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Abstract. Modal logics are successfully used as specification logics for
reactive systems. However, they are not expressive enough to refer to
individual states and reason about the local behaviour of such systems.
This limitation is overcome in hybrid logics which introduce special sym-
bols for naming states in models. Actually, hybrid logics have recently
regained interest, resulting in a number of new results and techniques as
well as applications to software specification.
In this context, the first contribution of this paper is an attempt to
‘universalize’ the hybridization idea. Following the lines of [16], where a
method to modalize arbitrary institutions is presented, the paper intro-
duces a method to hybridize logics at the same institution-independent
level. The method extends arbitrary institutions with Kripke semantics
(for multi-modalities with arbitrary arities) and hybrid features. This
paves the ground for a general result: any encoding (expressed as comor-
phism) from an arbitrary institution to first order logic (FOL) deter-
mines a comorphism from its hybridization to FOL. This second con-
tribution opens the possibility of effective tool support to specification
languages based upon logics with hybrid features.

1 Introduction

Modern societies are increasingly dependent on software systems and services
whose reliability is crucial for their own development, security, privacy, and
quality of life. On the other hand, software is large and complex, deals with
a multitude of different concerns and has to meet requirements formulated (and
verified) at different abstraction levels. For the last three decades this has put
forward a research agenda on mathematically sound development methods that
seem to be finally emerging as a key concern for industry.

Typically, three issues in this agenda need to be rigorously addressed. The
first concerns the sort of mathematical structures suitable to model software
systems; the second focus on the languages in which such models can be spec-
ified and, finally, the last one addresses the satisfaction relation between the
(semantic) mathematical structures and the (syntactic) formulation of require-
ments as sentences in the specification language. A fourth concern, which is



becoming more and more relevant in practice, should be added: the fact that
the working software engineer often has to capture and relate different kinds of
requirements entails the need for a uniform specification framework in which dif-
ferent formalisms can be expressed and related. A quite canonical way to answer
this challenge resorts to the notion of institution [17,14] which, as an abstract
representation of a logical system, encompasses syntax, semantics and satisfac-
tion, and provides a formal framework for relating, comparing and combining
specification logics.

Institution theory [17] is a categorical abstract model theory that arose about
three decades ago within specification theory as a response to the explosion in
the population of logics in use there, its original aim being to develop as much
computing science as possible in a general uniform way independently of partic-
ular logical systems. This has now been achieved to an extent even greater than
orginally thought, as institution theory became the most fundamental mathe-
matical theory underlying algebraic specification theory, also being increasingly
used in other area of computer science. Moreover, institution theory constitutes
a major trend in the so-called ‘universal logic’ (in the sense envisaged by Jean-
Yves Béziau) which is considered by many a true renaissance of mathematical
logic.

Modal logics have been successfully used as specification languages for state
transition systems, which, on their turn, are taken as basic, underlying struc-
tures in program development. From a proof theoretic point of view, such logics
have interesting algorithmic proprieties, and, moreover, they can naturally be
translated to first order logic. However, (non-hybrid) modal logics do not allow
explicit references to specific states of the underlying transition system which,
in a number of cases, is a desirable feature in a specification. For instance, such
modal logics are adequate to specify systems as dynamic processes which evolve
in response to events. But, on the other hand, they are not expressive enough
to identify particular states in a system’s evolution, neither to express (local)
properties referring to one such state or a group thereof. Hybrid logic [2], on the
other hand, overcomes this limitation by introducing nominals as references to
specific states in a modal framework, taking together features from first-order
logic and modal logic.

Historically, hybrid logic was introduced by Arthur Prior [23] in the 50’s.
Afterwards, his student Robert Bull extended the theory significantly by es-
tablishing a number of completeness results for generalizations of Prior’s hybrid
logic. After a period without much developments, in the 80’s the Bulgarian school
of logic (namely Passy, Tinchev, Gargov and Goranko) revived the interest in
hybrid logic, studying, in particular, the possible roles of the binder operator
[22]. More recently, Areces and Blackburn intensely expanded the theory (cf.
the dedicated web page at http://hylo.loria.fr/), addressing, notably, the
complexity of the satisfiability problem. The work of Braüner on proof theory for
hybrid logic should also be mentioned [6]. His study of quantified hybrid logic is,
in a sense, at the origin of the results presented in this paper. Actually, the way
first order and hybrid logics are combined in quantified hybrid logic, was a first



motivation for the quest for a general, institution-independent approach to the
hybridization of logics which constitutes the main contribution of this paper.

In fact, the idea of introducing nominals to explicitly refer to individual
states, can be applied to any logic with a Kripke semantics. Quoting [1], “(...)Stric-
tly speaking, not all modal logics are hybrid, but certainly any modal logics can
be hybridized, and in our view many of them should be (...)”. This principle is
reflected in a recent trend of hybridization of specification formalisms and pro-
cess calculi. Beyond the classical cases of hybrid versions of propositional and
first order logic, hybrid accounts of intuitionistic logic [7], CT L [25,20], LT L
[12], µ-calculus [24] among others, are already studied.

