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Abstract

Heegaard-Floer homology has been used recently in problems
concerning cuspidal plane curves.

In the first part of the talk we intend to review these results following
mainly
M. Borodzik, M. Hedden, C. Livingston, Plane algebraic curves of
arbitrary genus via Heegaard Floer homology, arXiv:1409.2111
and
J. Bodnar, D. Celoria, M Golla, Cuspidal curves and Heegaard Floer
homology , arXiv:1409.3282 .

In the second part we shall present some connections with the theory
of ramified coverings of the complex projective plane.

This is joint work in progress with Cristina A-M. Anghel.
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Outline

1 Cuspidal curves and HF-type obstructions
Cuspidal curves
Heegaard-Floer theory
Obstructions for cuspidal curves and some examples

2 Cuspidal curves and ramified coverings of CP2

General coverings of surfaces
Cuspidal coverings of the plane
Examples of low degree coverings
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Cuspidal curves

The link of a plane curve singularity is a usual link in S3.

A cusp is a singular point whose link is a knot i.e. has one component
(also called uni-branched)

In the most part we will be concerned with cusps with only one
Puiseaux pair: namely the link is a torus knot or equivalently the cusp
has a local parametrization of type t → (ta, tb).

In general, for a singular point, its semi-group Γ ⊂ Z consists of the
local intersection number with complex curves. For example, for a
cusp with one Puiseaux pair (a, b) the semi-group is generated by a
and b.

The gap counting function of the semi-group Γ is

Im = ]{Z \ Γ ∩ [ m,∞)}
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Topology of the complement

For a cuspidal curve C of degree d , genus g and n cusps p1, ..., pn we
denote by δi the Milnor number of the cusp pi ; it is in fact the genus
of Ki -the link of pi .

The relation between the above numbers is:∑
δi + g =

(d − 1)(d − 2)

2

An essential step toward the application of HF-theory is the
understanding of the topology of the complement: let N a regular
neighborhood of C , W = CP2 \ Int(N) and Y = W ∩N . With these
notations we have:

Lemma

H1(Y ,Z) = Zd2 ⊕ Z2g , b2
±(W ) = 0. In fact H2(W ) is generated by

elements with square 0.
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Heegaard-Floer theory I

HF-theory associate to every 3-manifold with a torsion spinc -structure
t ∈ H2(Y ,Z) two Z2 vector spaces denoted by HF∞(Y , t) and
HF+(Y , t).
Roughly speaking, one take a Heegaard diagram (S , (αi ), (βi )) and
one considers the Z2 space generated by the intersection of the two
tori

∏
αi and

∏
βi in the symmetric product of S . On these spaces

on introduce a differential taking into account the ”holomorphic
disks” between different generators. The homology produced by these
differential are the above HF-homology groups.
An important property of these two homology theories is that there is
a canonical map

π : HF∞(Y , t)→ HF+(Y , t)

Fact: the main role of π is to produce two numbers associated to
every torsion spinc -structure:

d(Y , t) and db(Y , t)
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Heegaard-Floer theory II

With the above notations, the following result is the basic tool coming
from the HF-world to constrain the invariants of cuspidal curves:

Theorem (Ozsvath-Szabo)

Consider (W , s) a spinc 4-manifold with boundary (Y , t) such that:
W is negative semi-definite
the restriction H1(W ,Z)→ H1(Y ,Z) is trivial
t is torsion
(Y , t) has standard HF∞ (i.e. ' Λ∗H1(Y , t)⊗ Z2[ U,U−1] )
Then the following holds:

c21 (s) + b−2 (W ) ≤ 4db(Y , t) + 2b1(Y )
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Heegaard-Floer theory III

Apart the above theorem, the following two facts are essential for
constraints for cuspidal curves:
- the numbers db(Y , t) are effectively computable
- if Y is the boundary of a regular neighborhood of C , they are
related to the gap function of the cusps.

From all the previous facts, the first main result of Bodnar, Celoria
and Golla is the following:

Theorem (BCG)

Let C a cuspidal curve of degree d , genus g and one singular point with
gap function I . Then for any −1 ≤ j ≤ d − 2 and any 0 ≤ k ≤ g we have:

k − g ≤ Ijd+1−2k −
(d − j − 2)(d − j − 1)

2
≤ k .
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Heegaard-Floer theory IV

The main point in the above story is the Ozsvath-Szabo theorem
where the topological properties of the pair (W ,Y ) play an important
role.

The same methods can be applied for cuspidal curves on other
surfaces with similar topological properties.

For example, Borodzik and Moe in arxiv:1410.4464 obtains similar
obstructions for cuspidal curves on Hirzebruch surfaces.
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Obstructions for cuspidal curves I

The second main result of BCG refers to cuspidal curves with a single
cusp of type (a, b):

Theorem (BCG)

For fixed genus g and sufficiently high degree d , one have:

a + b = 3d

(
7b − 2a

3
)2 − 5b2 = 8g − 4.

In few words the proof goes as follows:

the degree-genus relation in the case of one cusp of type (a, b) is

(d − 1)(d − 2) = (a− 1)(b − 1) + 2g

(the genus of the torus knot is (a−1)(b−1)
2 )
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Obstructions for cuspidal curves II

A pair (a, b) is defined to be admissible if a, b are coprime, there is a
degree satisfying the above relation and the gap function of the
semi-group generated by a and b verifies the main theorem.

The proof relies on the following two technical facts:
- if g ≥ 1 for almost all admissible pairs we have 6 < b

a < 7

- if g ≥ 1 for almost all admissible pairs with 6 < b
a < 7 we have

a + b = 3d

As consequence, for almost all admissible pairs we have a + b = 3d
and using the degree-genus relation one obtain the second identity of
the theorem.
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Examples I

A second objective of the BCG paper is the construction of some
families of cuspidal curves with a single cusp with toral link.

