioural, and ζ1, ζ are inclusions. Then the quasi-morphism ζ fails
to satisfy the encapsulation condition, and thus we do not have a pullback in the category of HA-signature
morphisms, but only one in the category of quasi-morphisms. One may still think that there is room for a
pullback of (θ1, θ2) to be obtained in the category of HA-signature morphisms in a different way than by
lifting successively from MSA and quasi-morphisms. However, the following result rules out this possibility.
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Corollary 3.4. Every pullback of HA-signature morphisms can be lifted from the category of quasi-
morphisms of HA-signatures.

Proof. We show that every pullback cone of HA-signature morphisms, i.e. defined in SignHA, is isomorphic
to a pullback cone defined in the category of quasi-morphisms of HA-signatures. For this, let (θ′1, θ

′
2) be

a pullback of HA-signature morphisms θ1 and θ2 as depicted in the diagram below, and let (ϕ1, ϕ2) be a
pullback of θ1 and θ2 in the category of quasi-morphisms of HA-signatures.

(H0,V0, F0, BF0)
ϕ1

��
ϕ2

//

ζ

��

(H′,V ′, F′, BF′)
θ′1
//

θ′2
��

ξ

WW

(H1,V1, F1, BF1)

θ1
��

(H2,V2, F2, BF2)
θ2

// (H,V, F, BF)

By Prop. 3.4 (applied twice), we know that the quasi-morphisms ϕ1 and ϕ2 satisfy the encapsulation
condition. This allows us to infer, based on the universality property of the pullback (θ′1, θ

′
2), that there

exists a unique signature morphism ζ such that ζ; θ′1 = ϕ1 and ζ; θ′2 = ϕ2. By a similar argument, we
also obtain a quasi-morphism ξ that satisfies ξ;ϕ1 = θ′1 and ξ;ϕ2 = θ′2. Since (ζ; ξ);ϕ1 = ζ; θ′1 = ϕ1 and
(ζ; ξ);ϕ2 = ζ; θ′2 = ϕ2, we further deduce by the universality property of (ϕ1, ϕ2) that ζ; ξ = 1(H0,V0,F0,BF0).
It follows that every behavioural operation σ0 ∈ BF0 is the image under ξ of the behavioural operation
ζ(σ0) ∈ BF′, which means that ξ also satisfies the encapsulation condition. Therefore, by the universality
property of (θ′1, θ

′
2), we have ξ; ζ = 1(H′,V′,F′,BF′), thus concluding the proof.

Even though the question of establishing precisely the class of cospans (θ1, θ2) that admit pullbacks in
SignHA remains open, it should be noted that the answer to this question is irrelevant for the purposes of our
work, as the pullback property provided by Prop. 3.3 is sufficient for the subsequent developments on the
structuring of behavioural specifications.

3.4. Model amalgamation
Corollary 3.5. Each pushout square of HA-signature morphisms is an amalgamation square.

Proof. By Cor. 3.3, for any pushout square of HA-signature morphisms, its underlying square of MSA-
signature morphisms is also a pushout square, which by the amalgamation property in MSA (see Prop. 2.1) is
an amalgamation square. The conclusion follows by the fact that HA-models are just MSA-models of their
corresponding underlying MSA-signatures.

3.5. Inclusion systems for HA-signatures
Proposition 3.5. The category of quasi-morphisms of HA-signatures admits an epic inclusion system that
inherits the strong inclusion system of MSA-signatures as follows.

– The abstract inclusions (H,V, F, BF) ⊆ (H′,V ′, F′, BF′) are defined by

– H ⊆ H′, V ⊆ V ′, and

– for each w ∈ (H ∪ V)∗ and s ∈ H ∪ V, Fw→s ⊆ F′w→s.

– The abstract surjections ϕ : (H,V, F, BF)→ (H′,V ′, F′, BF′) are defined by
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– ϕ(H) = H′, ϕ(V) = V ′, and

– for each w′ ∈ (H′ ∪ V ′)∗ and s′ ∈ H′ ∪ V ′,

F′w′→s′ =
⋃{
ϕ(Fw→s) | ϕ(w) = w′, ϕ(s) = s′

}
and BF′w′→s′ =

⋃{
ϕ(BFw→s) | ϕ(w) = w′, ϕ(s) = s′

}
.

Proof. In this case, apart from the factoring axiom, all the other axioms of inclusion systems are rather
straightforward to check. Therefore let us focus on factoring. Let ϕ : (H,V, F, BF)→ (H′,V ′, F′, BF′) be any
quasi-morphism of HA-signatures. We factor the underlying morphism of MSA-signatures ϕ : (H ∪ V, F)→
(H′ ∪ V ′, F′) through the strong inclusion system of the category of MSA-signatures:

(H ∪ V, F) eϕ
//

ϕ

��

(S ′′, F′′)
iϕ

// (H′ ∪ V ′, F′)

We can thus define

– V ′′ = ϕ(V) and H′′ = ϕ(H); then H′′ ∩ V ′′ = ∅ since ϕ(H) ⊆ H′, ϕ(V) ⊆ V ′, and H′ ∩ V ′ = ∅;

– for each w′′ ∈ (H′′ ∪ V ′′)∗ and s′′ ∈ H′′ ∪ V ′′, BF′′w′′→s′′ =
⋃{
ϕ(BFw→s) | ϕ(w) = w′′, ϕ(s) = s′′

}
.