What is, thus, in such a context the contribution of this paper? First of
all, as stated above, we put forward an institution-independent method to hy-
bridize arbitrary logics, shedding light on the generic pattern of hybridization.
In other words, we liberate the essence of hybridization from logical details that
are orthogonal to the hybrid idea and that are tributary to other logics.

The hybridization process is also a mechanism for combining logics. Combi-
nation of logical system (or institutions), in which typically different roles are
played by the different logics to be composed, is, in itself, a relevant research
topic. The approach discussed in this paper is in line with the process of modal-
ization of an institution, proposed in [16], in which a modal logic is combined
with an arbitrary institution in a systematic way. We take a further step by
replacing modal by hybrid logic and allowing multi-modalities.

The paper’s second contribution is also a general result: it is shown that
any encoding (expressed as ‘comorphism’ in the sense of [18]) from an arbi-
trary institution to first order logic (FOL) determines a comorphism from its
(quantifier-free) hybridization to FOL. Moreover, the proof is constructive en-
tailing a method to define such comorphisms. This may be regarded as a first
step for a general theory of encodings of hybrid logics into FOL as support for
borrowing formal verification tools from FOL based to hybrid based specifica-
tion languages.

Outline. In order to keep exposition reasonably self-contained, Section 2 reviews
basic concepts on institutions and recalls a number of examples. The paper’s
contributions appear on Sections 3 and 4. The former introduces the hybridiza-
tion process. The latter addresses the construction of comorphisms from hybrid
institutions to FOL. Finally, Section 5 concludes and points out a number of
topics for future work. Proofs of all new results presented can be found in the
appendix.

2 Notation and definitions

Institutions have been defined by Goguen and Burstall in [8], the seminal paper
[17] being printed after a delay of many years. Below we recall the concept
of institution which formalises the intuitive notion of logical system, including
syntax, semantics, and the satisfaction between them.



Definition 1 (Institution). An institution
(
SignI ,SenI ,ModI , (|=I

Σ)Σ∈|SignI |
)

consists of

– a category SignI whose objects are called signatures,
– a functor SenI : SignI → Set giving for each signature a set whose elements

are called sentences over that signature,
– a functor ModI : (SignI)op → CAT, giving for each signature Σ a category

whose objects are called Σ-models, and whose arrows are called Σ-(model)
morphisms, and

– a relation |=I
Σ⊆ |ModI(Σ)|×SenI for each Σ ∈ |SenI |, called the satisfaction

relation,

such that for each morphism φ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=I
Σ′ SenI(φ)(ρ) iff ModI(φ)(M ′) |=I

Σ ρ (1)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

We recall the notions of amalgamation and quantification space that are crucial
for what follows. The former is intensely used in institution theory, whereas the
latter was introduced rather recently in [15].

Definition 2 (Amalgamation property). Given any functor Mod : Signop →
CAT a commuting square of signature morphisms

Σ
φ1 //

φ2

��

Σ1

θ1

��
Σ2

θ2

// Σ′

(2)

is a weak amalgamation square for Mod if and only if, for each Σ1-model M1

and a Σ2-model M2 such that Mod(φ1)(M1) = Mod(φ2)(M2), there exists a Σ′-
model M ′ such that Mod(θ1)(M

′) = M1 and Mod(θ2)(M
′) = M2. When M ′ is

required to be unique, the square is called amalgamation square. The model M ′

is called an amalgamation of M1 and M2 and when it is unique it is denoted by
M1 ⊗φ1,φ2 M2.

When Mod is the model functor ModI of an institution I we say that I has
the respective amalgamation properties.

Definition 3 (Quantification space). For any category Sign a subclass of
arrows D ⊆ Sign is called a quantification space if, for any (χ : Σ → Σ′) ∈ D
and φ : Σ → Σ1, there is a designated pushout

Σ
φ //

χ
��

Σ1

χ(φ)��
Σ′

φ[χ]
// Σ′

1



with χ(φ) ∈ D and such that the ‘horizontal’ composition of such designated
pushouts is again a designated pushout, i.e. for the pushouts in the following
diagram

Σ
φ //

χ

��

Σ1

χ(φ)
��

θ // Σ2

χ(φ)(θ)
��

Σ′
φ[χ]

// Σ′
1θ[χ(φ)]

// Σ′
2

φ[χ]; θ[χ(φ)] = (φ; θ)[χ] and χ(φ)(θ) = χ(φ; θ), and such that χ(1Σ) = χ and
1Σ [χ] = 1Σ.

