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Abstract

Mirror symmetry is an highly elaborated correspondence, where, for
certain pairs of varieties X and Y one are able to understand some
classes of invariants of X in terms of invariants of Y of completely
different type. One side of this correspondence (let’s say on X ) is
connected with the so-called Gromov-Witten invariants which are
encoded in the quantum deformation of the usual cup product in
H∗(X ,C).

In recent years, another correspondence of this type -(0; 2)-mirror
symmetry- became an active area of research in connection with the
(0; 2) nonlinear sigma model from super-strings theory. The main
piece in this theory is quantum sheaf cohomology, namely a
deformation of the cohomology ring of a sheaf.

In the first part I intend to explain briefly this subject from the
mathematical viewpoint and the importance of the omality condition.

The second part will be devoted to the construction of stable omalous
bundles on surfaces of general type.
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The ”classical” quantum cohomology I

The quantum cohomology is a formal deformation of the cohomology
ring H∗(X ,C) for a smooth algebraic variety X .

From the physical viewpoint it seems like if one try to ”observe” the
variety X not by its points, but by its rational curves.

The result is a quantum product on H∗(X ,C)[[q]] where
q = (q1, q2, ...) is a multi-index whose length is the rank of H2(X ,Z).

The main ingredient in the construction is Kontsevich’s moduli space
of stable maps

M(X , β)

which parametrize maps P1 → X whose image has class
β ∈ H2(X ,Z).

Also, one should mention that the construction depend on a system
of marked points, but we shall ignore this aspect here.
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The ”classical” quantum cohomology II

Having the moduli space of stable maps, the construction of the
quantum product on H∗(X ,C) goes as follows:

for two classes ω1, ω2 ∈ H∗(X ,C) the big deal is to define their
quantum product

ω1 ? ω2 ∈ H∗(X ,C)[[q]].

A first observation is that as consequence of Poincare duality, it is
enough to define the pairing

< ω1 ? ω2, ω3 >

for any class ω3 ∈ H∗(X ,C).

The pairing can be expanded as a formal sum∑
β

< ω1ω2ω3 >β qβ

where β varies in the free part of H2(X ,Z) ' Zr .
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The ”classical” quantum cohomology III

So, we are reduced to the computation of this triple product
< ω1ω2ω3 >β for each β ∈ H2(X ,Z).

This is done by pushing up the three ωi in the cohomology of
M(X , β) and by taking here the cup product of the resulting classes:

< ω1ω2ω3 >β= ϕ∗β(ω1) ∪ ϕ∗β(ω2) ∪ ϕ∗β(ω3),

where the push up map ϕβ : H∗(X ,C)→ H∗(M(X , β),C) is
constructed using the marked points.

Even in such a oversimplified picture, we must mention three great
difficulties in the full story:

First of all, the moduli space M(X , β) is not compact at the
beginning and its compactification was obtained by Kontsevich.
Secondly, this compactification is not a variety but a stack.

Thirdly, on the compactification one needs a so called virtual
fundamental class which is used to give a rigorous meaning for the
cup product on M(X , β).
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The ”classical” quantum cohomology:
examples

All these difficulties were resolved for large classes of varieties. Below
are two simple examples:

QH∗(Pn) =
C[x ][[q]]

(xn+1 − q)

QH∗(Pn × Pm) =
C[x , y ][[p, q]]

(xn+1 − p, ym+1 − q)
.
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Quantum cohomology for sheaves I

Quantum cohomology for sheaves was introduced by Donagi et al. in
2011 [arxiv 1110.3751] in connection with the (0, 2) nonlinear sigma
model.

Its construction is similar with that for varieties but has a sheaf E on
the variety X as supplementary input.

The sheaf E has to satisfy certain constraint - the omality condition -

c1(TX ) = c1(E ) c2(TX ) = c2(E )

which imply the vanishing of the Green-Schwarz anomaly.

An important point is that the omality is a necessary but not sufficient
condition for the existence of a quantum sheaf cohomology for E .

As definition, the quantum sheaf cohomology for E is the structure of
a quantum product on

QH∗(X ,E ) := H∗(X ,Λ∗(E v ))⊗ C[[q]].
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Quantum cohomology for sheaves II

It is a deformation of the usual product on the cohomology of E .