For any k ∈ Z define the Lucas sequence Lkn by the Fibonacci
recurrence starting from k − 1 and 1.

The first existence result is:

Theorem

Let k ≥ 2 and g = k(k−1)
2 . Then:

1. for any i ≥ 2 there is a cuspidal curve with one toral cusp of degree
d = Lk4i−1 and Puiseaux pair (Lk4i−3, L

k
4i+1).

2. for any j ≥ 1 there is a cuspidal curve with one toral cusp of degree
d = −Lk−4j−1 and Puiseaux pair (−Lk−4j+1,−Lk−4j−3).
3. if 3 | g and 2g − 1 is prime, then for d >> 0 any such curve is of one
of the the above types.

Remark: the examples from the theorem all verifies a + b = 3d .
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Examples II

The following two examples produces curves for which a + b 6= 3d :

Let p non-divisible by 3 and Cp : xp+3 + yp+3 + xpz3 = 0
then d = p + 3, g = p + 2 and the cusp is of toral type (p, p + 3)

Let p ≥ 2 and Dp : xpzp−1 + x2p−1 + y2p−1 = 0
then d = 2p − 1, g = (p − 1)(p − 2) and the cusp is of toral type
(p, 2p − 1)
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General coverings of surfaces I

The motivation for the sequel is to construct (new/with computable
invariants) surfaces starting from singular plane curves.

The main result concerning general coverings is the following:

Theorem (Grauert-Remmert)

For X normal variety and D a divisor with complement U, an etale cover
of U extends uniquely as an normal analytic cover Y of X .

An important fact is that even if X is smooth, Y will acquire
singularities corresponding with the singularities of D.

A particular class of coverings are constructed from a n-divisible line
bundle L⊗n on X and an holomorphic section with divisor D. The
resulting variety Y is the cyclic covering associated with the pair
(L,D).
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General coverings of surfaces II

Example: double coverings of surfaces

For n = 2 and D with only simple singularities (eg. suppose it has only
nodes or simple cusps) denote by Ȳ the canonical resolution of the double
cover Y → X . Then the invariants of X and Ȳ are connected by the
following relations:

χ(Ȳ ) = 2χ(X ) + 1
2L · KX + 1

2L
2

pg (Ȳ ) = pg (X ) + h0(X ,KX ⊗ L)

c1
2(Ȳ ) = 2c21(X ) + 4L · KX + 2L2

c2(Ȳ ) = c2(X ) + 2L · KX + 4L2

Concerning the Kodaira dimension, for example in the case of
X = CP2 and D of degree 2m one have:

kod(Ȳ ) = −1 for m = 1, 2 kod(Ȳ ) = 0 for m = 3

kod(Ȳ ) = 2 for m ≥ 4
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nodes or simple cusps) denote by Ȳ the canonical resolution of the double
cover Y → X . Then the invariants of X and Ȳ are connected by the
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2(Ȳ ) = 2c21(X ) + 4L · KX + 2L2
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Cuspidal coverings of the plane I

The study of ramified covers of the plane with cuspidal ramification
divisor is a natural question viewing the following (classical) result
published in 2008 by Ciliberto and Flamini:

Theorem

The branch curve of a general projection of a surface S on CP2 is
irreducible with only nodes and cusps.

Also, a natural question is to find the configuration/position of the
singularities of a given curve such that it is the branch curve of a
generic projection. For example, a classical result in this direction is
the following:

Theorem: (Segre)

A plane curve D is the branch curve for a generic projection of a surface in
CP3 iff:
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Cuspidal coverings of the plane II

Theorem: (Segre)

1. deg(D) = n(n − 1)
2. D has 1

2n(n − 1)(n − 2)(n − 3) nodes and n(n − 1)(n − 2) cusps
3. there are curves L1 and L2 of degrees (n − 1)(n − 2) and
(n − 1)(n − 2) + 1 which contains the 0-cycle of singularities of D and
have separate tangents at these points.

The above theorem was extended in 2012 by Friedman, Lehman, Leyenson
and Teicher for surfaces in arbitrary projective spaces.

Remark

Not every covering of CP2 is the restriction of a linear projection !
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Examples of low degree coverings I

Apart the degree 2 case where a cover is determined by an even line
bundle and a section, a systematic study for low degree coverings was
done by Miranda in 1985. His main result can be resumed as:

Theorem (Miranda)

A triple cover Y → X is determined by a rank two vector bundle E on X
and an element

Φ ∈ Hom(S3(E )→ Λ2(E ))

and conversely.

In this correspondence the branch locus in X is a divisor with associated
line bundle (Λ2E )−2.
For triple covers of surfaces Y → X with cuspidal ramification one has the
following restriction:

] of cusps = 3c2(E ),

and the genus of the branch locus is 2c1
2 − c1 · KX + 1− 3c2(E ).
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Examples of low degree coverings II

In particular, Y has the following invariants:

hi (OY ) = hi (OX ) + hi (E )

χ(OY ) = χ(OX ) + χ(E )

K 2
Y = 3K 2

X − 4c1 · KX + 2c21 − 3c2

χ(Y ) = 3χ(X )− 2c1 · KX + 4c21 − 9c2

and the above formulas compute the invariants of triple covers of the
plane for some explicit bundles (eg. split or twisted tangent bundle).
Also, Miranda used the dictionary above to construct a sequence of
successive triple covers of general type such that c12

c2
tends to 3 which is

the Miyaoka upper bound.
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THANK YOU!
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