We say that a quantification space D for Sign is adequate for a functor
Mod : Signop → CAT when the designated pushouts mentioned above are weak
amalgamation squares for Mod.

Example 1 (FOL, ALG, EQ, REL and PL). A well known example of an insti-
tution is FOL — the institution of first order logic FOL (see [14] for a detailed
account). The signatures are tuples (S, F, P ), where S is a set of sort symbols,
F = {Fw→s | w ∈ S∗, s ∈ S} is a family of sets of operation symbols and P =
{Pw | w ∈ S∗} is a family of sets of relational symbols. A signature morphism φ is
a triple of functions (φsort, φops, φpred) : (S, F, P ) → (S′, F ′, P ′) that preserves
functionalities, i.e., for any f ∈ Fs1...sn→s, φops(f) ∈ F ′

φsort(s1)...φsort(sn)→φsort(s)

and for any π ∈ Ps1...sn , φpred(π) ∈ P ′
φsort(s1)...φsort(sn)

. A (S, F, P )-model M is

family {Ms | s ∈ S} of sets together with: for each f ∈ Fs1...sn→s, a function fM :
Ms1 ×· · ·×Msn → Ms and for any π ∈ Ps1...sn a relation πM ⊆ Ms1 ×· · ·×Msn .
The (S, F, P )-model homomorphisms are S-families of functions {hs : Ms →
M ′

s}s∈S , such that for any f ∈ Fs1...sn→s, and each mi ∈ Msi , i = 1, . . . , n,
hs(f

M (m1, . . . ,mn)) = fM ′
(hs1(m1), . . . , hsn(mn)) and for each π ∈ Ps1,...sn ,

if (m1, . . . ,mn) ∈ πM then (hs1(m1), . . . , hsn(mn)) ∈ πM ′
. The reduct of a

(S′, F ′, P ′)-model M ′ along φ consists of the (S, F, P )-model M ′ �φ such that,

for each s ∈ S, (M ′ �φ)s = M ′
φsort(s)

, for each f ∈ Fs1...sn→s fM ′�φ = φops(f)
M ′

and for each π ∈ Ps1...sn πM ′�φ = φpred(π)
M ′

. The set SenFOL((S, F, P )) of
(S, F, P )-sentences consists of the usual first-order (S, F, P )-formulas. A signa-
ture morphism φ : (S, F, P ) → (S′, F ′, P ′) induces a translation of sentences,
SenFOL(φ) : SenFOL((S, F, P )) → SenFOL((S′, F ′, P ′)), that replaces sym-
bols of (S, F, P ) by the respective φ-images in (S′, F ′, P ′). More precisely, let
φtrm : T(S,F ) → T(S′,F ′) be defined by

φtrm(f(t1, . . . , tn)) = φops(f)(φ
trm(t1), . . . , φ

trm(tn)).

The translation SenFOL is recursively defined as follows:

– SenFOL(φ)(t ≈ t′) = φtrm(t) ≈ φtrm(t′);
– SenFOL(φ)(π(t1, . . . , tn)) = φpred(π)(φ

trm(t1), . . . , φ
trm(tn));

– SenFOL(φ)(¬ρ) = ¬SenFOL(φ)(ρ);
– SenFOL(φ)(ρ⊙ ρ′) = SenFOL(φ)(ρ)⊙ SenFOL(φ)(ρ′), ⊙ ∈ {∨,∧,→};
– SenFOL(φ)(∀X ρ) = ∀Xφ SenFOL(φ′)(ρ), where

Xφ = {(x, φsort(s), (S
′, F ′, P ′)) | (x, s, (S, F, P )) ∈ X}, and φ′ canonically



extends φ by mapping each (x, s, (S, F, P )) to (x, φsort(s), (S
′, F ′, P ′)). Note

that we are considered a variable for (S, F, P ) as a triple (x, s, (S, F, P ))
where x is the name of the variable, s its sort, and (S, F, P ) its signature
(see [15]).

Finally, the satisfaction relation is the usual Tarskian satisfaction relation.
We just present the case of quantifiers as an illustration:

– M |=FOL
(S,F,P ) ∀X ρ iff, M′ |=FOL

(S,F⊎X,P ) ρ for each expansion M ′ of M along

the signature morphism (S, F, P ) ↪→ (S, F ⊎X,P );
– M |=FOL

(S,F,P ) ∃X ρ iff M |=FOL
(S,F,P ) ¬∀X ¬ρ

The institution ALG is obtained from FOL by discarding the relational
symbols and the corresponding interpretations in models. The institution EQ is
defined as the sub-institution of ALG where the sentences are just universally
quantified equations (∀X) t ≈ t′. The institution REL is the sub-institution of
single-sorted first-order logic with signatures having only constants and rela-
tional symbols.

The institution PL (of propositional logic) is the fragment of FOL deter-
mined by signatures with empty sets of sort symbols.