This yields a factoring in which eϕ is an abstract surjection of HA-signatures and iϕ an abstract inclusion of
HA-signatures:

(H,V, F, BF) eϕ
//

ϕ

��

(H′′,V ′′, F′′, BF′′)
iϕ
// (H′,V ′, F′, BF′)

The uniqueness of this factoring is explained by the uniqueness of the two factorings through the strong
inclusion system of SignMSA:

(H ∪ V, F) eϕ
//

ϕ

��

(S ′′, F′′)
iϕ
// (H′ ∪ V ′, F′) (H ∪ V, BF) eϕBF

//

ϕBF

��

(S ′′, BF′′)
iϕBF

// (H′ ∪ V ′, BF′)

where ϕBF is the restriction of ϕ to the subsignature (H ∪V, BF), and by the fact that H′′ and V ′′ are uniquely
determined as H′′ = ϕ(H) and V ′′ = ϕ(V).

Straight from the definitions of inclusions and quasi-morphisms we obtain the following result.

Fact 3.4. For any inclusion (H,V, F, BF) ⊆ (H′,V ′, F′, BF′), and for all w ∈ (H ∪ V)∗ and s ∈ (H ∪ V), we
have BFw→s ⊆ BF′w→s.

Proposition 3.6. Let ϕ be any morphism of HA-signatures, and ϕ = eϕ; iϕ its factorisation through the
inclusion system of the category of quasi-morphisms defined in Prop. 3.5. Then both the abstract surjection
eϕ and the abstract inclusion iϕ are morphisms of HA-signatures.

Proof. First let us consider σ′ ∈ BF′w′ such that w′ ∩ H′′ , ∅. Since H′′ = ϕ(H) we have w′ ∩ ϕ(H) , ∅.
Furthermore, since ϕ enjoys the encapsulation condition of Dfn. 3.8 there exists σ in BF such that σ′ = ϕ(σ).
By the definition of BF′′, ϕ(σ) is in BF′′, which means σ′ is in BF′′. This shows that iϕ enjoys the
encapsulation condition too.

Now let us consider σ′′ ∈ BF′′w′′→s′′ such that w′′ ∩ eϕ(H) , ∅. This means that σ′′ ∈ BF′w′′→s′′ and
w′′ ∩ ϕ(H) , ∅. By the encapsulation hypothesis for ϕ, there exists σ in BF such that σ′′ = ϕ(σ). But this
implies that σ′′ = eϕ(σ), which shows that eϕ also enjoys the encapsulation condition.
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Corollary 3.6. The category of HA-signature morphisms admits an inclusion system that inherits the strong
inclusion system of the category of MSA-signatures.

3.6. Unions and intersections of HA-signatures
Notation 3.2. The inclusions, unions, and intersections, are denoted by ⊆, ∪ and ∩, respectively, in the
inclusion system of the category of quasi-morphisms of HA-signatures and by v, t and u, respectively, in
the inclusion system of the category of HA-signature morphisms.

Lemma 3.1. If Σ ⊆ Σ′ ⊆ Σ′′ and Σ v Σ′′ then Σ v Σ′.

Proof. Let Σ = (H,V, F, BF), Σ′ = (H′,V ′, F′, BF′), and Σ′′ = (H′′,V ′′, F′′, BF′′). Let h ∈ H. Then
Σ ⊆ Σ′ ⊆ Σ′′ implies BF[h] ⊆ BF′[h] ⊆ BF′′[h], and by Fact 3.2, Σ v Σ′′ implies that BF[h] = BF′′[h]; hence,
BF[h] = BF′[h]. It follows by Fact 3.2 that Σ v Σ′.

The following abbreviation will be used quite often in the remaining part of our paper.

Notation 3.3. For any MSA-signature (S , F) and any S 0 ⊆ S , we denote by (S 0; F) the largest subsignature
of (S , F) having S 0 as the set of sorts, i.e. (S 0, F0) such that (F0)w→s = Fw→s for w ∈ S ∗0 and s ∈ S 0.

For any HA-signature (H,V, F, BF) and sets H0 ⊆ H and V0 ⊆ S , we denote by (H0,V0; F, BF) the
signature (H0,V0, F0, BF0) where (H0 ∪ V0, F0) = (H0 ∪ V0; F) and (H0 ∪ V0, BF0) = (H0 ∪ V0; BF).

Proposition 3.7. Let (Σi)i∈I be a non-empty family of HA-signatures. Then

1. The intersection
⋂

i∈I Σi exists.