Remark: For E = TX the quantum sheaf cohomology of E is the
”classical” quantum cohomology of X as one can guess from the
Hodge decomposition.

The construction goes along the same lines as in the ”classical” case:
one starts with two elements ω1, ω2 ∈ H∗(X ,Λ∗(E v )) and we want to
define their quantum product

ω1 ? ω2 ∈ H∗(X ,Λ∗(E v ))[[q]].

Again by duality it is enough to define the pairing

< ω1 ? ω2, ω3 >

for any class ω3 ∈ H∗(X ,Λ∗(E v )).

Finally we arrive at the same problem, namely the definition of
< ω1ω2ω3 >β for each β ∈ H2(X ,Z).
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Quantum cohomology for sheaves III

The next step is to push up the ωi
′s from H∗(X ,Λ∗(E v )) to

H∗(M(X , β),Λ∗(F v )), where F is a certain sheaf over M(X , β)
obtained from E .

For example, in an ideal situation when the moduli space M(X , β)
were fine with classifying map

ϕ :M(X , β)× P1 → X ,

then F would be R0π1∗ϕ∗(E ).

Anyway, even in the real world where M(X , β) is not fine, such an F
exists and the main point is that

the omality of E imply Λtop(F v ) ' KM(X ,β)

As consequence, if one starts with ωi ∈ Hpi (X ,Λqi (E v )) with
Σpi = dimM(X , β) and Σqi = rank(F ) then by pushing up the ωi

′s
and taking cup product we arrive in Htop(M(X , β),K ) ' C,
producing therefore the desired number < ω1ω2ω3 >β.
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Anyway, even in the real world where M(X , β) is not fine, such an F
exists and the main point is that

the omality of E imply Λtop(F v ) ' KM(X ,β)

As consequence, if one starts with ωi ∈ Hpi (X ,Λqi (E v )) with
Σpi = dimM(X , β) and Σqi = rank(F ) then by pushing up the ωi
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The quadric surface I

As one could remark, apart the difficulties connected with the
”classical” quantum cohomology, at least two new problems can be
seen: the construction of the bundle F and the starting point, namely
the construction of the omalous bundle E

In fact, the construction of a quantum sheaf cohomology is known in
very few cases.

In this section we shall review a result in this direction obtained by
Donagi et al. in 2011 [arxiv 1110.3752] concerning the quadric
P1 × P1.

As the starting point on the quadric, the above mentioned authors
considers de bundle E as cokernel in the following sequence:

0→ O⊕O → O(1, 0)2 ⊕O(0, 1)2 → E → 0,

The left arrow above is given by a matrix of the form

[
Ax Bx
Cx ′ Dx ′

]
,

C.Anghel (IMAR) (0; 2)-Mirror symmetry on surfaces May 19, 2016 11 / 23



The quadric surface I

As one could remark, apart the difficulties connected with the
”classical” quantum cohomology, at least two new problems can be
seen: the construction of the bundle F and the starting point, namely
the construction of the omalous bundle E

In fact, the construction of a quantum sheaf cohomology is known in
very few cases.

In this section we shall review a result in this direction obtained by
Donagi et al. in 2011 [arxiv 1110.3752] concerning the quadric
P1 × P1.

As the starting point on the quadric, the above mentioned authors
considers de bundle E as cokernel in the following sequence:

0→ O⊕O → O(1, 0)2 ⊕O(0, 1)2 → E → 0,

The left arrow above is given by a matrix of the form

[
Ax Bx
Cx ′ Dx ′

]
,

C.Anghel (IMAR) (0; 2)-Mirror symmetry on surfaces May 19, 2016 11 / 23



The quadric surface I

As one could remark, apart the difficulties connected with the
”classical” quantum cohomology, at least two new problems can be
seen: the construction of the bundle F and the starting point, namely
the construction of the omalous bundle E

In fact, the construction of a quantum sheaf cohomology is known in
very few cases.

In this section we shall review a result in this direction obtained by
Donagi et al. in 2011 [arxiv 1110.3752] concerning the quadric
P1 × P1.