3 A method to hybridize arbitrary institutions

Let us consider an institution I = (SignI ,SenI ,ModI , (|=I
Σ)Σ∈|SignI |) with a

designated quantification space DI ⊆ Sign. This section introduces a method to
enrich the expressivity of I with modalities and nominals, defining a suitable se-
mantics for it. Moreover, it is shown that the outcome still defines an institution,
to which we refer as the hybrid I and denote by HI.

The category of HI-signatures

The category of I-hybrid signatures, denoted by SignHI , is defined as the fol-
lowing direct (cartesian) product of categories:

SignHI = SignI × SignREL.

The REL-signatures are denoted by (Nom, Λ), where Nom is a set of constants
called nominals and Λ is a set of relational symbols called modalities; Λn stands
for the set of modalities of arity n. General category theory entails,

Proposition 1. The projection SignHI → SignI lifts small co-limits.

The existence of co-limits of signatures is one of the properties of institutions
of key practical relevance for specification in-the-large (see [17]).

Corollary 1. SignHI has all small co-limits.



HI-sentences
Let us fix a quantification space DHI for SignHI such that for each χ ∈ DHI

its projection χ|I to SignI belongs to DI . The quantification space DHI is a
parameter of the hybridization process. Whenever DHI consists of identities we
say the hybridization is quantifier-free. Note that a quantifier-free hybridization
does not necessarily mean the absence of ‘local’ quantification, i.e. placed at the
level of base institution I.

Let ∆ = (Σ,Nom, Λ). The set of sentences SenHI(∆) is the least set such
that

– Nom ⊆ SenHI(∆);
– SenI(Σ) ⊆ SenHI(∆);
– ρ⊙ ρ′ ∈ SenHI(∆) for any ρ, ρ′ ∈ SenHI(∆) and any ⊙ ∈ {∨,∧,→},
– ¬ρ ∈ SenHI(∆), for any ρ ∈ SenHI(∆),
– @iρ ∈ SenHI(∆) for any ρ ∈ Sen(Σ) and i ∈ Nom;
– [λ](ρ1, . . . , ρn) ∈ SenHI(∆), for any λ ∈ Λn+1, ρi ∈ SenHI(∆), i ∈ {1, . . . , n};
– (∀χ)ρ ∈ SenHI(∆), for any ρ ∈ SenHI(∆′) and χ : ∆ → ∆′ ∈ DHI ;
– (∃χ)ρ ∈ SenHI(∆), for any ρ ∈ SenHI(∆′) and χ : ∆ → ∆′ ∈ DHI ;

Translations of HI-sentences

Let φ = (φSig, φNom, φMS) : (Σ,Nom, Λ) → (Σ′,Nom′, Λ′) be a morphims of
HI-signatures.

The translation SenHI(φ) is defined as follows:

– SenHI(φ)(ρ) = SenI(φSig)(ρ) for any ρ ∈ SenI(Σ);
– SenHI(φ)(i) = φNom(i);
– SenHI(φ)(¬ρ) = ¬SenHI(φ)(ρ);
– SenHI(φ)(ρ⊙ ρ′) = SenHI(φ)(ρ)⊙ SenHI(φ)(ρ′), ⊙ ∈ {∨,∧,→};
– SenHI(φ)(@iρ) = @φNom(i)Sen

HI(ρ);

– SenHI(φ)([λ](ρ1, . . . , ρn)) = [φMS(λ)](Sen
HI(ρ1), . . . ,Sen

HI(ρn));
– SenHI(φ)

(
(∀χ)ρ

)
= (∀χ(φ))SenHI(φ[χ])(ρ);

– SenHI(φ)
(
(∃χ)ρ

)
= (∃χ(φ))SenHI(φ[χ])(ρ).

Proposition 2. SenHI is a functor SignHI → Set.

HI-models

The (Σ,Nom, Λ)-models are pairs M = (M,R) where

– R is a (Nom, Λ)-model in REL;
– M is a function |R| → |ModI(Σ)|.

The carrier set |R| forms the set of the states of M; {nR | n ∈ Nom} rep-
resents the interpretations of the nominals Nom, whereas relations {λR | λ ∈
Λn, n ∈ ω} represent the interpretation of the modalities Λ. We denote M(s)
simply by Ms.

A (Σ,Nom, Λ)-model homomorphism h : (M,R) → (M ′, R′) consists of a
pair aggregating



– a (Nom, Λ)-model homomorphism in REL, hst : R → R′; i.e., a func-
tion hst : |R| → |R′| such that for i ∈ Nom, iR

′
= hst(i

R); and for any
s1, . . . , sn ∈ |R|, and λ ∈ Λn, (s1, . . . , sn) ∈ λR, (hst(s1), . . . , hst(sn)) ∈ λR′

.
– a natural transformation hmod : M ⇒ M ′ ◦ hst; note that hmod is a |R|-

indexed family ofΣ-model homomorphisms hmod = {hs
mod : Ms → M ′

hst(s)
}s∈|R|.

