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Abstract

The aim of the talk is to present an idea of Libgober for constructing
invariants of plane curves, starting with representation of the braid
groups as input. For the later, we shall use the quantum
representation, which in knot theory, gives the colored Jones
polynomial and the general Lawrence representation. In the
meantime, we shall overview also the notion of Zariski pairs, and a
possible application of our method for detecting them. This is a joint
work with Cristina Anghel and Martin Palmer.
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Introduction I

The theory of knots and links in S3 has a long history and many
invariants were introduced aiming to detect them.

Among these, the Alexander and the famous Jones polynomials are
the most well known, the last one being in fact only the first from a
series indexed by natural numbers N ≥ 2.

In particular, the Alexander polynomial has many equivalent
definitions, one of which start from the topology of the knot
complement. Guided by co-dimension 2 analogy, people developed a
similar formalism for the case of plane algebraic curves in the complex
projective plane.

The result, an Alexander type polynomial, has interesting properties
and in particular is connected to the topology of the singularities of
the curve.
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Introduction II

In the first part of the talk I shall speak about the Alexander
polynomial and its main properties.

In the second part, we will see an ingenious idea of Libgober, which
recover the Alexander polynomial via a general construction using
braid group representations. For the particular case of what is called
the reduced Burau representation, it is obtained the usual Alexander
polynomial of the curve.

The last part will be devoted to the applications of the Libgober
method to a particular class of braid group representations, namely
those which come from the world of quantum groups. In the
knots/links case, this gives the coloured Jones polynomials. Also, we
will discuss a strongly related family of representations obtained by
Lawrence.

We will end with a short discussion on Zariski pairs and about a
possible application of the coloured Jones polynomial for detecting
them.
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Plane curves and Alexander type invariants I

In what follows we will fix a complex projective algebraic curve
C ⊂ CP2.

Alternatively we will be interested also in its affine part, denoted by
abuse also with C ⊂ C2. In this case we will suppose that it is
transverse to the line at infinity L∞

In this setting a fundamental question is the following:

Question 1

To characterize (to find invariants for) the topological type of the pair
(C2,C ) or (CP2,C ), or of the complement.

Also, we can ask the following:

Question 2

What is the dependence of the global invariants on the type of singularities
of C , or on the relative position of the singularities.
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Plane curves and Alexander type invariants
II

Concerning the first question, one could remark that it is in complete
analogy with the usual question in low dimensional topology for knots
or links in S3.

Also, the second one has a ”bad” answer: as we will see, the global
invariants depends not only on the type of the singularities, but also
on their relative position.

A famous example in this direction is the following due to Zariski:

Zariski’s sextics

There are two degree 6 plane curves C1 and C2 with 6 cusps each as only
singularities, such that their complements in C2 are not homeomorphic. In
fact already the fundamental groups of the complements are
non-isomorphic.
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Plane curves and Alexander type invariants
III

It is interesting to point out that in the Zariski’s example, what make
in fact the difference is the fact that for C1 the cusps are on a conic,
while for C2 not.

The existence of the singularities is essential for the non-triviality of
the problem. In the smooth case it is known that all pairs (CP2,C )
are equivalent and the π1(complement) ' Zd , where d = deg(C ).

Also, even in the presence of singularities and/or multiple
components, the homology of the complement is a very weak
invariant. In fact the following is known:

Homology of the complement

If C = C1 ∪C2 ∪ ...∪Cr is the union of r irreducible components of degree
d1, ..., dr , then

H1(CP2 \ C ) = Zr−1 ⊕ Z(d1,...,dr ).
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Plane curves and Alexander type invariants
IV

A much finer invariant is of course the fundamental group. Due to
the following result, it is no big difference between the affine or the
projective case:

Homotopy of the complement

We have the following central extension:

0→ Z→ π1(C2 \ C )→ π1(CP2 \ C )→ 0.

Moreover, the two fundamental groups have the same commutator.

So we shall restrict to the affine case. The general method due to
Zariski goes as follows:
take a point P ∈ L∞, not on C and a generic projection from P
π : C2 → L such that the critical fibers has either simple tangency in
smooth points or if they pass through a singular point, they are
transverse to the tangent cone of the singular point.
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Plane curves and Alexander type invariants
V

take a non-critical value P0 ∈ L.

The monodromy around critical values, gives a morphism from
π1(L \ crit. val .) to the group of isotopy classes of homeomophisms of
the fiber π−1(P0) that fixes π−1(P0) ∩ C .