2. The intersection
�

i∈I Σi exists. Moreover,
�

i∈I Σi =
⋂

n∈ω Σ(n), where

– Σ(0) =
⋂

i∈I Σi, and
– for each n > 0, if Σ(n) =

(
H(n),V, F(n), BF(n)

)
then

Σ(n+1) =
(
H(n+1),V, F(n+1), BF(n+1)

)
=

(
H(n+1),V; F(n), BF(n)

)
where H(n+1) = H(n) \

{
h ∈ H(n) | BF(n)

[h] , (BFi)[h] for some i ∈ I
}
.

3.
�

i∈I Σi v
⋂

i∈I Σi.

Proof.
1. For each i ∈ I we let Σi = (Hi,Vi, Fi, BFi). Then the intersection

⋂
i∈I Σi is (H,V, F, BF) where

– H =
⋂

i∈I Hi and V =
⋂

i∈I Vi, and

– for each w ∈ (H ∪ V)∗ and s ∈ H ∪ V , Fw→s =
⋂

i∈I(Fi)w→s and BFw→s =
⋂

i∈I(BFi)w→s.

2. Let
⋂

n∈ω Σ(n) = (H′,V, F′, BF′). By Fact 3.2, to show that
⋂

n∈ω Σ(n) v Σi for each i ∈ I, it suffices
to show that for each h ∈ H′ and each i ∈ I we have BF′[h] = (BFi)[h]. If BF′[h] , (BFi)[h] then there exists

n ∈ ω such that BF(n)
[h] , (BFi)[h]. Since BF(n)

[h] , (BFi)[h] implies h < H(n+1), it follows that h < H′, which is a
contradiction.

Now let Σ′′ = (H′′,V ′′, F′′, BF′′) such that for each i ∈ I, Σ′′ v Σi. To show that Σ′′ v
⋂

k∈ω Σ(n), by
Lemma 3.1, it suffices to show that Σ′′ ⊆

⋂
n∈ω Σ(n). This follows if we showed (by induction on n ∈ ω) that

Σ′′ ⊆ Σ(n). For n = 0 the property is obvious because Σ′′ v Σi implies Σ′′ ⊆ Σi. Now we assume the property
holds for n and show it for n + 1. By the construction of Σ(n), it is enough to show that H′′ ⊆ H(n+1). If there
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exists h ∈ H′′ \ H(n+1), since by the induction hypothesis H′′ ⊆ H(n), it follows that h ∈ H(n) \ H(n+1); hence,
there exists i ∈ I such that BF(n)

[h] , (BFi)[h]. Then, by the induction hypothesis, Σ′′ ⊆ Σ(n). This means that

BF′′[h] ⊆ BF(n)
[h] , which implies BF′′[h] , (BFi)[h]. Based on Fact 3.2 we obtain a second contradiction, this time

of the hypothesis that Σ′′ v Σi.
3. The fact that

�
i∈I Σi v

⋂
i∈I Σi follows immediately from Lemma 3.1.

Proposition 3.8. For any two HA-signatures Σ1 = (H1,V1, F1, BF1) and Σ2 = (H2,V2, F2, BF2) the following
statements are equivalent:

1. H1 ∩ V2 = H2 ∩ V1 = ∅.

2. The union Σ1 ∪ Σ2 exists and msa(Σ1 ∪ Σ2) = msa(Σ1) ∪msa(Σ2).

3. The union Σ1 ∪ Σ2 exists.

4. There exists Σ′ such that Σ1,Σ2 ⊆ Σ′.

5. msa(Σ1 ∩ Σ2) = msa(Σ1) ∩msa(Σ2) (note that, according to Prop. 3.7, the intersection Σ1 ∩ Σ2 exists).

Moreover, in all these situations the corresponding intersection-union square of HA-signatures is a pushout
square of quasi-morphisms of HA-signatures.

Proof.
1⇒ 2 : We define the following unions of MSA-signatures: (S , F) = (H1 ∪ V1, F1) ∪ (H2 ∪ V2, F2) and

(S , BF) = (H1 ∪ V1, BF1) ∪ (H2 ∪ V2, BF2). We let H = H1 ∪ H2 and V = V1 ∪ V2. Note that S = H ∪ V;
also H ∩ V = ∅ because of the assumption H1 ∩ V2 = H2 ∩ V1 = ∅ and because H1 ∩ V1 = H2 ∩ V2 = ∅.

Let us show that Σ1 ∪ Σ2 = (H,V, F, BF). For any behavioural signature (H′,V ′, F′, BF′) that satisfies
(Hk,Vk, Fk, BFk) ⊆ (H′,V ′, F′, BF′), for k ∈ {1, 2}, we have (Hk ∪ Vk, Fk) ⊆ (H′ ∪ V ′, F′) and (Hk ∪

Vk, BFk) ⊆ (H′ ∪ V ′, BF′). Therefore, (S , F) ⊆ (H′ ∪ V ′, F′) and (S , BF) ⊆ (H′ ∪ V ′, BF′), which implies
(H,V, F, BF) ⊆ (H′,V ′, F′, BF′).
2⇒ 3 and 3⇒ 4 are trivial implications.