The composition of hybrid model homomorphisms is defined canonically as

h;h′ = (hst;h
′
st, hmod; (h

′
mod ◦ hst)).

Fact 1 Let ∆ be any hybrid signature over an institution I. Then ∆-models
together with their homomorphisms constitute a category.

Reducts of HI-models

Let ∆ = (Σ,Nom, Λ) and ∆′ = (Σ′,Nom′, Λ′) be two hybrid signatures, φ =
(φSig, φNom, φMS) a morphism between ∆ and ∆′ and (M ′, R′) a ∆′-model. The

reduct of (M ′, R′) along φ, denoted by ModHI(φ)(M ′, R′), is the ∆-model
(M,R) such that

– |R| = |R′|;
– for any n ∈ Nom, nR = φNom(n)

R′
;

– for any λ ∈ Λ, λR = φMS(λ)
R′
;

– for any s ∈ |R|, Ms = ModI(φSig)(M
′
s).

Theorem 1. A pushout square of HI-signature morphisms is a (weak) amal-
gamation square (for ModHI) if the underlying square of signature morphisms
in I is a (weak) amalgamation square.

Corollary 2. DHI is adequate for ModHI .

The Satisfaction relation

For any (Σ,Nom, Λ)-model (M,R) and for any s ∈ |R|:

– (M,R) |=s ρ iff Ms |=I ρ; when ρ ∈ SenI(Σ),
– (M,R) |=s i iff iR = s; when i ∈ Nom,
– (M,R) |=s ¬ρ iff (M,R) ̸|=s ρ,
– (M,R) |=s ρ ∨ ρ′ iff (M,R) |=s ρ or (M,R) |=s ρ′,
– (M,R) |=s ρ ∧ ρ′ iff (M,R) |=s ρ and (M,R) |=s ρ′,
– (M,R) |=s ρ → ρ′ iff (M,R) |=s ρ implies that (M,R) |=s ρ′,
– (M,R) |=s [λ](ρ1, . . . ρn) iff (M,R) |=si ρi for 1 ≤ i ≤ n for any (s, s1, . . . , sn) ∈

Rλ, λ ∈ Λn+1,

– (M,R) |=s @jρ iff (M,R) |=jR ρ,

– (M,R) |=s (∀χ)ρ iff (M ′, R′) |=s ρ for any (M ′, R′) such that ModHI(χ)(M ′, R′) =
(M,R), and

– (M,R) |=s (∃χ)ρ iff (M ′, R′) |=s ρ for some (M ′, R′) such that ModHI(χ)(M ′, R′) =
(M,R).

We write (M,R) |= ρ iff (M,R) |=s ρ for any s ∈ |R|.



The Satisfaction Condition

Theorem 2. Let ∆ = (Σ,Nom, Λ) and ∆′ = (Σ′,Nom′, Λ′) be two HI-signatures
and φ : ∆ → ∆′ a morphism of signatures. For any ρ ∈ SenHI(∆), (M ′, R′) ∈
|ModHI(∆′)|, and s ∈ |R|

ModHI(φ)(M ′, R′) |=s ρ iff (M ′, R′) |=s SenHI(φ)(ρ). (3)

Proof. The proof is by induction on the structure of ρ.

Corollary 3 (The Satisfaction Condition). (SignHI ,SenHI ,ModHI , |=HI)
is an institution.

Example 2 (HPL). Let APL be the sub-institution of PL whose sentences are
the propositional symbols. Applying the hybridization method described above
to APL and fixing Λ2 = {�} and Λn = ∅ for each n ̸= 2, we obtain the insti-
tution of the “standard” hybrid propositional logic (without state quantifiers):
the category of signatures is SignHPL = Set × Set with objects denoted by
(P,Nom) and morphisms by (φSig, φNom); sentences are the usual hybrid propo-
sitional formulas, i.e., modal formulas closed by boolean connectives, �, and by
the operator @i, i ∈ Nom; models consists of pairs P = (M,R) where R consists
of a carrier set, interpretations iR ∈ S for each i ∈ Nom, and a binary relation
�R ⊆ |R|×|R|, and for each s ∈ |R|, Ms is a propositional model, i.e., a function
Ms : P → {⊤,⊥}. The quantification space DHPL is the trivial one, consisting
of the identities, which means this process is a quantifier-free hybridization. The
satisfaction relation is defined as above on top of the propositional satisfaction
relation, i.e., P |=s p iff Ms(p) = ⊤.