If r is the number of critical values and d is the degree of C , we
obtained the following:

Definition: Braid monodromy

The above morphism θ : Fr → Bd is called the braid monodromy of the
pair (C , π).

The braid monodromy is a finer invariant (depending on P0 and π)
than the fundamental group and in fact determines the later trough
the following standard action of the braid group Bd on the free group
Fd :
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Plane curves and Alexander type invariants
VI

we denote by σj the d − 1 generators of Bd and by µi the d
generators of Fd ,

the action σj(µi ) =

µi+1 if i = j

µi+1µiµi+1
−1 if i = j + 1

µi else.

With the above notations the following celebrated result of Zariski -
van Kampen express the fundamental group of the complement in
terms of the braid monodromy θ:

Zariski - van Kampen Theorem

π1(C2 \C ) is generated by the µi with relations θ(αj)µi = µi for i = 1...d ,
j = 1...r and αj the generators of the free group Fr .
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Plane curves and Alexander type invariants
VII

Even with the above explicit description, it is hard to decide when two
particular curves have isomorphic fundamental groups.

The idea is to extract less finer but more computable invariants. The
Alexander polynomial for this situation is constructed as follows:

one starts with the epi-morphism

π1(C2 \ C )→ Zr−1 ⊕ Z(d1,...,dr ) → Z,

and one considers the usual associated cyclic cover M → C2 \ C .

Then, for any field R, H1(M,R) is an R[t, t−1]-module of the
following form:

⊕R[t, t−1]

(λi )
.
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Plane curves and Alexander type invariants
VIII

In the above terms, the global Alexander polynomial has the following
definition:

Definition-global Alexander polynomial

∆C (t) = Πλi .

One could remark that it is defined only up to units in R[t, t−1], so
we can normalize it so that it is monic, has non-zero constant term
and only positive powers.

As other computational tools, we mention the usual Fox calculus
which use the presentation of π1 from the Zariski-van Kampen
theorem,

and Libgober description of the global Alexander polynomial, in terms
of the local contributions of the singularities. However, we must
emphasize that these local contributions also takes into account
information on the relative position of the singularities.
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Plane curves and Alexander type invariants
IX

For example in the case of Zariski’s sextics, the global Alexander
polynomials are 1 or t2 − t + 1, depending if the cusps are or not on a
conic.

As a last remark, the global Alexander polynomial depends only on
the fundamental group of the complement. However, it is known that
the braid monodromy determines the full homotopy type of the
complement [L]. The next section introduces the idea of Libgober
which use the finer braid monodromy to construct invariants that sees
more deeply the structure of the complement than the fundamental
group.
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The Libgober idea I

The idea of Libgober is very simple and is inspired from the usual
description of the Alexander polynomial as the greatest common
divisor of the minors of a presentation matrix for the Alexander
module over R[t, t−1].

Recall the braid monodromy morphism θ : Fr → Bd where r is the
number of critical values of a generic projection and d is the degree of
the curve.

Take as a second input an n dimensional representation ρ of the braid
group Bd over the ring R[t, t−1].

For αi with i = 1...r a generating system of Fr ' π1(L \ crit. val .),
take the (r · n, n) matrix

A :=
⊕

(ρ(θ(αi ))− Id)

over R[t, t−1].
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The Libgober idea II

With the above notations, the Libgober invariant P(C , ρ) is defined
as follows:

Definition

P(C , ρ) is the greatest common divisor of minors of order n in the matrix
A.

Using a naturality lemma for curves in the same connected
component of an equi-singular family of plane curves and two generic
projections for them, Libgober proves the following:

Theorem

P(C , ρ) does not depend on the choices made for the braid monodromy
and is constant on connected components of an equi-singular family.

Remind that the choices were L and P0 ∈ L∞.
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The Libgober idea III

From the above viewpoint, the Alexander polynomial enter into this
picture trough the reduced Burau representation:

ρ̄ : Bd → Aut(R[t, t−1]d−1).

In this context, Libgober proved the following:

Theorem

P(C , ρ̄)(t) = ∆C (t) · (1 + t + ...+ td−1).
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Another example: the Krammer polynomial I

Along the same lines, in 2017, Aktas-Cellat-Gurdogan considered
another famaous braid group representation, namely the Krammer’s
one.

The Krammer representation Kn(t, q) of the braid group Bn is an(n
2

)
-dimensional linear representation over the ring of Laurent

polynomials in 2 variables Z[t±1, q±1]. Note that Z[t±1, q±1] is an
UFD.

Its main importance is due to the fact that it is faithful, giving
therefore a positive answer to the question on the linearity of the
braid groups.