As the starting point on the quadric, the above mentioned authors
considers de bundle E as cokernel in the following sequence:

0→ O⊕O → O(1, 0)2 ⊕O(0, 1)2 → E → 0,

The left arrow above is given by a matrix of the form

[
Ax Bx
Cx ′ Dx ′

]
,

C.Anghel (IMAR) (0; 2)-Mirror symmetry on surfaces May 19, 2016 11 / 23



The quadric surface I

As one could remark, apart the difficulties connected with the
”classical” quantum cohomology, at least two new problems can be
seen: the construction of the bundle F and the starting point, namely
the construction of the omalous bundle E

In fact, the construction of a quantum sheaf cohomology is known in
very few cases.

In this section we shall review a result in this direction obtained by
Donagi et al. in 2011 [arxiv 1110.3752] concerning the quadric
P1 × P1.

As the starting point on the quadric, the above mentioned authors
considers de bundle E as cokernel in the following sequence:

0→ O⊕O → O(1, 0)2 ⊕O(0, 1)2 → E → 0,

The left arrow above is given by a matrix of the form

[
Ax Bx
Cx ′ Dx ′

]
,

C.Anghel (IMAR) (0; 2)-Mirror symmetry on surfaces May 19, 2016 11 / 23



The quadric surface I

As one could remark, apart the difficulties connected with the
”classical” quantum cohomology, at least two new problems can be
seen: the construction of the bundle F and the starting point, namely
the construction of the omalous bundle E

In fact, the construction of a quantum sheaf cohomology is known in
very few cases.

In this section we shall review a result in this direction obtained by
Donagi et al. in 2011 [arxiv 1110.3752] concerning the quadric
P1 × P1.

As the starting point on the quadric, the above mentioned authors
considers de bundle E as cokernel in the following sequence:

0→ O⊕O → O(1, 0)2 ⊕O(0, 1)2 → E → 0,

The left arrow above is given by a matrix of the form

[
Ax Bx
Cx ′ Dx ′

]
,

C.Anghel (IMAR) (0; 2)-Mirror symmetry on surfaces May 19, 2016 11 / 23



The quadric surface II

where A,B,C ,D are 2× 2 complex matrices and x = (x1, x2),
x ′ = (x ′1, x

′
2) are homogenous coordinates on the two projective lines.

Note that the bundle E is a deformation of TX which correspond to
the special values A = D = I2 and B = C = 0.

With the previous notations, the result proved by Donagi et al. is:

The quantum sheaf cohomology on the quadric

For the quadric X = P1 × P1 and the sheaf E above, the quantum sheaf
cohomology is:

QH∗(X ,E ) =
C[a, b][[p, q]]

(det(Aa + Bb) = p, det(Ca + Db) = q)

.

Remark: for E = TX , namely for A = D = I2 and B = C = 0, the
quantum sheaf cohomology above, recover the ”classical” quantum
cohomology of the quadric, as it is expected.
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Motivation for the second part I

As one can see from the previous part, the first ingredient for the
construction of a quantum sheaf cohomology is an omalous bundle.

However, despite their importance, only few examples are known in
the literature. A first class of examples consists of deformations of the
tangent bundle TX which are omalous by trivial reasons.

On the other hand, as showed by Andreas and Garcia-Fernandez in
2010, the stability of an omalous bundle is a very important property,
because such a bundle provide a solution of the so-called Strominger
system in super-string theory.

In this direction, a first systematic attempt to construct stable
omalous bundles was done in 2011 by Henni and Jardim in
arxiv:1105.5588. They uses monads to construct:
- stable omalous rank 3 bundles on 3-folds in P4,
- stable omalous rank 2 bundles on c.i. CY’s in projective spaces,
- omalous of rank > 3 bundles on multi-blowup of the plane,
- stable omalous of various ranks on the Segre variety.
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Motivation for the second part II

Also, in arxiv:1506.01479, Aprodu and Marchitan studied omalous
rank 2-bundles on Hirzebruch surfaces.

The rest of my talk will be devoted to the construction of stable
omalous bundles on surfaces, with special emphasis for the case where
X is a surface of general type.

I shall first describe a general construction for stable bundles due to Li
and Qin.

After that I shall consider certain concrete cases where this
construction can be applied to produces stable omalous bundles.
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General construction of stable bundles on
surfaces I

In what follows X is a smooth projective surface and L a very ample
polarization. The L-stability of a sheaf E means that it has the
greatest fraction c1·L

rank among all its sub-sheaves.