A challenging issue concerns finding suitable quantification spaces to capture
other versions of hybrid propositional logic. For instance, it would be interest-
ing, along the hybridization process, to capture the quantifiers A and E, where
Aρ (respectively, Eρ) means that “ρ is true in all the states of the model” (re-
spectively, “ρ is true in some state of the model”) [1]. This can be achieved by
considering as a quantification space the extensions of signatures with nominal
symbols; for instance one may express P |= Eρ by P |=s (∃i)@iρ.

Example 3 (HFOL, HEQ). The application of the hybridization method to
FOL taking as a quantification space signature extensions both with FOL vari-
ables and variables over nominals, one captures the state-variables quantification
of first-order hybrid logic of [4].

Binding “state variables” to the point of evaluation highly increase the ex-
pressive power of a hybrid logic, which is enabled through the binder operator
↓ (e.g. [2,4]). This may be achieved by taking i-expansions χ : (Σ,Nom, Λ) ↪→
(Σ,Nom ⊎ {i}, Λ) as a quantification space and including, when defining satis-
faction, the condition

– P |=s (↓ χ)ρ iff for any χ-expansion P ′ of P such that iR = s, we have
P ′ |=s ρ.



As a final example, let us mention the hybridization of EQ with the trivial
quantification space. The resulting hybrid equational institution provides a suit-
able setting for specifying evolving systems in which each state is endowed with
a specific algebra [21].

4 FOL as a support to hybrid specification

This section studies the existence of encodings of hybrid institutions into FOL.
The relevance of such encodings is to provide proof theoretic support to hybrid
specifications. In particular, we show that any encoding of the base institution I
to FOL may be lifted to an encoding of the quantifier-free hybrid institution HI
to FOL. Our approach to logic encodings relies upon the concept of comorphism,
recalled below from the literature (e.g. [18]).

Definition 4 (Comorphisms). Given institutions I = (Sign,Sen,Mod, |=)
and I ′ = (Sign′,Sen′,Mod′, |=′) a comorphism (Φ,α, β) : I → I ′ consists of

1. a functor Φ : Sign → Sign′,
2. a natural transformation α : Sen ⇒ Φ; Sen′, and
3. a natural transformation β : Φop;Mod′ ⇒ Mod

such that the following satisfaction condition holds

M ′ |=′
Φ(Σ) αΣ(e) iff βΣ(M

′) |=Σ e

for each signature Σ ∈ |Sign|, Φ(Σ)-model M ′, and Σ-sentence e.
The comorphism is conservative whenever, for each Σ-model M in I, there

exists a Φ(Σ)-model M ′ in I ′ such that M = βΣ(M
′).

The following is a consequence of conservativity, with the important proof
theoretic implication that we may prove things in the source institution by using
the proof system of the target institution in a sound and complete way.

Fact 2 For any set Γ ⊆ Sen(Σ) and sentence ρ ∈ Sen(Σ),

Γ |=Σ ρ if and only if αΣ(Γ ) |=′
Φ(Σ) αΣ(ρ).

Example 4. One may legitimately wonder about the existence of a canonical
embedding of the base institution I into its hybridization HI in the form of a
comorphism (Φ, α, β) : I → HI. The answer is as follows:

– Φ(Σ) = (Σ, {i}, ∅),
– αΣ(ρ) = @iρ, and
– βΣ(M,R) = MiR .

It is easy to show that this is a conservative comorphism.



Thus, let HI be the quantifier-free hybridization of institution I. Given any

comorphism I
(Φ,α,β)// FOL we define a comorphism HI

(Φ′,α′,β′)// FOL by

Translation of the signatures:

Φ′(Σ,Nom, Λ) = (SΣ + {ST}, FΣ +Nom, PΣ + Λ) where

– Φ(Σ) = (SΣ , PΣ , PΣ) (a FOL signature);

– FΣ =

{
(FΣ)STw→s = (FΣ)w→s for any s ∈ SΣ , w ∈ S∗

Σ

∅, for the other cases
;

– PΣ =

{
(PΣ)STw = (PΣ)w for any w ∈ S∗

Σ ;

∅, for the other cases

– Nom = {i : → ST | i ∈ Nom}
– Λ = {λ : STn | λ ∈ Λn}.

Translation of the models:

β′
(Σ,Nom,Λ)(M) = (M ′, R) where

– R is the reduct M �({ST},Nom,Λ), and

– M ′ : STR → |ModI(Σ)| is defined for each s ∈ S by M ′
s = βΣ(Ms) where

Ms is the Φ(Σ) = (SΣ , PΣ , PΣ)-model defined by
• for each sort ∈ SΣ , sort

Ms = sortM ;
• for each f ∈ FΣ , f

Ms(m) = fM (s,m);
• for each π ∈ PΣ , m ∈ πMs iff (s,m) ∈ πM .

