Peter V. Dovbush: Normality and p-point sequences.

Abstract: Let X be a complex Banach manifold modelled on a complex Banach space of positive, possibly infinite, dimension; k_{X} denotes the infinitesimal Kobayashi pseudometric on $X ; K_{X}$ denotes the Kobayashi pseudodistance on X; and $\mathcal{O}(X)$ denotes the set of all holomorphic functions on X. Let s be the spherical metric on Riemann sphere which is associated with Riemann metric $d s(z, d z)=|d z| /\left(1+|z|^{2}\right)$.

A family \mathcal{G} of holomorphic functions in the open unit disc $\Delta:=\{z \in$ $\mathbb{C}:|z|<1\}$ is said to be normal if each sequence $\left\{g_{j}\right\} \subset \mathcal{G}$ has a subsequence which converges uniformly (with respect to the Euclidean metric) on compacta in Δ or diverges uniformly to ∞ on compacta in Δ.

A function f in $\mathcal{O}(X)$ is called normal if the family $\mathcal{F}=\{f \circ \varphi \mid \varphi \in$ $\mathcal{O}(\Delta, X)\}$, where $O(\Delta, X)$ denotes the space of all holomorphic maps φ : $\Delta \rightarrow X$, forms a normal family.

A sequence $\left\{x_{n}\right\}$ of points in X is called a P-sequence of $f \in \mathcal{O}(X)$ if there is a sequence $\left\{y_{n}\right\}$ of points in X and a positive number $\epsilon>0$ such that $K_{X}\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ but $s\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \epsilon$ for each positive integer n.

Theorem 1. Suppose X is a complex Banach manifold, and suppose k_{X} is a metric. The following statements are equivalent for $f \in \mathcal{O}(X)$.
(a) f is normal.
(b) There exists a constant $Q>0$ such that

$$
Q_{f}(x):=\sup _{v \in T_{x}(X) \backslash\{0\}} \frac{d s\left(f(x), f_{*}(x) v\right)}{k_{X}(x, v)}<Q \text { for all } x \in X
$$

(c) There exists a constant $L>0$ such that

$$
s(f(x), f(y)) \leq L \cdot K_{X}(x, y) \text { for all } x, y \in X
$$

(d) There is no P-sequence $\left\{x_{n}\right\}$ in X possessed by f.

Theorem 2. Let X and k_{X} be given as in Theorem 1, and $f \in \mathcal{O}(X)$. If $Q_{f}\left(x_{m}\right) \rightarrow \infty$ as $m \rightarrow \infty$, then $\left\{x_{m}\right\}$ contains a subsequence which is a P-sequence of f.

The converse to Theorem 2 is not true in general, as the following example shows. Let $X=\Delta, f(z)=\exp \frac{i}{1-z} \in \mathcal{O}(\Delta), z_{n}=\frac{n^{2}}{1+n^{2}}-\frac{i}{n+n^{3}}, w_{n}=$ $\frac{n^{2}}{1+n^{2}}$. Here $Q_{f}\left(w_{n}\right) \rightarrow \infty$, and hence by Theorem 2 sequence $\left\{w_{n}\right\}$ contains a subsequence $\left\{w_{m}\right\}$ which is a P-sequence of f. Since $K_{\Delta}\left(z_{m}, w_{m}\right) \rightarrow 0$ a subsequence $\left\{z_{m}\right\} \subseteq\left\{z_{n}\right\}$ is a P -sequence of f too, while the sequence $Q_{f}\left(z_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$.

Theorem 3. Let X and k_{X} be given as in Theorem 1. A function $f \in \mathcal{O}(X)$ is a nonnormal function on X iff there exist sequences $\left\{x_{m}\right\}$ and $\left\{y_{m}\right\}$ of points in X, and a positive constant M such that $K_{X}\left(x_{m}, y_{m}\right)<M$ for all $m, \lim _{m \rightarrow \infty} f\left(x_{m}\right)=\infty$, and $\lim _{m \rightarrow \infty} f\left(y_{m}\right)=a \in \mathbb{C}$.