The main problem for the moment is the following: fixing the rank r
and the first Chern class c1, to find a computable bound α depending
only on r , L and c1 such that for any c2 ≥ α there is an L-stable
vector bundle of rank r with the given Chern classes c1 and c2.

The main result of Li and Qin asserts that for α one can take the
following value:

α = (r − 1)[1 + max(pg , h
0(S ,OX (rL− c1 + KX ))) + 4(r − 1)2· L2]

+(r − 1)c1· L−
r(r − 1)

2
· L2,

where KX is the canonical class and pg = h0(X ,KX ) the geometric
genus of X .
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General construction of stable bundles on
surfaces II

The main point in the proof of Li-Qin theorem is the following
generalization of the usual Cayley-Bacharach property:

Li-Qin Lemma

Consider r − 1 line bundles L1, ..., Lr−1 and 0-cycles
Z1, ...,Zr−1 on X ; let W = ⊕(OX (Li )⊗ IZi

). Then, there is a locally free
extension in Ext1(W ,OX (L′)) iff for any i = 1...(r − 1), Zi satisfies the
Cayley-Bacharach property with respect to the linear system
OX (Li − L′ + KS).

After that, the desired bundle E is constructed as an extension

0→ OX (c1 + (1− r)L)→ E → ⊕(OX (L)⊗ IZi
)→ 0,

for a convenient choice of r − 1 reduced 0-cycles Z ′i s that ensures the
stability of E .
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General construction of stable bundles on
surfaces III

As a conclusion with respect to the Li-Qin construction we can state
the following:

Remark: The value of α grows up with the Chern number c21 due to
the presence of the h0-term and to Riemann-Roch.

Therefore, if their construction can produce omalous bundles, it is
better to try on surfaces that satisfy at least

c2 >> c21 .

The above inequality, combined with Bogomolov-Miyaoka-Yau
inequality c21 ≤ 3c2 for surfaces of general type, suggests to look at
certain convenient such surfaces.
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Stable omalous bundles on ”good” surfaces of
general type I

Viewing the above considerations, we can introduce the following:

Definition

A surface of general type is ”good of type (r , L)” if for c1 = ±KX and
c2 = c2(X ), there exists r ∈ N and a very ample line bundle L, such that

c2 ≥ α(r , c1, L),

where α is the Li-Qin constant introduced before.

In terms of the above definition, the Li-Qin existence Theorem has
the following obvious consequence:

Corollary

On a general type surface X ”good of type (r , L)”, there exists L-stable
omalous vector bundles of rank r .
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Examples of ”good” surfaces I

This last section is devoted to the illustration of the above results on
a concrete class of examples: Xd a smooth surface of degree d in P3.

Well known computations gives for Xd the following values of
invariants:

c2 = d3 − 4d2 + 6d c21 = d(d − 4)2

Also, by Noether formula,

pg = χ(O)− 1 =
c21 + c2

12
=

d3

6
+ ....

So, the leading therm in d which appear in the Li-Qin constant α is

d3(r − 1)

6
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Examples of ”good” surfaces II

As consequence, for 2 ≤ r ≤ 6 and d >> 0 we have c2 ≥ α.

So, on can apply the Li-Qin construction, obtaining the following:

Theorem (-,2015)

There is an explicitly computable constant d0, such that for all d ≥ d0 and
all 2 ≤ r ≤ 6, on any smooth surface Xd ⊂ P3 of degree d there exists a
stable omalous bundle of rank r .
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Further directions

As further directions, an open question asked by Donagi et al. in the
paper ”(0, 2) Quantum Cohomology” published in Proceedings of
Symposia in Pure Mathematics, Vol 85, 2012, concern the
computation of the quantum sheaf cohomology for other sheaves than
deformations of the tangent bundle.

Of course, the above constructed stable omalous bundles are good
candidates for such a computation.

Moreover, due to the range of their ranks, less than 7, this question is
very interesting viewing the following:

Conjecture: Guffin, 2011

For omalous bundles E of rank r ≤ 7 on a smooth variety, the quantum
sheaf cohomology QH∗(X ,E ) exists.
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THANK YOU!
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