In their paper [ACG], the Krammer representation is putted into the
Libgober recipe, providing a 2-variable polynomial associated to plane
curves.
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Another example: the Krammer polynomial II

Definition of the Krammer polynomial

The Krammer polynomial associated to the plane curve C of degree d is

kC (t, q) := P(C ,Kd)(t, q).

Their main application concerns the n-gonal curves:

Definition

An n-gonal curve C in C2 is one whose equation F (x , y) = 0 has the
property that degy (F ) = n.

An n-gonal curve is completely reducible if F splits as a product of n
linear factors in y .

In these terms, the main result in [ACG] is the following:
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Another example: the Krammer polynomial
III

Theorem

The Krammer polynomial for an n-gonal completely reducible curve C
with exactly 1 singular fiber is:

kC (t, q) = (t2dq6d − 1)
(n2).

The meaning of the supplementary condition concerning the singular
fiber is the following: a fiber of the x-projection is singular if it
intersects the union of C with the section at infinity in less than n + 1
points.
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The representation theory of the sl2 quantum
group I

In this part we shall describe the representation of the braid group
over a Laurent ring with 2 variables, which comes from the world of
quantum groups. In fact, these representations are closely connected
with the construction of the coloured Jones polynomials in knot
theory.

Let q, s parameters and consider the ring

Ls := Z[q±1, s±1].

The sl2 quantum group we shall work with is defined as follows:
Uq(sl(2)) is the algebra over Ls generated by the elements
{E ,F (n),K±1 | n ∈ N∗} with the folowing relations:

KK−1 = K−1K = 1; KE = q2EK ; KF (n) = q−2nF (n)K

F (n)F (m) =

[
n + m

n

]
q

F (n+m).
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The representation theory of the sl2 quantum
group II

For the definition of the quantum bracket we used the following
notations:

{x} := qx − q−x [x ]q :=
qx − q−x

q − q−1

[n]q! = [1]q[2]q...[n]q[
n

j

]
q

=
[n]q!

[n − j ]q![j ]q!
.

Also, lets considers V the Verma module freely generated over Ls by
elements v0, v1, ... with the following Uq(sl(2)) action:

K · vj = sq−2jvj

E · vj = vj−1

F (n) · vj =

[
n + j

j

]
q

n−1∏
k=0

(sq−k−j − s−1qk+j)vj+n.
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The representation theory of the sl2 quantum
group III

Using the R-matrix of Uq(sl(2)), a standard construction proves:

Theorem

The braid group Bn acts on V⊗n as a module over Ls . Moreover, this
action commutes with the Uq(sl(2))-action.

The last assertion above implies that the braid group Bn acts also on
the usual weight and highest weight spaces:

Vn,m = ker(K − snq−2l Id) ⊂ V⊗n

Wn,m = ker(E ) ∩ ker(K − snq−2l Id) ⊂ V⊗n.

Due to the fact that for m = n(N − 1) (where N is the label of VN ,
the finite N-dimensional Uq(sl(2))-representation) the Bn-action on
Wn,m is connected with the coloured Jones polynomial, we consider
the following:
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The representation theory of the sl2 quantum
group IV

Definition

The braid group Bn action on Wn,m as a module over Ls is the coloured
Jones action denoted by ρcJ .
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The Lawrence representations I

Another Bn-action over the Laurent ring in two variables comes from
a totally different direction: the topology of the configuration spaces
in the punctured disk and of their coverings.

Roughly speaking Bn will acts on a certain sub-space Hn.m in the
homology of a covering. In full generality it was considered by
Lawrence and Bigelow. For m = 2 it is obtained the Krammer
representation which was initially been introduced by purely algebraic
tools.

The construction goes as follows: (it will be a slight overlap with
Cristina’s talk)

Let n,m ∈ N be two natural numbers. Let us denote by

Dn := D2 \ {p1, ..., pn}

the n-punctured disc, where D2 ⊆ C is the unit closed disk (with
boundary) and {p1, ..., pn} are n distinct points in its interior, which
are also on the real axis.
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the n-punctured disc, where D2 ⊆ C is the unit closed disk (with
boundary) and {p1, ..., pn} are n distinct points in its interior, which
are also on the real axis.
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The Lawrence representations II

Consider the configuration space of m unordered points in Dn:

Cn,m = Confm(Dn) = (Dm
n \∆)/Symm

where ∆ = {x = (x1, ..., xn) ∈ Dm
n | ∃ i , j such that xi = xj}. In the

sequel we will use the homology of a certain covering space associated
to Cn,m. We will define it using a certain local system as follows.