4⇒ 1 : Let H′ be the set of hidden sorts and V ′ be the set of visible sorts of Σ′. The conditions H1,H2 ⊆ H′

and V1,V2 ⊆ V ′ together with the observation that H′ ∩ V ′ = ∅ imply H1 ∩ V2 = H2 ∩ V1 = ∅.
2⇒ 5 : According to a general result from [21] (see also [13]), by relying upon the existence of pullbacks

for quasi-morphisms of signatures of Prop. 3.3, it follows that Σ1 ∩ Σ2 is obtained as the following pullback:

Σ1 ∩ Σ2
⊆
//

⊆

��

Σ1

⊆

��

Σ2 ⊆
// Σ1 ∪ Σ2

Since by hypothesis the union Σ1 ∪ Σ2 inherits the union of the underlying MSA-signatures, and since
according to Prop. 3.3 pullbacks of quasi-morphisms are also inherited from MSA, it follows that the
intersection Σ1 ∩ Σ2 inherits the intersection of the underlying MSA-signatures.

5⇒ 1 : If Σ1 ∩ Σ2 inherits the intersection (H1 ∪ V1, F1) ∩ (H2 ∪ V2, F2) then we have

(H1 ∩ H2) ∪ (V1 ∩ V2) = (H1 ∪ V1) ∩ (H2 ∪ V2).
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This means that

(H1 ∩ H2) ∪ (V1 ∩ V2) = (H1 ∩ H2) ∪ (H1 ∩ V2) ∪ (H2 ∩ V1) ∪ (V1 ∩ V2).(1)

Because for each k ∈ {1, 2} we have Hk ∩ Vk = ∅, it follows that(
(H1 ∩ V2) ∪ (H2 ∩ V1)

)
∩

(
(H1 ∩ H2) ∪ (V1 ∩ V2)

)
= ∅.(2)

This allows us to deduce from (1) and (2) that (H1 ∩ V2) ∪ (H2 ∩ V1) = ∅.
For the second part of the result, since the intersection-union squares in MSA are pushout squares, and

since the signatures of HA inherit the intersection and the union of their underlying MSA-signatures, it
follows by Prop. 3.1 that the intersection-union squares of HA-signatures are pushout squares too.

Proposition 3.9. For any two HA-signatures the following are equivalent:

1. The union Σ1 t Σ2 exists and Σ1 t Σ2 = Σ1 ∪ Σ2.

2. The union Σ1 t Σ2 exists.

3. There exists Σ′ such that Σ1,Σ2 v Σ′.

4. The union Σ1 ∪ Σ2 exists and Σ1,Σ2 v Σ1 ∪ Σ2.

5. msa(Σ1 ∩ Σ2) = msa(Σ1) ∩msa(Σ2) and Σ1 ∩ Σ2 v Σ1,Σ2.

6. Σ1 u Σ2 = Σ1 ∩ Σ2 and msa(Σ1 ∩ Σ2) = msa(Σ1) ∩msa(Σ2).

Moreover, in these situations the corresponding intersection-union square of HA-signatures is a pushout
square of morphisms of HA-signatures.

Proof.
1⇒ 2 and 2⇒ 3 are trivial implications.

3⇒ 4 : From Σ1,Σ2 v Σ′ it follows that Σ1,Σ2 ⊆ Σ′, and by Prop. 3.8 that the union Σ1 ∪ Σ2 exists.
Moreover, Σ1 ∪ Σ2 ⊆ Σ′. Since Σ1,Σ2 v Σ′, by Lemma 3.1, it follows that Σ1,Σ2 v Σ1 ∪ Σ2.
4⇒ 5 : The fact that Σ1∩Σ2 inherits the corresponding intersection of the underlying MSA-signatures of Σ1

and Σ2 follows from the observation that the union Σ1∪Σ2 exists via Prop. 3.8. Now let Σ1 = (H1,V1, F1, BF1),
Σ2 = (H2,V2, F2, BF2), Σ1 ∩ Σ2 = (H,V, F, BF) and Σ1 ∪ Σ2 = (H′,V ′, F′, BF′). For each h ∈ H we know
that BF[h] = (BF1)[h] ∩ (BF2)[h] and that BF′[h] = (BF1)[h] ∪ (BF2)[h]. Then by Fact 3.2 Σ1,Σ2 v Σ1 ∪ Σ2
implies (BF1)[h] = (BF2)[h], which further implies BF[h] = (BF1)[h] = (BF2)[h]; hence, by Fact 3.2, it follows
that Σ1 ∩ Σ2 v Σ1,Σ2.
5⇒ 6 : The condition Σ1 ∩ Σ2 v Σ1,Σ2 implies Σ1 ∩ Σ2 v Σ1 u Σ2. Since in general (see Prop. 3.7)

Σ1 u Σ2 v Σ1 ∩ Σ2, it follows that Σ1 u Σ2 = Σ1 ∩ Σ2.
6⇒ 1 : According to Prop. 3.8, the union Σ1 ∪ Σ2 exists and its corresponding intersection-union square is

a pushout square of quasi-morphisms. Then by Prop. 3.2, it follows that Σ1,Σ2 v Σ1 ∪ Σ2, which implies, by
Cor. 3.2, that Σ1 ∪ Σ2 = Σ1 t Σ2.