Translation of the sentences:

α′
(Σ,Nom,Λ)(ρ) = ∀xα′x

(Σ,Nom,Λ)(ρ), where

α′x
(Σ,Nom,Λ) : SenHI(Σ,Nom, Λ) → SenFOL(Φ′(Σ,Nom, Λ) ∪ {x}) with x being

a constant of sort ST, is defined by

– for each ρ ∈ SenI(Σ), α′x(ρ) = αx(αΣ(ρ)) where α
x
(Σ,Nom,Λ) : SenFOL(Φ(Σ)) →

SenFOL(Φ′(Σ,Nom, Λ) ∪ {x}) is defined by
• αx(t ≈ t′) = αx(t) ≈ αx(t′) where αx(f(t1, . . . , tn)) = f(x, αx(t1), . . . , α

x(tn));
• αx(π(t)) = π(x, αx(t));
• αx(ρ1 ⊙ ρ2) = αx(ρ1)⊙ αx(ρ2), ⊙ ∈ {∨,∧,→};
• αx(¬ρ) = ¬αx(ρ);
• αx(∀y ρ) = ∀y αx(ρ);

– α′x(i) = i ≈ x, i ∈ Nom;
– α′x(@iρ) = α′i(ρ);
– α′x([λ](ρ1, . . . , ρn)) = ∀y1, . . . , yn (λ(x, y1, . . . , yn) →

∧
1≤i≤n α

′yi(ρi));
– α′x(ρ1 ⊙ ρ2) = α′x(ρ1)⊙ α′x(ρ2), ⊙ ∈ {∨,∧,→};

Lemma 1. For any ∆ ∈ |SignHI |, ρ ∈ SenFOL(Φ(Σ)), M ′ ∈ ModFOL(Φ′(∆))
and s ∈ S,

M ′
s |=Φ(Σ) ρ if and only if M ′s |=Φ′(∆)+x αx(ρ), (4)

where M ′s denotes the expansion of M ′ to Φ′(∆) + x defined by xM ′s
= s.



Theorem 3. For any ∆ ∈ |SignHI |, ρ ∈ SenHI(∆) M ′ ∈ ModFOL(Φ′(∆)) and
s ∈ S,

β′
∆(M ′)(|=HI

∆ )sρ iff M ′s |=FOL
Φ′(∆)+x α′x

∆(ρ), (5)

where M ′s denotes the expansion of M ′ to Φ′(∆) + x defined by xM ′s
= s.

Proof. The proof is by induction on the structure of ρ.

Corollary 4 (Satisfaction condition for (Φ′, α′, β′)). (Φ′, α′, β′) is comor-
phism HI → FOL, i.e. for any ∆ ∈ |SignHI |, ρ ∈ SenHI(∆) and M ′ ∈
ModFOL(Φ′(∆)),

β′
∆(M ′) |=HI

∆ ρ if and only if M ′ |=FOL
Φ′(∆) α

′
∆(ρ).

Example 5 (HEQ2FOL). A simple, but useful example of the construction pro-
posed above arises by its application to the embedding of EQL into FOL, en-
tailing a comorphism HEQL → FOL.

5 Conclusions and further work

The paper’s contribution is twofold: first it defines a method to hybridize ar-
bitrary institutions; then it is shown that a comorphism from an arbitrary in-
stitution to FOL gives rise to another comorphism from its (quantifier-free)
hybridization to FOL.

Beyond the intrinsic theoretical interest, the application of these results seems
promising. On the one hand, hybridization of logics is achieved, by this method,
in a systematic way which applies to a broad class of logics. On the other, our
second result contributes to add effective tool support to reasoning about hybrid
specifications, by resorting to FOL-oriented verification tools.

This work also opens a number of interesting research directions. We discuss
below the set of main topics in our agenda.

Remark 1. An aspect of our method, which increases the complexity of hybridiz-
ing arbitrary institutions, is the need for “desconstructing” the base institution.
For instance, in order to hybridize FOL, we have to take in the role of a base in-
stitution its sub-institution of atomic formulas (without quantifiers and boolean
connectives). The same happens in the hybridization of propositional logic (see
Ex. 2). In order to overcome this situation, it is necessary to find a way to pro-
scribe the overloading of connectives at the base and hybrid levels. The problem
may be solved by resorting to the (abstract) notion of boolean connective (cf.
[14, Chap. 3]). For instance, suppose that the institution I has semantical nega-
tion, i.e., that for any ρ ∈ SenI(Σ) there is a ρ′ ∈ SenI(Σ) such that for any
M ∈ |ModI(Σ)|, M |=I

Σ ρ′ iff it is false that M |=I
Σ ρ. Then, in order to

avoid the connectives negation, we may replace, in the definition of the hybrid
sentences, the negation introduction by

If ρ ∈ SenHI(Σ,Nom, Λ) \ SenI(Σ), then ¬ρ ∈ SenHI(Σ,Nom, Λ),



and similarly for the other boolean connectives. This seems to be enough to
obtain the HFOL from FOL.