Let
ρ : π1(Cn,m)→ H1(Cn,m)

be the abelianisation map. Then, for any n ∈ N and m ∈ N, m ≥ 2
one has:

H1(Cn,m) ' Zn ⊕ Z
Consider the function ε : Zn ⊕ Z→ Z ⊕ Z

< x >< d >
given by the augmentation of the first n components

ε((x1, ..., xn), y) = (x1 + ...+ xn, y).
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The Lawrence representations III

We consider the following local system φ : π1(Cn,m)→ Z ⊕ Z given
by:

< x >< d >

φ = ε ◦ ρ.

Let C̃n,m be the covering space of Cn,m which corresponds to Ker(φ),
and denote by π : C̃n,m → Cn,m the projection map associated to it.

Now, we want to see that the homology of the covering space of the
configuration space in the puncture disc has the feature of carrying a
braid group action. We remind that the braid group is the mapping
class group of the punctured disc relative to its boundary:

Bn = MCG (Dn) = Homeo+(Dn, ∂)/isotopy
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The Lawrence representations IV

Then Bn will act onto the configuration space Cn,m by
homeomorphisms and it will induce an action on its fundamental
group

Bn y π1(Cn,m).

Proposition

This braid group action behaves well with respect to the local system φ,
and it can be lifted to an action onto the homology of the convering.
Moreover, this action is compatible with the action of the deck
transformations and one has that:

Bn y H lf
m(C̃n,m,Z) ( as a module over Z[x±, d±]).

The Lawrence representation will be defined on a certain subspace of
the middle dimensional Borel-Moore homology of the covering C̃n,m

described above.
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The Lawrence representations V

More precisely, this subspace denoted Hn,m is spanned by certain
explicitly constructed classes indexed by

En,m = {e = (e1, ..., en−1) ∈ Nn | e1 + ...+ en−1 = m}.

With these notations we have:

Lawrence representation

The braid group action Bn y H lf
m(C̃n,m,Z) preserves the subspace Hn,m

and there is a braid group representation:

ln,m : Bn → Aut(Hn,m,Z[x±1, d±1])

called Lawrence representation.
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The Lawrence representations VI

We mention that the dimension of the Lawrence representation Hn,m is(n+m−2
2

)
if m ≥ 2. For m = 1, Hn,1 is the reduced Burau representation.

C.Anghel (IMAR) Plane curves inv. & braid groups rep. 28 June - 03 July 2019 30 / 36



The coloured Jones and Lawrence
polynomials for plane algebraic curves I

Putting ρcJ and ln.m into the Libgober algorithm, we obtain the
following:

Theorem (-, C. Anhgel, M. Palmer)

There exists two polynomial invariants, the coloured Jones and the
Lawrence one, P(C , ρcJ)(q, s) and P(C , ln.m)(x , d) which are constant in
connected components of equi-singular families of plane curves. After a
convenient change of variables, the two coincides.

The main interest for considering these new invariants is to try to
detect by their use non-equivalent plane curves with the same values
for other invariants for example π1 or the Alexander polynomial.

The next section is devoted to such pathological situations where the
classical invariants are useless.
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Zariski pairs and future directions I

A Zariski pair consists of two curves C1,C2 with the same type of
singularities, with homeomorphic tubular neighborhoods but
non-homeomorphic as embedded curves.

The classical example seen at the beginning is due to Zariski and
consists of two sextics with 6 cusps. The good point for that pair is
the fact that both the π1 and the Alexander polynomial detect them.
In particular, the fundamental group of the complement is
computable.

However, there exists many examples of Zariski pairs which are not
detected neither by the homeomorphism type of the complement.

This fact, for example is in striking contrast to the knot theory
situation, where the Gordon-Luck theorem implies that the
homeo-type of the complement determines the knot type.
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Zariski pairs and future directions II

With the above facts in mind, a natural question could be the
following:

Question 1

To find Zariski pairs with the same Alexander polynomial but with
different coloured Jones/Lawrence polynomial.

Due to the fact that by construction, the cJ/L polynomial depend on
the braid monodromy, which is in fact a finer invariant than the π1
itself, a more ambitious question could be:

Question 2

To find Zariski pairs with the same π1 but with different coloured
Jones/Lawrence polynomial.
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Zariski pairs and future directions III

Last but not least, the world of quantum groups at root of unity offer also
a wide class of braid group representation. From this viewpoint one can
ask:

Question 3

To study Zariski pairs through the lens of other (non-semisimple)
polynomials like the coloured Alexander (ADO).
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THANK YOU!
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