The following property is a rather straightforward consequence of Prop. 3.8 and Prop. 3.9.

Corollary 3.7. For any HA-signatures (H1,V1, F1, BF1) and (H2,V2, F2, BF2) the union (H1,V1, F1, BF1)t
(H2,V2, F2, BF2) exists if and only if H1 ∩ V2 = H2 ∩ V1 = ∅ and

(
BF1

)
[h] =

(
BF2

)
[h] for all h ∈ H1 ∩ H2.
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3.7. The algebra of HA-signatures

The algebraic properties of the union t and intersection u of HA-signatures play an important role
in establishing algebraic properties of behavioural specification modules. The union t on the class of
HA-signatures is a partial rather than total operation, which gives rise to a partial algebra of signatures in the
sense of [8]. In what follows we make use of two types of equalities specific to partial algebras: t e

= t′ for the
existence equality, i.e. both t and t′ are defined and their values are equal, and t = t′ for the strong equality,
i.e. either both t and t′ are undefined or t e

= t′.

Fact 3.5. For any HA-signatures Σ, Σ1, Σ2,

Σ t Σ
e
= Σ, and(3)

Σ1 t Σ2 = Σ2 t Σ1.(4)

Proposition 3.10. For any HA-signatures Σ1, Σ2, Σ3,

Σ1 t (Σ2 t Σ3) = (Σ1 t Σ2) t Σ3.(5)

Proof. By the general associativity property of the unions in inclusion systems [21] it is enough to show
that the left-hand and the right-hand side of the associativity equation exist simultaneously. Let us assume
that the union Σ1 t (Σ2 t Σ3) exists. This implies that Σ2 t Σ3 exists and also that there exists Σ′ such that
Σ1,Σ2,Σ3 v Σ′ (just by taking Σ1 t (Σ2 t Σ3) in the role of Σ′). Now from Prop. 3.9 it follows both that
Σ1 t Σ2 exists and, since Σ1 t Σ2 v Σ′ and Σ3 v Σ′, that (Σ1 t Σ2) t Σ3 exists.

In the same way we may show the opposite implication; for this reason we omit its proof here.

Proposition 3.11. For any HA-signatures Σ, Σ1, Σ2,

Σ t Σ1 t Σ2
e
= Σ t Σ1 t Σ2 implies Σ u (Σ1 t Σ2) e

= (Σ u Σ1) t (Σ u Σ2).

Proof. On the one hand, that Σ1 t Σ2 exists follows immediately from the condition of the distributivity
rule. Then Prop. 3.7 implies the existence of Σ u (Σ1 t Σ2); moreover, by Prop. 3.9, from the existence of
Σ t (Σ1 t Σ2) it follows that Σ u (Σ1 t Σ2) inherits the intersection of the underlying MSA-signatures.

On the other hand, the existence of Σ t Σ1 t Σ2 implies the existence of both Σ t Σ1 and Σ t Σ2, which
by Prop. 3.9 imply that both Σ u Σ1 and Σ u Σ2 inherit the corresponding intersections of the underlying
MSA-signatures of Σ, Σ1 and Σ2. Moreover, Σu Σ1,Σu Σ2 ⊆ Σt Σ1 t Σ2, which by Prop. 3.9 guarantees that
(Σ u Σ1) t (Σ u Σ2) exists.

Since all intersections and unions considered here inherit the corresponding intersections and unions
of their underlying MSA-signatures, and because the distributivity of intersection over union holds for
MSA-signatures [21], we conclude that Σ u (Σ1 t Σ2) = (Σ u Σ1) t (Σ u Σ2).

Remark 3.1. In general, the distributivity rule of Prop. 3.11 does not hold unconditionally, not even in a
weaker form such as

Σ u (Σ1 t Σ2) = (Σ u Σ1) t (Σ u Σ2).

The following is a simple counterexample. Let Σ consist of a visible sort v, Σ1 of a visible sort s and Σ2 of a
hidden sort s. Then Σ1 t Σ2 does not exist, hence the left-hand side of the rule does not exist. On the other
hand the right-hand side of the equation does exist and it is the empty signature.
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4. Abstract structured behavioural specifications

We aim to study the structuring of behavioural specifications independently of any particular choice of
structuring operators. In order to achieve this, we employ the recent theory of abstract structured specifications
developed in [15]. The structure of this section is as follows:

1. We recall the main concepts from the theory of abstract structured specifications from [15].

2. We develop concepts of concrete structuring operators within this abstract context.

3. We develop a module algebra for abstract structured specifications that is applicable to the present
behavioural setting and constitutes a generalisation of other module-algebra rules from the literature.