Hybridization of modal logics is a more challenging question: how to intro-
duce nominals into institutions that already have Kripke semantics? For instance
it is known that CT L defines an institution (cf. [9]) and that there are hybrid
extensions of this logic currently being studied (cf. [20,25]). Actually, this sort
of hybridization falls out of the scope of the method discussed in this paper. Its
application to CT L leads to a kind of “graph of graphs”, raising the question of
how such a double modalization can be avoided. Certainly, there are tricky tech-
nical aspects to overcome. However, the hybridization of a (concrete) institution
with Kripke semantics, i.e., the introduction of nominals and a satisfaction op-
erator on a institution whose models are already of the form

(
S, (Ms)s∈S

)
seems

to be an easy task. Hence, an answer to this problem resorts to the decompo-
sition of the hybridization process into two steps: a modalization followed by a
hybridization. The former, may be defined as in [16] just making a straightfor-
ward generalization to sets of modal symbols Λ. The latter is then applied to
the resulting institution.

Remark 2 (Calculus for hybrid institutions). Comparing the calculus of [4] for
hybrid propositional logic with that of [5] for hybrid first-order logic, a common
structure pops out: they “share” rules involving sentences with nominals and
satisfaction operators (i.e., formulas with “hybrid nature”) and have specific
rules to reason about “atomic sentences” that come from the base institution.
Hence, it makes sense to think about the development of a general proof calculus
for hybrid institutions built on top of the calculus equipping the base institution
in the style of [3,11].

Remark 3 (Modal symbols quantification). Another interesting point to explore
is the power of quantification over modal symbols, for instance by considering
in the quantification space inclusions of the form Λ ↪→ Λ + λ. Using this quan-
tification it seems possible to express general properties about the state space
of a model. For instance, we have that P |=s (∀λ)p → [λ]p means that if p holds
in s then it is invariant in all the model and P |=s (∀λ)p → [λ]q to say that if p
holds on s then q holds in another state of the model.

Remark 4 (New case studies). There are many interesting hybrid institutions
that may be obtained by application of the method proposed in this paper. Par-
ticularly interesting case studies are the derivation of both intuitionistic hybrid
logic [10,7] and many-valued hybrid logic [19] from their respective bases.

Remark 5 (On encoding hybridizations to FOL). An important property of logic
encodings, which guarantees the sound and complete borrowing of formal reason-
ing from the target to the source of the encodings, is that they keep unchanged
the consequence relation of the encoded logic (see Fact 2). In the case of the
encoding HI → FOL defined as a comorphism in Section 4 this would have fol-
lowed immediately if (Φ′, α′, β′) : HI → FOL were conservative which in turns
should be a natural consequence of the conservativeness of (Φ,α, β) : I → FOL.



Unfortunately this latter step does not work in general, however this scheme may
work if we extended our theory by considering also a ‘rigid’ part for the signa-
tures and models as in [16].

Our current encoding of hybridizations to FOL is limited in the applications
by the fact that it applies only to encodings of the base institution that can be
expressed as plain comorphisms to FOL. This means that our current result
may be in reality applied for hybridizations of various fragments of FOL but
none of the myriad of specification logics that are encoded into FOL by the
so-called ‘theoroidal comorphisms’ [18]. We plan to extend our encoding result
to this more general situation, thus widely enlarging the FOL-oriented formal
reasoning support for hybridized logics.

We also plan to extend our encoding result to quantified hybridizations.

Remark 6 (Model theory for hybridized institutions). A deeper development of
the model theory of a specification formalism always results into a better un-
derstanding of its specification power. Our general hybridization method opens
the door for a general institution-independent approach to the model theory of
hybrid(ized) logics by using techniques from [14]. We believe that the end result
of such investigation would make yet another point in favour of the hybrid vari-
ants of modal logics, because we expect them to display better model theoretic
properties than their non-hybrid variants.

In particular we are thinking to extend the method of ultraproducts of [16]
from modalized to hybridized institutions, to investigate a general method of
diagrams and the existence of initial semantics for hybridized institutions. The
latter has a special specification theoretic significance: it would give foundational
support for classical algebraic specification style with hybrid(ized) logics. The
method of diagrams, which is a very common model theoretic property of logics
and a technique that pervades a lot of model theoretic results (see [13,14] for its
institution-independent expressions), unfortunately fails on modal logics. How-
ever because of the special “hybrid features” we expect it to hold in some form
in hybrid(ized) logics.
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6. T. Braüner. Hybrid Logic and its Proof-Theory, volume 37 of Applied Logic Series.
Springer, 2011.
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18. J. Goguen and G. Roşu. Institution morphisms. Formal Aspects of Computing,
13:274–307, 2002.
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editors, CSL, volume 5771 of Lecture Notes in Computer Science, pages 530–545.
Springer, 2009.