4.1. Basic definitions
Although an important motivation for institution theory [23] (see also [16]) had been a logic-independent

approach to modularization, the pivotal paper on institution-independent structuring of specifications is [36].
The paper [21] is another influential work in this direction. All these works provide an abstract treatment of
the underlying logic as an institution, but consider a fixed set of concrete structuring operators. However,
works such as [17] have shown the need to consider new structuring operators, for example for treating
non-protecting importation modes. Moreover, in the practice of specification languages one need not
distinguish between the order of imports, an aspect that requires the consideration of structured specifications
modulo some algebraic rules such as commutativity and associativity of module sums. In order to overcome
the limitations of a fixed standard set of building operators, of the free construction of specifications, but
also to achieve unification between Goguen-Burstall [23, 21] and Sannella-Tarlecki [36, 37] approaches
to the semantics of structured specifications, the recent paper [15] introduces a second level of institution-
independence by treating the class of structured specifications together with their model theory as an abstract
institution. Besides these, the abstraction involved in the approach proposed in [15] means a new level of
conceptual simplicity.

The relationship between the level of the structured specifications and the level of the underlying logic is
axiomatized by a special kind of institution morphism. The following definition recalls from [15] the main
concept of this theory.

Definition 4.1 (Structured institution). Given two institutions I and I′, with I = (Sign,Sen,Mod, |=) and
I′ = (Sign′,Sen′,Mod′, |=′), we say that I′ is (sig,I)-structured2 when

– sig : Sign′ → Sign is a functor,

– for each I′-signature Σ′ we have Sen(sig(Σ′)) = Sen′(Σ′), and for each I′-signature morphism ϕ we
have Sen(sig(ϕ)) = Sen′(ϕ),

– for each I′-signature Σ′ we have that Mod′(Σ′) is a full subcategory of Mod(sig(Σ′)) such that for each
I′-signature morphism ϕ : Σ′1 → Σ′2 the diagram below commutes,

Mod′(Σ′1) ⊆
// Mod(sig(Σ′1))

Mod′(Σ′2)

Mod′(ϕ)

OO

⊆
// Mod(sig(Σ′2))

Mod(sig(ϕ))

OO

and

2In [15] this is called “structured over I through sig”.
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– for each I′-signature Σ′, each Σ′-model M′ and each Σ′-sentence ρ we have that

M′ |=′Σ′ ρ if and only if M′ |=sig(Σ′) ρ.

In [15] several examples are presented in some detail; here let us just mention them rather briefly.

1. The Sannella-Tarlecki approach [36, 37] is covered by considering the structured specifications formed
from finite presentations of I-theories by iteration of operators such as union, translation, derivation
and free semantics, as the signatures of I′.

2. In the case of the Goguen-Burstall approach [23, 21], instead of specifications as terms formed by a
fixed set of specification building operators like in the previous example, in the role of the I′-signatures
one considers the closed theories determined by those.

3. One may also consider quotients of specifications by algebraic rules, such as commutativity and/or
associativity of the union.

4. Other formalisms not necessarily rooted within specification theory may also be covered, such as the
module systems for model expansion problems [40].

Moreover, in all the situations mentioned above, the particular set of structuring operators involved in defining
specifications may be replaced by or extended with other sets of structuring operators.

4.2. Structuring operators in the abstract context
Although one of the main points of the theory of abstract structured specifications is the liberation from

concrete structuring operators, in some situations it is useful to talk about structuring operators in an abstract
context. This is especially relevant when studying the algebraic rules of module composition. Dfn. 4.2
and 4.3 below introduce a couple of the most important generic structuring operators in the literature within
the context of abstract structured specifications. The following analogy with monoids may be quite helpful.
The structured specifications in the traditional approach [36] would correspond to free monoids, while
the concept of abstract structured specifications endowed with definitions of some (concrete) structuring
operators corresponds to the class of all monoids.

Definition 4.2 (Unions). An institution I′ that is (sig,I)-structured with I inclusive (where t is used for
unions when they exist) has unions when for any I′-signatures Σ′1 and Σ′2 such that sig(Σ′1) t sig(Σ′2) exists
there exists as well a designated I′-signature, denoted Σ′1 t Σ′2, such that

– sig(Σ′1 t Σ′2) = sig(Σ′1) t sig(Σ′2), and

– |Mod′(Σ′1 t Σ′2)| =
{
M′ ∈ |Mod(sig(Σ′1) t sig(Σ′2))| | M′�sig(Σ′k) ∈ |Mod′(Σ′k)|, k ∈ {1, 2}

}
.

Definition 4.3 (Translation and Derivation). For any institution I′ that is (sig,I)-structured and any I-
signature morphism ϕ : Σ→ Ω, we say that

– I′ has ϕ-translations when for any I′-signature Σ′ such that sig(Σ′) = Σ there exists a designated
I′-signature, denoted Σ′ ? ϕ, such that

– sig(Σ′ ? ϕ) = Ω, and

– |Mod′(Σ′ ? ϕ)| =
{
M′ ∈ |Mod(Ω)| | M′�ϕ ∈ |Mod′(Σ′)|

}
.

– I′ has ϕ-derivations when for any I′-signature Ω′ such that sig(Ω′) = Ω there exists a designated
I′-signature, denoted ϕ2 Ω′, such that
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– sig(ϕ2 Ω′) = Σ, and

– |Mod′(ϕ2 Ω′)| =
{
M′�ϕ | M′ ∈ |Mod′(Ω′)|

}
.

For any class D of I-signature morphisms we say that I′ has D-translations/derivations when it has
ϕ-translations/derivations for each morphism ϕ inD.

Notation 4.1. If I is inclusive (with inclusions denoted by v) then for any I-signature morphism ϕ : Σ→ Ω

and any I′-signatures Σ′, Ω′ such that sig(Σ′) v Σ and Ω v sig(Ω′), we may abbreviate Σ′?
(
(sig(Σ′) v Σ);ϕ

)
by Σ′ ? ϕ and

(
ϕ; (Ω v sig(Ω′))

)
2 Ω′ by ϕ2 Ω′.

Let us discuss now some examples for Dfn. 4.2 and 4.3.

Example 4.1. Structured specifications in the style of Sannella and Tarlecki [36, 37] assume an abstract
base institution I and also assume usually four structuring operators (we use here our own notations rather
than theirs): binary union (∪) for specifications that have the same signature, translation (?), derivation (2),
and a free semantics operator (we skip its details here). The terms formed from finite sets of sentences by
these structuring operators constitute the signatures of I′.

The structuring functor sig calculates in this case the signature of each specification by recursion on its
structure. The I′-sentences are inherited from I and the I′-models are determined, just as the signatures, by
recursion on the structure of the considered specification. If needed, a more detailed description of I′ for
this example may be found in [15].

Then I′ has unions in the sense of Dfn. 4.2 by taking into account the trivial inclusion system of
the category of I-signatures, in which each signature morphism is an abstract surjection and the abstract
inclusions are the identities. Note that in this case the union is a partial operation. It also has corresponding
translations and derivations in the sense of Dfn. 4.3; however, this is a fairly straightforward discussion.

Example 4.2. A variant of Ex. 4.1, with total rather than partial unions, may be obtained by assuming a
proper inclusion system for the signatures of I, one that has unions for any two signatures. An important
example would be MSA with the strong inclusion system for its category of signatures. This example, but
endowed also with other structuring operators meant to capture non-protecting importation modes, forms the
basis of the work reported in [17].

Example 4.3. An example that constitutes one of the most important motivations for our work and which
corresponds to the actual practice of behavioural specification (e.g. CafeOBJ [18, 20]) is as follows. I is set
to HA and we consider the same structuring operators as in Ex. 4.1, but with the following particularities:

– The union is defined for any two specifications SP1 and SP2 for which the union sig(SP1) t sig(SP2)
of their underlying signatures exists; moreover, we define sig(SP1 t SP2) = sig(SP1) t sig(SP2).

– The initial semantics operator is defined only for signatures that have no hidden sorts.

4.3. Algebraic rules for structured behavioural specifications

In this section we consider a (sig,I)-structured institution I′ that has unions in the sense of Dfn. 4.2. Let
us call the signatures of I′ specifications, and denote them by SP, SP′, etc.

Definition 4.4 (Module expression). The set of module expressions is the least set such that

– SP is a module expression for each ‘variable’ SP denoting a specification,

– E1 t E2 is a module expression when E1 and E2 are module expressions,
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– E ? ϕ and ϕ 2 E are module expressions when E is a module expression and ϕ is an I-signature
morphism.

Definition 4.5. For any module expressions E and E′,

– E ≡ E′ when none of E and E′ are defined or they are both defined and we have sig(E) = sig(E′) and
Mod′(E) = Mod′(E′); and

– E
e
≡ E′ when E and E′ are defined and E ≡ E′.

The rather straightforward proof of the following corollary is omitted.

Corollary 4.1. If the unions of I satisfy the idempotence (3), commutativity (4) and associativity (5) rules
then for any specifications SP, SP′, SP′′,

SP t SP
e
≡ SP.(6)

SP t SP′ ≡ SP′ t SP.(7)

(SP t SP′) t SP′′ ≡ SP t (SP′ t SP′′).(8)

Proposition 4.1. If I′ has D-translations for a class D of I-signature morphisms that is closed under
composition to the left with inclusions, then for any specifications SP1, SP2 and any ϕ ∈ D,

SP1 t SP2
e
≡ SP1 t SP2 implies (SP1 t SP2) ? ϕ ≡ (SP1 ? ϕ) t (SP2 ? ϕ).(9)

Proof. Let ϕ : Σ → Ω. That definedness of SP1 t SP2 means just that sig(SP1) t sig(SP2) exists. When
this happens, since sig(SP1) t sig(SP2) v Σ if and only if sig(SP1) v Σ and sig(SP2) v Σ, it follows that
(SP1 t SP2) ? ϕ and (SP1 ? ϕ) t (SP2 ? ϕ) are defined simultaneously.

When defined, both members of the conclusion of (9) have Ω as their underlying I-signature. The fact
that they have the same class of models is established by the following argument:

M ∈ Mod′
(
(SP1 t SP2) ? ϕ

)
if and only if M�ϕ�sig(SP1)tsig(SP2) ∈ Mod′(SP1 t SP2) (by Dfn. 4.3)
if and only if M�ϕ�sig(SPk) ∈ Mod′(SPk), for k ∈ {1, 2} (by Dfn. 4.2)
if and only if M ∈ Mod′(SPk ? ϕ), for k ∈ {1, 2} (by Dfn. 4.3)
if and only if M ∈ Mod′

(
(SP1 ? ϕ) t (SP2 ? ϕ)

)
(by Dfn. 4.2).

The proof of the following result is identical in essence to a corresponding result from [17], and thus we
omit it here. It should be noted however that its applicability to I = HA relies upon the model amalgamation
property of HA (cf. Cor. 3.5).

Proposition 4.2. If I′ has D-derivations for a class D of I-signature morphisms that is closed under
composition then for any pushout of I-signatures that consists of morphisms fromD as below

Σ
ϕ1
//

ϕ2

��

Σ1

θ1
��

Σ2 θ2

// Σ′

and for any specifications SP1, SP2 such that Σk = sig(SPk) for k ∈ {1, 2}, it holds that

(ϕk; θk) 2 (SP1 ? θ1 t SP2 ? θ2)
e
≡ (ϕ1 2 SP1) t (ϕ2 2 SP2), for k ∈ {1, 2}.(10)

22



Corollary 4.2. If I′ has translations and derivations for inclusions and in I each intersection-union square
describes a pushout then for any specifications SP1 and SP2,

SP1 t SP2
e
≡ SP1 t SP2 implies Σ 2 (SP1 t SP2)

e
≡ (Σ 2 SP1) t (Σ 2 SP2),(11)

where Σ = sig(SP1) u sig(SP2).

Proof. Let us assume that SP1 t SP2 is defined. This means that sig(SP1) t sig(SP2) exists. From the
hypotheses, it follows that the square of inclusions depicted below is a pushout square.

Σ
v

//

v

��

sig(SP1)

i1 v
��

sig(SP2)
i2
v
// sig(SP1) t sig(SP2)

Hence, by Prop. 4.2, we deduce that

Σ 2 (SP1 ? i1 t SP2 ? i2)
e
≡ (Σ 2 SP1) t (Σ 2 SP2).(12)

By applying Prop. 4.1 with ϕ as the identity of sig(SP1) t sig(SP2) we further deduce that

SP1 ? i1 t SP2 ? i2 ≡ SP1 t SP2,

which, since SP1 t SP2 is defined, may be obtained in its stronger form as

SP1 ? i1 t SP2 ? i2
e
≡ SP1 t SP2.(13)

The conclusion now follows from the relations (13) and (12).

Cor. 4.1, Prop. 4.1, Prop. 4.2, and Cor. 4.2 can be easily instantiated to the case when I = HA based on
the results discussed in Sect. 3. They can also be very easily applied to other frameworks with partial unions
of signatures, such as those considered in Ex. 4.1. Moreover, they generalise corresponding module-algebra
properties that have been previously proved in the literature, in which the unions are assumed to be total.

For a specific set of specification structuring operators for equational logic, a corresponding variant
of the distributivity rule (11) has been stated as an exercise in [37] and has been proved in an abstract
institution-independent setting in [17]. Its property-oriented variant has been a cornerstone in [3] (for the
special case of many sorted first order logic) and in [21] this gets a general institution-independent treatment
and proof. The property-oriented variants of [3, 21] required not only significantly more difficult proofs
but also significantly harder conditions, namely an interpolation property for the underlying institution.
Since derivation gets here (2 in Dfn. 4.3) a model-oriented definition, the result of Cor. 4.2 shares with the
corresponding result from [37] freedom from interpolation.3 However, a big difference between these related
results is that in our framework the union of specifications is a partial operation, hence the conditional form
of the rule (11) and a more sophisticated proof, which in the case of HA relies upon the series of results about
the existence of unions of HA-signatures (detailed within Prop. 3.9).

3Which is quite important since interpolation in general is difficult to establish, and in the particular case of HA it has not been
studied yet, at least up to our knowledge.
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5. Conclusions

In this paper we have studied a number of compositionality properties for behavioural signatures; we have
established the existence of pushouts and pullbacks, of model amalgamation, and also of an inclusion system
for signatures that is suitable for modularization. A particular characteristic of this inclusion system is that it
has only partial unions, which reflects further into partial rather than total algebraic rules for behavioural
module compositions. Moreover, these rules may arise also in a conditional rather than in an unconditional
form (like in the common situations).

Our definition of behavioural module is abstract in two ways: at the upper level, it is independent from
any choice of actual structuring constructs, while at the base level, is independent of any choice of an actual
behavioural-specification formalism. This is achieved by reliance upon the recent work on abstract structured
specifications developed in [15].

Our work sets the ground for investigations of more specific aspects of structuring systems for behavioural
specifications such as multiple parametrization, including several degrees of sharing. This can be achieved,
for example, by adapting the theory of parameterisation developed in [17, 41] to the current framework of
abstract structured specifications with partial structuring operators. In this way it would be possible to define
distinct techniques for instantiating the parameters, as well as to study basic algebraic properties about the
results of the instantiations.
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